

2017 ENVIRONMENTAL MONITORING REPORT GOLDEN DISPOSAL FACILITY (MR – 17006), GOLDEN, B.C.

Prepared for:

Columbia Shuswap Regional District 555 Harbourfront Drive NE PO Box 978 Salmon Arm, B.C. VIE 4PI

Prepared by:

Western Water Associates Ltd. #106-5145 26th Street Vernon, B.C. VIT 8G4

April 2018 Project: 14-024-16

April 13, 2018 Project # 14-024-16

Ben Van Nostrand, B.Sc., P.Ag., AScT.
Waste Management Coordinator, Operations Management
Columbia Shuswap Regional District
555 Harbourfront Drive N.E.
P.O. Box 978
Salmon Arm, B.C., VIE 4P1

Dear Mr. Van Nostrand:

Re: 2017 Environmental Monitoring Report - Golden Disposal Facility, Golden, B.C.

Western Water Associates Ltd. (WWAL) is pleased to provide this report which summarizes environmental monitoring at the Golden Refuse Disposal Facility (RDF) in 2017. For the 2017 reporting, time series plots were created from historic and current data. This temporal analysis helps us understand the degree of impact on groundwater over time. This report satisfies the requirements of the provincially issued Operational Certificate and is suitable for submission to the B.C. Ministry of Environment.

We trust that the professional opinions and advice presented in this document are sufficient for your current requirements. Should you have any questions or if we can be of further assistance in this matter, please contact the undersigned.

WESTERN WATER ASSOCIATES LTD.

Reviewed by:

Bryer Manwell, M.Sc., P.Eng. Hydrogeological Engineer Douglas Geller, M.Sc., P.Geo. Senior Hydrogeologist

andell

TABLE OF CONTENTS

		I	
I.	INT	RODUCTION AND SITE BACKGROUND	I
	1.1	OBJECTIVE AND SCOPE	I
2.	SITE	DESCRIPTION	I
	2. I	LOCATION	I
	2.2	GEOLOGY, HYDROLOGY AND HYDROGEOLOGY	2
	2.3	CLIMATE	
	2.4	2017 MONITORING NETWORK	
3.	MET	HODS	
	3.1	SAMPLING PARAMETERS	
	3.2	Sampling Methods and Protocols	
4.	RESU	JLTS AND DISCUSSION	
	4.1	VEGETATION	
	4.2	WATER QUALITY EXCEEDANCES	
	4.2. I	GROUNDWATER QUALITY EXCEEDANCES	
	4.2.2		
		WATER QUALITY TREND ANALYSIS FROM 2002 TO 2017	
	4.3. I	Chloride	
	4.3.2	ELECTRICAL CONDUCTIVITY	12
	4.3.3	SODIUM	
	4.3.4	Sulphate	12
	4.3.5	Nitrate	
	4.3.6	SELECT METALS	-
	4.3.7	,	
5 .	CON	NCLUSIONS	. 14

List of Figures (following text)

Figure I	General Site Location Map
Figure 2	Monitoring Locations
Figure 3	Runoff Locations Map
Figure 4	Chloride and Conductivity Time Series Plots
Figure 5	Dissolved Sodium and Total Sodium Time Series Plots
Figure 6	Sulphate Time Series Plots

April 2018 14-024-16

CSRD – Annual	Environmental	Monitoring Re	port – Golden	Disposal Facility

Figure 7	Nitrate and Modified Nitrate Time Series Plots
Figure 8	Dissolved Iron and Total Iron Time Series Plots
Figure 9	Dissolved Manganese and Total Manganese Time Series Plots
Figure 10	Total Sodium, Total Iron and Total Manganese for Runoff Sites Time Series Plots

List of Tables

Table I: Monthly Average Climate Data (STN 1173210: 1981 - 2010)	3
Table 2: 2017 Monitoring Program	
Table 3: 2017 Water Quality Exceedances by Guideline	
Table 4: Summary Statistics for Select Water Quality Parameters from 2002 to 2017	

List of Appendices

Appendix A Oper	ational Certificate	17006
-----------------	---------------------	-------

Appendix B Well Logs

Appendix C Water Quality Database Appendix D Water Quality Reports

I. INTRODUCTION AND SITE BACKGROUND

Western Water Associates Limited (WWAL) was retained by the Columbia Shuswap Regional District (CSRD) to prepare the 2017 Annual Environmental Monitoring Report for the Golden Refuse Disposal Facility (RDF) (hereinafter called the "site") as part of a district-wide monitoring contract. This report presents the monitoring for the 2017 report period from January I to December 31, 2017. Associated Engineering (formerly Summit Environmental Consultants Inc.) previously reported on the 2008 to 2013 monitoring programs. Prior to 2008, Sperling Hansen Associates (SHA) prepared the annual reports (SHA 2008). In 2014 WWAL was awarded the monitoring contract and we are pleased to provide the results of the 2017 environmental monitoring program at the Golden Landfill in this report.

The Golden RDF has operated as a natural attenuation site since the late 1970's when the permit was transferred to Columbia Shuswap Regional District (CSRD). The site operates under the now referenced Operational Certificate (OC) 17006, issued May 5, 2003 and most recently amended August 29, 2012, by the British Columbia Ministry of Environment (MoE). The Golden waste shed includes the municipality of Golden and CSRD Electoral Area A, which includes the unincorporated communities of Parson and Nicholson and services approximately 7,000 residents (Summit 2013). This report was prepared in accordance with the annual landfill reporting requirements outlined in Section 5.0 of the Operational Certificate 17006. A copy of the OC is included in Appendix A.

Objective and Scope

To meet the goal of assessing the long-term monitoring for groundwater impacts from landfill operations, the objectives of the program are to collect and analyze groundwater samples, and interpret analytical results in accordance with the OC (MoE 1996) and the consulting agreement between WWAL and the CSRD. The tasks undertaken were as follows:

- Collect and submit to the laboratory, water samples as scheduled for the year;
- Assess the condition of local on-site vegetation for potential stress;
- Summarize water quality guideline exceedances from the 2017 results;
- Analyze the data and prepare the final annual report (this document); and
- Review the results with the CSRD Project Manager at the end of each year and provide recommendations to revise the program for future years, if warranted.

SITE DESCRIPTION

This section describes geographic location, bedrock and surficial geology of the study area, historical climate data, hydrologic data, and hydrogeology data for Golden RDF. Further, a description of the monitoring network that was sampled in the 2017 monitoring program is provided.

2.1 Location

The Golden RDF is located on a southwest facing slope approximately 2 km northeast of downtown Golden (Figure 1). The site covers an area of about 17 ha with the waste footprint covering an area of approximately 4.4 ha. The property is bounded on all sides by forest with Golden-Donald Upper Road

2

located along the western site boundary. The site is approximately I km north and above the Kicking Horse River, which is a major surface water body in the area. The nearest privately owned residence is within 100 m of the landfill boundary and is located just east of the site. The Golden RDF site is relatively flat and is at an elevation of 920 m above sea level (m asl), however the northeastern landfill area is located on a southwest facing slope and is at an elevation of 950 m asl. The site layout is provided on Figure 2 and the civic and legal address is as follows.

Civic: 350 Golden-Donald Upper Road in Golden, BC

Legal: Subdivision 12 of Section 18, Township 27, Range 21, West of the fifth Meridian, Kootenay

District

2.2 Geology, Hydrology and Hydrogeology

Surficial geology in the Golden area are mainly comprised of a thick continuous glacial till blanket, which may include fluted landforms, morainal deposits, and drumlins (Geological Survey of Canada 2014). Deposits at the Golden RDF site consist of dense gravely sand and silty ablation till along the eastern slopes, with well-sorted bedded sand and gravels and alluvial deposits in the south central and western sections, as well as within the trench at the southwest corner of the site (Kala 1995; SHA 2008). Silt with sand and gravel deposits were observed in test hole 4 (MW95-4) at the western edge of the landfill (Kala 1995). Based on well logs for test hole 7 (MW09-7) and MW09-6D the unconsolidated deposits appear to be thicker in the southern sections and thinner towards the north. Deposits in exposures along the west side of Golden-Donald Road (across from the RDF site) consist of dense, well-sorted sands and gravels with traces of silt and clay and occasional bedding planes.

The bedrock at the site consists of sedimentary strata of the Rocky Mountains Cambrian to Ordovician in age (540 to 445 million years ago). Bedrock geology is mapped as limestone, sandstone, shale, minor conglomerate, and associated meta-sedimentary rocks of the McKay Group (Massey et al. 2005). No bedrock was encountered in the five test pits completed during the Kala 1995 hydrogeological investigation. However, limestone bedrock was encountered at approximately 34 m (111 ft) below ground surface (bgs) at MW09-6D near the west central boundary of the site. Bedrock outcrops were noted in the northeastern part of the site.

The Kicking Horse River is approximately I km southeast of the RDF site and nearly 130 m lower in elevation (800 m asl). The river flows northwest through the western range of the Rocky Mountains and lower Kicking Horse Canyon where it merges into the Columbia River at the Town of Golden. The Columbia River flows northwest and is approximately 3 km west of the site. Hospital Creek, located in a deeply incised valley northwest of the landfill site, flows southwest into the Columbia River.

Surface drainage at the RDF site is dependent on the local topography. A narrow ravine located midway along the east side of the site collects the surface water from the east side of the site and diverts flow away from the landfill during extreme rain events or periods of high run-off from snowmelt. There are no

other surface water drainage courses leading away from the landfill. The permeability of the surficial deposits at the site ranges from low to moderate. Silty surficial deposits along the eastern side of the landfill limit groundwater recharge while the silty sand and gravel located in the south-central section of the landfill is typical moderately (SHA 2008).

The B.C. Water Resources Atlas shows MoE sand and gravel Aquifer 456 IIB approximately 60 m southwest of the Golden RDF boundary and is located at the confluence of the Columbia and Kicking Horse Rivers. This aquifer, which is classified as having a moderate demand, high productivity, and moderate vulnerability, covers an area of 10.2 km². Demand describes local reliance on the groundwater water source, productivity indicates relative well yields, and vulnerability describes the potential for contaminants to move from the surface into the aquifer. There are no MoE reported aquifers at the site location. Based on site topography and water level elevations from the three wells (MW09-6D, MW10-8, and DMW-2) completed in the local bedrock aquifer (Summit 2010), groundwater flow direction at the site is from northeast to southwest, moving from the uplands towards the Columbia and Kicking Horse Rivers. The groundwater flow direction should be confirmed once an accurate survey of the top of casing elevation of the wells is completed. Rain and snowmelt percolating through the landfill will likely migrate vertically down until reaching the water table.

2.3 Climate

The climate at the site is humid continental with relatively warm summers and a relatively short dry season, with Golden situated between two mountain ranges. The nearest climatic data available for the region is from the station at the Golden Airport (Climate STN ID 1173210). Climate averages for this station are available for 1981 to 2010. During this period, the recorded average annual temperature and total precipitation at Golden were 5.1°C and 466.8 mm/year, respectively (Environment Canada 2016). Recorded mean monthly temperatures ranged from – 7.9°C in January to 17.3°C in July. The recorded mean precipitation ranged from 24.1 mm/month in February to 51.1 mm/month in November. Table I summarizes the climate data from the Golden climate station.

Table I: Monthly Average Climate Data (STN 1173210: 1981 - 2010)

Month Temperature	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year Avg.
Daily Average (°C)	-7.9	-5.0	0.8	6.5	11.3	14.9	17.3	16.7	11.5	5.00	-2.0	-7.8	5.1
Precipitation													
Precipitation (mm)	45.9	24.1	24.4	24.4	34.5	49.7	50.6	45.3	38.0	34.9	51.1	43.9	466.8

Source: Canadian Climate Normals (Environment Canada, 2018)

2.4 2017 Monitoring Network

In 2016 WWAL was asked by the CSRD to standardize the naming scheme of the monitoring wells for all CSRD Refuse and Disposal Facilities (five sites in total). A legend outlining the previous and current monitoring well identification names for all the monitored sites is provided in Appendix B.

The 2017 monitoring network included five groundwater locations:

- two monitoring wells (MW95-2(dry) and MW09-6S)
- two domestic wells (DMW-1b and DMW-4); and
- two town supply wells (TW- #4 and TW- #6).

In 2017 three additional surface water locations were sampled during their presence during spring freshet.

Monitoring Well MW95-2 has been dry since 2007 and remained dry through 2017. Three onsite monitoring wells were installed in 2009: MW09-6S (shallow), MW09-6D (deep), and MW09-7 to replace decommissioned wells MW95-4 and MW95-3, respectively. MW09-7 has never been sampled as it has been dry since installation. Nested wells MW09-6S and MW09-6D are located along the western site boundary north of the landfill gate. Due to similar water chemistry at wells MW09-6S and MW09-6D, sampling of MW09-6D was considered redundant and therefore discontinued in 2011. Monitoring well MW10-8 was installed approximately 150 m northwest of the site to assess potential offsite leachate migration. After assessing the geochemical profile, we believe surface contamination from road salting is very likely influencing water quality at MW10-8; therefore, this well was not sampled in 2017 (last sampled May 2015) and the well should be closed.

Domestic well DMW-1b, located east of the site, was added to the program in 2011 as a replacement to upgradient monitoring location DMW-I. Monitoring at DMW-I was discontinued after 2010 as a raw water quality could not be sampled due to a filtration system connected to all the water outlets. DMW-4, located east of the site, was added to the program in 2013, as one of the nearest available cross gradient receptors. DMW-I characterized background water quality, therefore DMW-Ib and DMW-4 are now considered as new background wells.

Town Well #4 is one of Golden's five municipal water supply wells located approximately 1.5 km west of the landfill site. Beginning in 2013, another supply well (Town Well #6) was targeted for sampling because the capture zone for this well is closer to the landfill than Town Well #4 (Golder 2006). Town Well #4 was sampled during the April and November sampling events and was unable to be sampled during the August sampling event in 2017 due to physical damage of the building. Table 2 summarizes the current monitoring locations and available well logs are provided in Appendix B.

Sampling at Golden RDF occurs three times annually with the 2017 sampling events occurring on April 5, August 29 and November 20. Landfill gas monitoring points GP-6S/GP-6D and GP-7S/GP-7D were also installed in 2009 and are currently being monitored by the CSRD personnel.

Three additional surface water samples were taken during the spring (April) 2017 sampling event. The neighbour, located on the southern side of the Golden Landfill observed surface water runoff entering her property, which was understood to be occurring from approximately March 23 to March 30, 2017. When WWAL staff was on-site on April 5, 2017 the runoff had ceased. Sampling was conducted at two, on-site, pooled breakout locations at the landfills south slope on April 5, 2017 by WWAL staff (samples named "Runoff #1" and "Runoff #2") (Figure 3). Runoff #3 was sampled off-site, by the neighbour, Andrea Weissenborn, on March 30, 2017. Runoff #3 was provided to WWAL staff on April 5, 2017 and was sent for analysis; however the sample was not kept on ice and did not meet the lab required hold time or temperature.

Table 2: Groundwater Monitoring Location Summary Information

Sample Location	Depth of Well (m btoc)	Aquifer Type/ Primary Lithology	Approximate Ground Surface Elevation (masl)	Location Description
MW09-6S (MW-6S)	34.5	Bedrock	920	Located along the western boundary of the landfill site and is the northern most on-site well.
MW09-6D (MW-6D)	65.9	Bedrock	920	Nested with MW09-6S
MW10-8 (TH-8)	26.2	Bedrock	921	Located approximately 300 m northwest of the site along Golden Donald Upper Rd.
Town Well #4	Unknown	Unknown (assumed to be unconsolidated)	790	Located approximately 1.5 km northwest of the site on a strata road north of 14th St N.
Town Well #6	Unknown	Unknown (assumed to be unconsolidated)	Unknown	Located approximately 2 km northwest of the site on the west side of 11th Ave. N.
DMW-Ib	60	Bedrock	975	Located approximately 150 m east of the landfill site on Hietala Rd.
DMW-4	120	Unknown	Unknown	Located approximately 250 m east of the landfill site just north of Hietala Rd.
Dry Wells				
MW95-2 (TH-2)	22.5	Unknown	915	Located along the south-central boundary of the landfill.
MW09-7 (TH-7)	31.7	Unconsolidated (sand silt and gravel)	Unknown	Located along the western boundary of the landfill (south side) near Golden- Donald Upper Rd and Granite Dr.

Note: masl = metres above sea level; mbtoc = metres below top of casing; Ground surface elevations were measured by Summit, accurate to ±30 cm. Depth for both domestic wells are approximate and are determined from personal communication with home owners.

METHODS

The following sections outline the program methods, including parameters sampled and field techniques used for the program.

Sampling Parameters

The 2017 laboratory assessed water quality parameters included the following:

- Total Alkalinity (total as CaCO₃);
- Total suspended solids (TSS)
- Turbidity;
- pH and Conductivity;
- Hardness (dissolved, as CaCO₃);
- Anions (chloride, fluoride, bromide, and sulphate);
- Nutrients: (nitrate (as N), nitrite (as N), and ammonia (as N)); and

6

Dissolved metals.

Total metals were sampled at domestic wells and town wells during the April and November sampling events in 2017. Dissolved metals were sampled at these locations for the August 2017 sampling event in order to compare metal concentrations between the landfill, and domestic and town well locations.

The groundwater monitoring program conducted in 2017 consisted of hydraulic (water level) monitoring, field measurements of pH, electrical conductivity (EC), temperature, and oxidation-reduction potential (ORP) and dissolved oxygen (DO) recorded during purging and immediately before sampling. All of the above-listed parameters were analyzed during each sample event, except VOC's, which are sampled once per year (spring event).

3.2 Sampling Methods and Protocols

In order to ensure that representative groundwater samples were obtained from the monitoring wells and that no contamination of the recovered samples occurred. Sampling protocols followed the second edition (draft) of the "Landfill Criteria for Municipal Solid Waste" (MoE 2013), "British Columbia Field Sampling Manual for Continuous Monitoring plus the Collection for, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples" (MoE 2013).

Prior to groundwater sample collection, each well was purged of the standing volume of stagnant water using a submersible well pump, dedicated bailers, peristaltic pump or Waterra tubing (as appropriate). The objective of purging is to pump groundwater from the well until a representative sample of the formation groundwater is obtained. This is typically achieved by removal of three to five times the volume of standing water in the well or purging the well dry and letting the well recover to at least half of its pre-pumping level. Purging was considered complete once sediment-free groundwater is obtained and/or the EC, temperature, ORP, and pH of the groundwater stabilize. The pump was decontaminated between each sample location. Groundwater samples were collected in the appropriate laboratory-supplied clean, new sample containers and preserved as required. Groundwater samples designated for metals analysis were field filtered to 0.45 micron and preserved.

All samples were packaged in a cooler and delivered to the laboratory within a 24-hour period for analysis. Groundwater samples were submitted, under chain-of-custody protocol, to Caro Analytical Services (Kelowna, BC), for analysis. The laboratory results were sent directly from the laboratory to Wireless Water, our database manager. The field and laboratory data were then merged and the data were available in one database for analysis by WWAL.

During each monitoring event, the following field data were recorded:

- water level;
- field measured parameters [temperature, pH, ORP, DO, and EC];

- field notes on procedures (e.g. purging rates) and any unusual observations (e.g. well condition, odours, colours, etc.);
- evaluation of vegetation health in the area surround the wells that could be attributed to landfill leachate (luxuriant growth, discolouration, die-off, etc.); and
- signs of leachate breakout zones (e.g. presence of unusual bacteria or algae at all sites, signs of liquid flowing from the surface).

The Relative Standard Deviation (RSD) for each sampled parameter were assessed by taking several replicate samples (at least three in each set) at select locations during the 2017 sampling program. RSD is a statistical measure of reliability of the results for each parameter sampled at each location. A lower RSD means the parameter results are more reliable and representative. The RSD values in 2017 fall below 10% for all parameters except fluoride which was above 10% RSD. Further, microbiological parameters showed significant variability with high RSD, but this is not unusual when sampling living organisms. From results of the triplicate sampling we continue to see that the quality of the data does not affect conclusions made in this report.

4. RESULTS AND DISCUSSION

The following section describes field observations and the results of the water quality sampled at the Golden Disposal Facility in 2017. Annual water level elevations, water quality guideline exceedances in 2017, along with temporal and spatial trends for the Golden RDF monitoring program are discussed. The descriptive statistics (average, standard deviation, maximum, minimum and count) for select water quality results between 2002 and 2017 are summarized in Table 4, with the full water quality database of all historic and current results provided in Appendix C. The 2017 water quality reports provided by the laboratory can be found in Appendix D.

Our analysis of potential leachate impacts on the receiving environment employs two main approaches:

- comparison of monitoring results to guidelines (i.e. does a problem exist); and
- trend analysis (i.e. is the situation changing over-time or space).

The ensuing evaluation, elucidated in our discussion below, may then be used to inform decisions about future monitoring priorities as well as the overall program results. Water quality results were assessed both temporally and spatially.

Potential impacts to groundwater from landfill leachate are typically identified by assessing the concentrations of landfill leachate indicators relative to background groundwater concentrations. Typical leachate indicators may include, but are not limited to: ammonia, chloride, total alkalinity, sulphate, manganese, iron, calcium, magnesium, and the heavy metals cadmium, chromium, copper, nickel, and zinc (Christensen et al. 2001).

Figures 3 through 8 depict the time series plots for water quality parameters sampled at the five locations between 2002 and 2017. The landfill leachate associated parameters plotted include the following: chloride, electrical conductivity, dissolved sodium, sulphate, nitrate, dissolved Iron and dissolved manganese. Plotted results below the reportable detection limit are displayed as one-half the reportable detection limit.

- Chloride and Conductivity (Figure 3);
- Dissolved Sodium and Total Sodium (Figure 4);
- Sulphate (Figure 5);
- Nitrate and Modified Nitrate (Figure 6);
- Dissolved Iron and Total Iron (Figure 7); and
- Dissolved Manganese (Figure 8).

4.1 Vegetation

Trees at the south end of the site, which did appear to be stressed historically, have been removed to allow for installation of a road around the site. Trees, located on the private land to the south of the site appear to be generally healthy, though raven roosting has defoliated some trees. From previous years recommendations, the trees located on the property to the south were assessed by a forester who provided information stating that the trees did not appear to show signs of impact from landfill activities.

4.2 Water Quality Exceedances

Assessing impact on the receiving environment from operation of the Golden RDS is the objective of the current monitoring program at Golden. Due to the proximity of domestic water wells and surface water bodies (Kicking Horse River and Columbia River) in the vicinity of the site, the 2017 groundwater quality results were compared to the following applicable guidelines and standards:

- Guidelines for Canadian Drinking Water Quality Maximum Acceptable Concentration (health-based guideline) (GCDWQ MAC) and Aesthetic Objective (based on aesthetic considerations) (GCDWQ AO) (Health Canada);
- B.C. Approved Water Quality Guidelines for Drinking Water (BCAWQG DW) (MoE 2015); and
- B.C. Contaminated Sites Regulation 375/96, Schedule 6, Generic Numerical Water Standards for Freshwater Aquatic Life (CSR AW (F)) and drinking water (CSR DW) (MoE 2017).

The 2017 surface water quality results were compared to the following applicable standard, as there are deer that graze through the site and at the neighbouring property:

 BC CSR, Schedule 3.2, Generic Numerical Water Standards for Livestock (CSR L) (MoE 2017).

Table 3a and 3b provide lists of exceedances in water quality guidelines and standards relevant to landfill leachate impact. CSR AW(L) standards are intended to be applied to groundwater; therefore, the CSR AW standards are applicable.

4.2.1 Groundwater Quality Exceedances

It should be noted that BCAWQG DW guideline applies to drinking water that is treated with chlorine to address health issues related to production of haloforms (MoE 2001); since none of the monitoring wells are treated with chlorine this guideline does not apply to the monitoring well at the site.

Similar to previous years, a number of parameters were detected at concentrations above guidelines/standards in 2017 (Table 3). Consistent with historical data, the highest arsenic concentrations were found at DMW-1b; where concentrations exceeded the BCAWQG AL of 0.005 mg/l, the GCDWQ MAC and BC CSR DW of 0.010 mg/l, and the BCAWQG DW of 0.025 mg/l during all sampling events in 2017. Arsenic (dissolved) was also in exceedance of the GCDWQ MAC guidelines and BC CSR DW standards at DMW-4 for the first time since 2009. The arsenic, lithium, strontium and iron exceedances are believed to be naturally occurring and not related to landfill activity, as these metals can be found a high concentration throughout the Golden area and throughout interior B.C. It should be noted that residences at DMW-1b were notified by WWAL field staff of exceedances of the drinking water guidelines.

Like previous years, chloride was detected at concentrations above the BCAWQG DW, and GCDWQ AO (250 mg/l) at MW09-6S. Nitrate and sulphate concentrations at MW09-6S remain in exceedance of GCDWQ MAC (nitrate only), BCAWQG DW, and GCDWQ AO (sulphate only). Toluene exceeded at MW09-6S, typically volatile organic compounds are not sampled within the Golden program. They were assessed in 2017 as a one-time sampling, note the toluene exceedance at MW09- was around the detection limits.

Table 3a: 2017 Groundwater Quality Exceedances

Sampling Location	Guideline	2017 Exceedances			
	GCDWQ MAC	Arsenic (total)			
DMW-Ib	GCDWQ AO	Iron (total)			
	BC CSR DW	Arsenic (total), Lithium (dissolved), Lithium (total), Strontium (dissolved)			
	GCDWQ MAC	Arsenic (dissolved)			
DMW-4	GCDWQ AO	Iron (dissolved)			
DI IVV-4	BC CSR DW	Arsenic (dissolved), Lithium (dissolved), Lithium (total), Strontium (total)			
	GCDWQ MAC	Nitrate (as N), Nitrate + Nitrite (as N) (calculated), Nitrite (as N)			
MW09-6S	GCDWQ AO	Chloride, Manganese (dissolved), Sodium (dissolved), Sulphate			
1414403-62	BC CSR AW(F)	Nitrite (as N), Toluene			
	BC CSR DW	Chloride, Cobalt (dissolved), Lithium (dissolved), Nitrate (as N), Nitrate + Nitrite (as N) (calculated), Nitrite (as N), Sodium (dissolved), Sulphate			

4.2.2 Surface Water Quality Exceedances

Due to the presence of deer at and near the site, the surface water samples taken in the spring of 2017 were compared to the BC CSR Standard for Livestock (CSR L). Surface water samples Runoff I and Runoff 2, which were breakout (daylighted) locations at the toe of the south landfill slope, were sampled for the first time in the spring (April 5) of 2017. Runoff 3 was taken from an off-site location, by the neighbour to the south of the site on March 30, 2017.

The chloride concentrations of Runoff I and Runoff 2 are elevated at concentrations of 708 mg/l and 1,230 mg/l, respectively. These concentrations exceeding the CSR L standard of 600 mg/l. Runoff 3 collected from the neighbouring property had a much lower chloride concentration, at 5.5 mg/l. Further, Runoff 2 exceeded the CSR L standards for arsenic and chromium along with chloride and Runoff 3 exceeded for aluminum and chromium.

Sampling Location	Guideline	Exceedances
Runoff 1	BC CSR LW	Chloride
Runoff 2	BC CSR LW	Arsenic (total), Chloride, Chromium (total)
Runoff 3	BC CSR LW	Aluminum (total), Chromium (total)

Table 3b: 2017 Surface Water Quality Exceedances

4.3 Water Quality Trend Analysis From 2002 to 2017

Sample locations were selected to monitor potential receptors surrounding the Golden RDF. The Town wells (#4 and # 6) both monitor downgradient, off-site water quality at the confluence of the Kicking Horse with the Columbia River Valley. The capture zones for Town Well #6 and Town Well #4 are both southwest of the landfill and include industrial, commercial, and residential areas, which could also contribute contaminant sources. MW09-6S (shallow) monitors the upper (north) section of western boundary just prior to the groundwater flowing off-site.

Domestic wells DMW-1b and DMW-4 both monitor potential off-site contamination into the bedrock aquifer directly east of the site (upgradient and cross gradient) of the site. However, as these wells are located upgradient of the site, they are not likely to be affected by landfill operation and instead provide "background" bedrock quality upgradient of the site. Both MW09-7 and MW95-2 are intended to monitor on-site water quality near the southern (MW95-2) and southwestern (MW09-7) boundary of the landfill site; however, they have both been dry since their inception dates.

Overall, on-site MW09-6S continues to exhibit the highest degree impact for groundwater monitored at and beyond the site, with elevated electrical conductivity, chloride, nitrate, sodium, magnesium, and sulphate, relative to other sampled groundwater locations.

Table 4 provides the descriptive statistics for select water quality parameters and trend analysis for select indicator parameters are provided below. A summary of the water quality results for the surface water sampling, conducted in the spring of 2017 is proved in section 4.3.7.

Table 4: GW - Summary Statistics for Select Water Quality Parameters from 2002 to 2017

Analyte	Sampling Location	Unit	Ave	Std Dev	Min	Max	Count	Number of Exceedances
	DMW-Ib	μS/cm	1085	110	750	1220	21	0
	DMW-4	μS/cm	1040	133	790	1271	15	0
Conductivity	MW09-6S	μS/cm	4168	1009	480	6600	28	0
Conductivity Chloride Sodium (dissolved)	Town Well #4	μS/cm	815	204	63	1050	21	0
	Town Well #6	μS/cm	638	88	401	726	13	0
	DMW-Ib	mg/L	37.9	9.4	12.4	52.8	21	0
Chloride	DMW-4	mg/L	18	8.5	11.7	46.5	15	0
Chloride	MW09-6S	mg/L	593	81	417	732	28	28
	Town Well #4	mg/L	75.5	11.6	57.6	105	29	0
	Town Well #6	mg/L	28.9	4.4	22.9	36.2	13	0
	DMW-Ib	mg/L	29.3	5.7	23.5	47.5	15	0
C 1:	DMW-4	mg/L	33.2	11.3	17	51	9	0
	MW09-6S	mg/L	363	38	285	444	28	28
(dissolved)	Town Well #4	mg/L	41.7	5.3	34	58.2	24	0
	Town Well #6	mg/L	16.3	1.5	13.9	17.9	7	0
	DMW-Ib	mg/L	132	29	108	252	21	0
	DMW-4	mg/L	215	52	122	275	15	0
6.1.1	MW09-6S	mg/L	821	86	606	950	28	28
Sulphate	MW10-08	mg/L	47.4	9.6	36.5	72.9	17	0
	Town Well #4	mg/L	39.7	2.3	35.8	44.5	29	0
	Town Well #6	mg/L	24.4	1.8	20.4	27.6	13	0
	DMW-Ib	mg/L	0.041	0.098	<0.010	0.397	21	0
	DMW-4	mg/L	0.387	0.232	<0.010	0.725	15	0
Nitrate (as N)	MW09-6S	mg/L	47.38	13.93	2.99	66.9	28	27
	Town Well #4	mg/L	1.29	0.222	0.755	1.72	29	0
	Town Well #6	mg/L	1.012	0.146	0.781	1.3	13	0
	DMW-Ib	mg/L	0.00501	0.00303	0.0037	0.0158	15	0
	DMW-4	mg/L	0.00466	0.00323	0.0015	0.0127	9	0
Manganese	MW09-6S	mg/L	0.119	0.0869	0.0597	0.518	28	28
(dissolved)	Town Well #4	mg/L	0.0011	0.0017	<0.0002	0.0068	24	0
	Town Well #6	mg/L	0.00238	0.00267	0.0008	0.0082	7	0
	DMW-Ib	mg/L	0.27	0.112	0.014	0.404	15	7
	DMW-4	mg/L	0.075	0.187	<0.010	0.575	9	1
Iron	MW09-6S	mg/L	0.13	0.261	0.01	1.21	28	4
(dissolved)	Town Well #4	mg/L	0.059	0.096	<0.010	0.386	24	I
	Town Well #6	mg/L	0.013	0.01	<0.010	0.033	7	0
	DMW-Ib	mg/L	0.162	0.065	0.104	0.386	15	0
	DMW-4	mg/L	0.247	0.134	0.07	0.465	9	0
Boron (dissolved)	MW09-6S	mg/L	1.585	0.35	0.921	2.16	28	0
(dissolved)	Town Well #4	mg/L	0.023	0.013	0.012	0.042	24	0
	Town Well #6	mg/L	0.035	0.05	0.006	0.143	7	0

4.3.1 Chloride

Historically, chloride concentrations are lower at DMW-1b (average 38 mg/l), DMW-4 (average 18 mg/l), Town Well #4 (75 mg/) and Town Well #6 (average 29 mg/l) than at MW09-6S (average 593 mg/l) (Table 4). Further, concentrations at DMW-1b and Town Well #4 have remained relatively steady over time, as

have concentrations at DMW-4 and Town Well #6 (Figure 4). At MW09-6S chloride has been variable with a definite downward trend.

4.3.2 Electrical Conductivity

Electrical conductivity (EC) is relatively high at the monitored locations on-site as well as most locations off-site. Lowest levels are at both Town Well #4 and Town Well #6, which are around 800 μ S/cm and 600 μ S/cm, respectively. EC is elevated at the topographically upgradient domestic wells (DMW-1b and DMW-4); however, the levels are thought to be naturally occurring as the bedrock groundwater is highly mineralized.

EC at MW09-6S is elevated above all other monitored locations and is variable, with an average of 4,168 μ S/cm (Figure 4). EC values at all locations are relatively stable with the exception of November 2012 at MW09-6S, which are anomalously low and may be incorrectly recorded. Further, conductivity at MW09-6S was also low, below 2,500 μ S/cm in November 2016; however, it has since returned to historical levels, with the EC measured at 4,150 μ S/cm in April 2017.

4.3.3 Sodium

Sodium at MW09-6S exhibits elevated concentrations (greater than 350 mg/l) relative to the other wells (all below 45 mg/l). Concentrations of sodium (Figure 5) at MW09-6S decreased from the initial sampling event in 2009 to late 2011, then increased from 290 mg/l in October 2011 to 444 mg/l in August 2013 but have since decreased to the lowest recorded concentration of 285 mg/l in November 2017. Like chloride, sodium levels remain reliability low and relatively consistent at Town Well #4, DMW-1b, DMW-4, and Town Well #6.

4.3.4 Sulphate

Sulphate concentrations (Figure 6) at MW09-6S remained elevated relative to the other wells, ranging from 663 mg/l to 799 mg/l in 2017. The next highest sulphate concentrations in 2017 were at DMW-4 with an average of 215 mg/l, followed by DMW-1b, with an average of 132 mg/l. The lowest concentrations were measured at the two town wells, where the sulphate concentrations have remained stable and below 40 mg/l. Sulphate concentrations at MW09-6S show a similar trend to sodium, with a general decrease up until late 2011, followed by a relatively steady increase till 2016 to about 900 mg/l, with a slight decrease in 2017 to a concentration of 663 mg/l (November).

4.3.5 Nitrate

Nitrate concentrations (Figure 7) at MW09-6S are elevated above background and the other monitored locations with an average of 47.38 mg/l. Nitrate concentrations at MW09-6S have halved in the past eight years; showing a decreasing trend at this location from 60 mg/l in November 2009 to 32.6 mg/l in November 2017, but still very high. The high levels of nitrate found at MW09-6S are not representative of natural groundwater quality and the most likely source is the Golden RDF.

The next highest nitrate concentrations in 2017 were at Town Well #4, which have been relatively stable with an average of 1.29 mg/l and concentrations of nitrate at Town Well #4 at the same level in 2017 as they were in 2004. Concentrations at DMW-4 and Town Well #6 show a variable yet increasing trends; however, nitrate remains below 1.25 mg/l. Nitrate at DMW-1b remained relatively stable since its addition into the program in 2011 and had concentrations below detection limits for the April and November

sampling events in 2017. Nitrate at DMW-4 showed a slight increase of 0.2 mg/l in August and again November 2014, but has since dropped to historically low levels.

4.3.6 Select Metals

As stated in Section 3.1, dissolved metals were analyzed at monitoring well MW09-6S and total metals were analyzed at domestic and community supply wells DMW-1b, DMW-4, and both town wells in April and November 2017. Dissolved metals were analyzed at domestic wells and town wells in August 2017, to compare results to the RDF well. Total metals analysis includes both dissolved and particulate metals, which should have slightly higher results compared to dissolved metals only. Concentrations of total metals are applicable for comparing to drinking water guidelines/standards, as humans consume the unfiltered groundwater. For monitoring wells, dissolved metals are the typical form of metals assessed.

Iron concentrations (Figure 8) at DMW-1b have been increasing since 2011 and are elevated above the other domestic well and both Town Wells with an average of 0.27 mg/l (Table 4). Concentrations of iron at MW09-6S were elevated between 2009 and 2010, but decreased to below 0.1 mg/l between May 2011 and August 2015 and again between August 2016 and November 2017, after peaking in November 2015 (1.21 mg/l). Iron concentrations at all other sampling locations, were at or lower than 0.1 mg/l in 2017, except for DMW-4. The highest recorded concentration of 0.58 mg/l was measured at DMW-4 in August 2017, before decreasing to 0.037 mg/l in November 2017. The typically low concentration of iron at MW09-6S and the low concentrations at the other sampled locations suggests that the elevated iron at DMW-1b is not related to landfill activity and that the elevated iron concentrations are likely naturally occurring.

Manganese concentrations (Figure 9) at MW09-6S are elevated, with an average concentration of 0.12 mg/l. Manganese concentrations at MW09-6S decreased from the first sampling event in 2009 to mid-2012, after which time concentrations have been stable at about 0.1 mg/l. Stable trends and lower manganese values (at or below 0.005 mg/l) were detected at the other wells.

Consistent with historical data, the highest arsenic concentrations were found at DMW-1b, where concentrations exceeded guidelines during the April and November sampling events in 2017 and has been in exceedance since November 2010. However, arsenic concentrations remain below detection limits at MW09-6S, which suggests that the presence of arsenic in DMW-1b is likely related to the parent rock material and not related to landfill activity. DMW-4 had an arsenic concentration of 0.0421 mg/l, measured in August 2017, exceeding guidelines. All other sample locations have remained relatively stable and low (≤ 0.006 mg/l) since August 2011.

The highest concentrations of boron were recorded at MW09-6S, with concentrations ranging between 1.57 mg/l and 2.03 mg/l in 2017. The trend at this location has been increasing since 2009 from 1.09 mg/l (May 2009) to 2.12 mg/l (May 2016), before decreasing slightly to 2.03 mg/l (April) in 2017. In contrast, boron concentrations at the other wells remain low with average concentrations less than 0.5 mg/l. Concentrations at the other wells are relatively steady over time, apart from DMW-4 which has a range of 0.07 mg/l to 0.66 mg/l within the five years it has been sampled (2013-2017). Boron sources include coal combustion products, municipal sewage, leaching of landfill materials, and the production of fertilizers and pesticides. The maximum dissolved boron concentration at DMW-4 was 0.465 mg/l (November 2013), when compared to MW09-6S (maximum of 2.16 mg/l) it is far below concentrations that may be

of concern at this time. However, continued monitoring is necessary to determine whether concentrations continue to rise.

4.3.7 Surface Water (Runoff) Samples

Sulphate concentrations at the three runoff sites are lower than the elevated concentrations present at MW09-6S. Runoff I has the highest sulphate concentration of 153 mg/l whereas, Runoff 2 and Runoff 3 had lower concentrations of 32.7 mg/l and 13 mg/l, respectively. Electrical Conductivity measured at Runoff 2 was elevated with a recorded value of 13,170 µS/cm and Runoff I had a lower value of 2,370 µS/cm. EC was 324 µS/cm at Runoff 3, indicating the runoff water has had short subsurface travel-time and is freshet water which has run overland and onto the neighbor's property to the south. Nitrate concentrations are low (≤ 2mg/l) at all three sample sites, with concentrations lower than detection limits at Runoff 2. However, Runoff 2 showed an excessively high concentration of ammonia at 928 mg//l, indicating the leachate runoff from the toe of the landfill has not nitrified.

CONCLUSIONS

From the analysis performed in 2017, the following conclusions are made:

- CI The environmental monitoring program was completed as planned, with the exception of an access issue at the Town Well 4, when it was out of service. Additionally, three surface water locations were sampled in the spring, and no surface water was present at the site during the 2017 summer or late fall events.
- C2 Similar to previous years, exceedances of water quality guidelines were detected at the western property boundary of the landfill in 2017. Groundwater quality at well MW09-6S, located near the landfill boundary, continues to show evidence of impact from landfill operation. Elevated concentrations of chloride, nitrate, sodium, sulphate, and dissolved metals including boron and manganese indicate anthropogenic impact from landfill leachate.
- C3 At DMW-1b and DMW-4, concentrations of arsenic and iron in 2017 were above the GCDWQ MAC, BC CSR DW, and the GCDWQ AO, respectively; these are not new exceedances and are related to landfill activity.
- C4 The presence of ravens at the site have created issues with the birds rooting on neighbour's properties, there by affecting the foliage of nearby trees. Further, the ravens carry refuse off-site and create debris issues on neighbouring properties.
- C5 High nitrate at MW09-6S is attributed to Golden RDF leachate effects, but has decreased to about one-half of the high concentrations (>65 mg/L) detected in 2009 (now about 33 mg/L).

6. RECOMMENDATIONS

As per the WWAL 2013 hydrogeological review and based on the results of the monitoring program todate, the following recommendations are provided:

RI Monitoring at the South Property Boundary and Southwest Corner of the Landfill Site

- As mentioned above, attempts to drill at the southwest corner of the landfill have been unsuccessful due to refusal during drilling (MW95-3) and budget constraints (MW09-7). Further, MW95-2 never reached the bedrock and has been dry since 2007. After drilling 40 m (130 ft) below ground surface without tagging the bedrock surface or locating groundwater, at the southwest corner of the landfill in 2009, we know there is at least 40 m of unconsolidated sand and gravel before reaching a potential water table (receptor). The uncertainty of the water table (or piezometric surface) depth at the south edge and southwest corner of the site means that drilling to reach groundwater at these locations could be costly and could potentially be unsuccessful or produce monitoring wells difficult to sample (if the wells need to be drilled to greater than 60 m (200 ft)). We understand this is one reason the CSRD has not pursued drilling at the south edge and southwest corner of the landfills site to-date. However, as of the spring of 2017, there is concern over potential off-site landfill leachate migration occurring due to the observed elevated nitrate concentrations in the groundwater at the west property boundary (MW09-6S) and due to observed over-land flow at the south property boundary (spring 2017); therefore, further on-site drilling should be initiated by the CSRD in 2017 to further characterize groundwater quality and groundwater flow direction. This drilling program will help inform the 5-year review of the hydrogeological characterization of the site.
- b. Having three monitoring wells completed in the same aquifer is necessary to evaluate an actual groundwater flow direction at the site. Assessing an actual groundwater flow direction is required to know what direction potential off-site leachate migration could be occurring and where we would need to drill, off-site in the future, to delineate the extent of potential contamination to the aquifer from operation of the landfill. Prior to R2 below, where we recommend drilling off-site to help establish if off-site leachate migration is occurring (or establish a sentry well), successfully intercepting the groundwater table (or piezometric surface) and sampling the groundwater quality at the southwest corner and south edge of the landfill to help substantiate if drilling off-site at Granite Drive and Stoney Lane (approximate UTM coordinates UTI, 502899, 568400, elevation 904 masl) is appropriate.

c. To enable monitoring at the southwest edge and south property boundary, we recommend drilling two new monitoring wells at these locations. The purpose of drilling these new wells will be to reach the unconsolidated aquifer and bedrock interface, where we expect to find a groundwater table (or just into the bedrock where we would locate a piezometric surface). Because the depth of the bedrock interface is unknown, in order to be successful at reaching the bedrock interface, budgeting for drilling the wells should be done with an over-estimate of the drilling depths; we recommend estimating a 122 m (400 ft) for the southwest corner and 60 m (200 ft) at the south property boundary, using an air rotary drilling rig.

R2 Potential Off-Site Migration of Landfill Leachate

- a. Perform a receptor survey to inventory any newly installed wells near (1,000 m radius) the site, intended for domestic water use. The survey would include calling local drillers to assess if new wells were installed in the area, calling the Town of Golden to assess if new building permit applications have been received, and performing a windshield survey of major roads to see if new building activity is apparent. Further, sampling of domestic wells within 1,000 m of the site should be included in the scope of the receptor survey.
- b. Sample the soils at the neighbour's property, to the south of the site to assess if overland runoff from the site has impacted off-site soils.
- c. Once groundwater flow direction has been determined, from drilling on-site wells, drill a "sentry" monitoring well (a monitoring well between potential drinking water wells and a potential contaminant source) off-site; likely at the junction of Granite Drive and Stoney Lane (approximate UTM coordinates UTT, 502899, 568400, elevation 904 masl). Note that the landfill is approximately 340 m from the edge of the Golder-modeled 10-year capture zone for Town Well #6 (Golder 2006) and this edge of the modelled 10-year capture zone corresponds with the location of the recommend off-site monitoring well.
- d. After assessing the geochemical profile at the monitoring wells, we believe surface contamination from road salting is likely the source of high chloride and dissolved sodium (with low nitrate and other landfill associated parameters) at the previously monitored MW10-8, since its installation in 2010. We recommend closing the well in accordance with the B.C. Groundwater Protection Regulation and potentially drilling a new well to the northwest, away from the main road. However, establishing actual groundwater flow direction I the bedrock aquifer should be prioritized before further drilling of off-site wells.

- e. Further, once MW95-2 has been successfully replaced with a functioning (screened deeper) monitoring well, MW95-2 should be closed in accordance with the B.C. Groundwater Protection Regulation
- f. If off-site migration of leachate is confirmed after off-site drilling and sampling, the CSRD should implement a formal Leachate Management Plan for the Golden RDS.

R3 Water Quality Exceedances at DMW-Ib

- a. It has been challenging to find a representative "background" well to compare water quality downgradient of the Golden Landfill. Attempts have been made to drill a well, on-site and upgradient of the landfilled area without success; therefore, upgradient domestic wells (DMW-1b and DMW-4) were located and permission received to sample the wells was granted. The water quality of these domestic wells has proved to be poor, with exceedances in drinking water guidelines of arsenic, magnesium, and iron occurring regularly. Arsenic is a common water quality parameter to exceed guidelines within some surficial and bedrock aquifers surrounding Golden and throughout B.C.
- b. We believe the water quality exceedances observed at DMW-1b are likely naturally occurring; however, to confirm this is the case, additional sampling of nearby DMW-2 and DMW-3 should be performed during the yearly monitoring to establish a sound understanding of the background bedrock water quality underlying the landfill site.

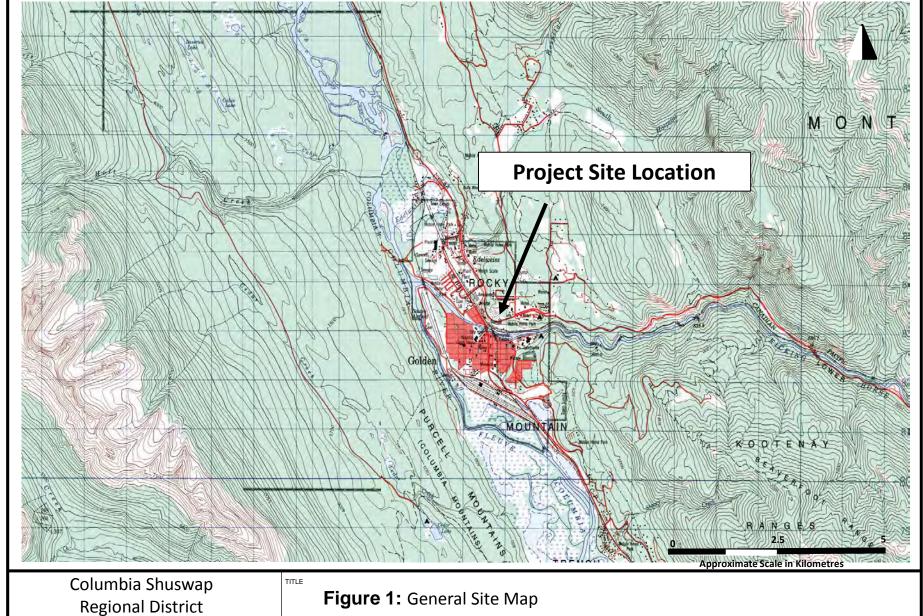
R4 Surface Water Run-on and Runoff at the South Property Boundary

- a. As surface water run-on and then runoff was observed to be occurring onto the property to the south, during spring freshet 2017, soil samples program should be executed according to the provincial technical guidance document for soils assessments of contaminated sites (MoE 2017b).
- b. The Surface Drainage Plan should continue to be implemented at the site to eliminated offsite overland flow of run-on and run-off water. Surfacing of on-site landfill leachate affected waters must be managed, as the site is frequented by wildlife and affected surface waters could be consumed by wildlife.
- c. Further, to eliminate surfacing of leachate from the south toe of the landfill surface, an engineered material should be use to bury the daylighted leachate. Hybridized polar trees should be planted at the south property line, to help attenuate affected on-site water and soil.

d. To characterize the surface waters (assess if surface waters are affected or not-affected) and influence an engineered Surface Drainage Plan, continue water quality sampling of on-site surface waters, if present at the site during the tri-annual sampling events.

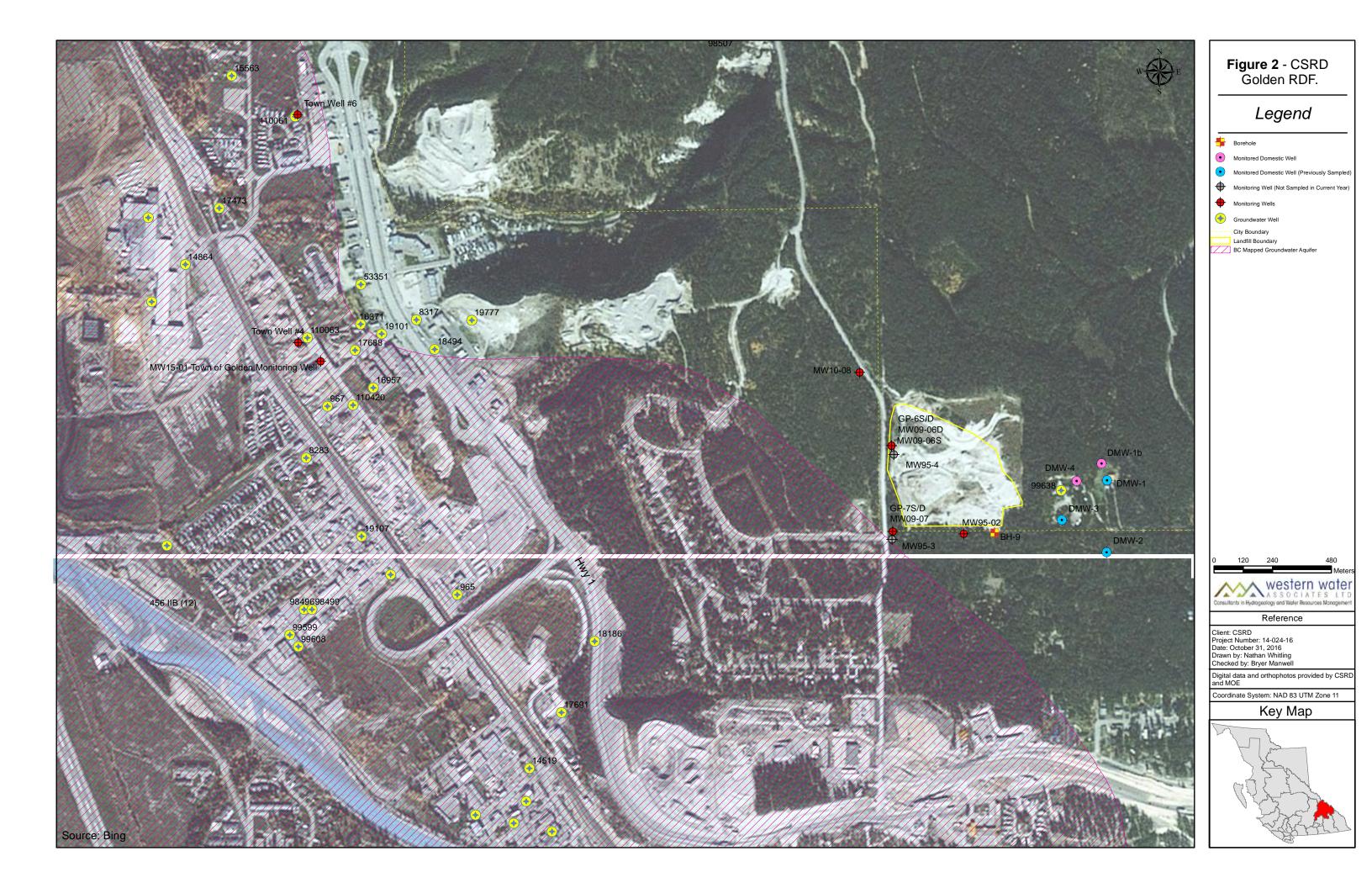
REFERENCES

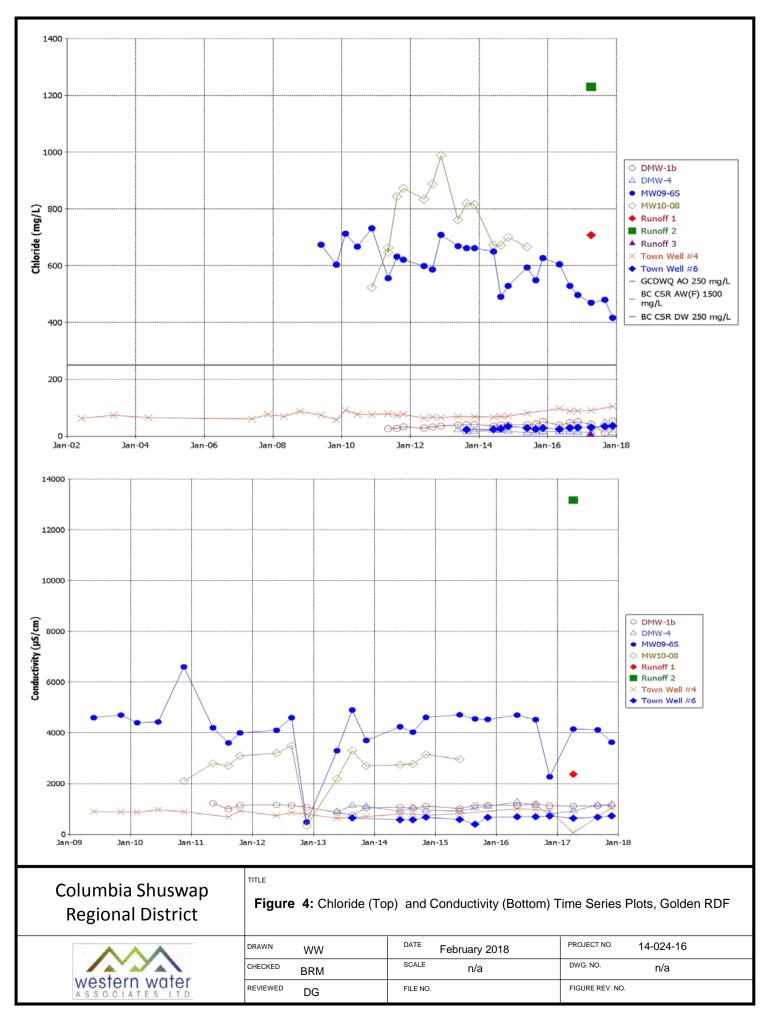
- American Public Health Association (APHA). 1998. Standard methods for the examination of water and wastewater. Washington, DC, Environmental Federation.
- British Columbia Ministry of Environment, Lands and Parks (MoE). 1996. Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills. http://vvvvw.env.gov.bc.ca/epd/301.htm
- British Columbia Ministry of Environment (MoE). 1997. Contaminated Sites Regulation. Effective April I, 1997, latest amendment January 31, 2014. B.C. Reg. 375/96. Queen's Printer Victoria British Columbia. http://www.env.gov.bc.ca/epd/remediation/leg_regs/csr.htm.
- British Columbia Ministry of Environment, Lands and Parks (MoE). 1998. Guidelines for Interpreting Water Quality Data Version I. Prepared for the Land Use Task Force Resources Inventory Committee. http://vvvvw.ilmb.gov.bc.ca/risc/pubs/aquatic/interp/index.htm
- British Columbia Ministry of Environment (MoE). 2013. British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples. 2013 Edition.

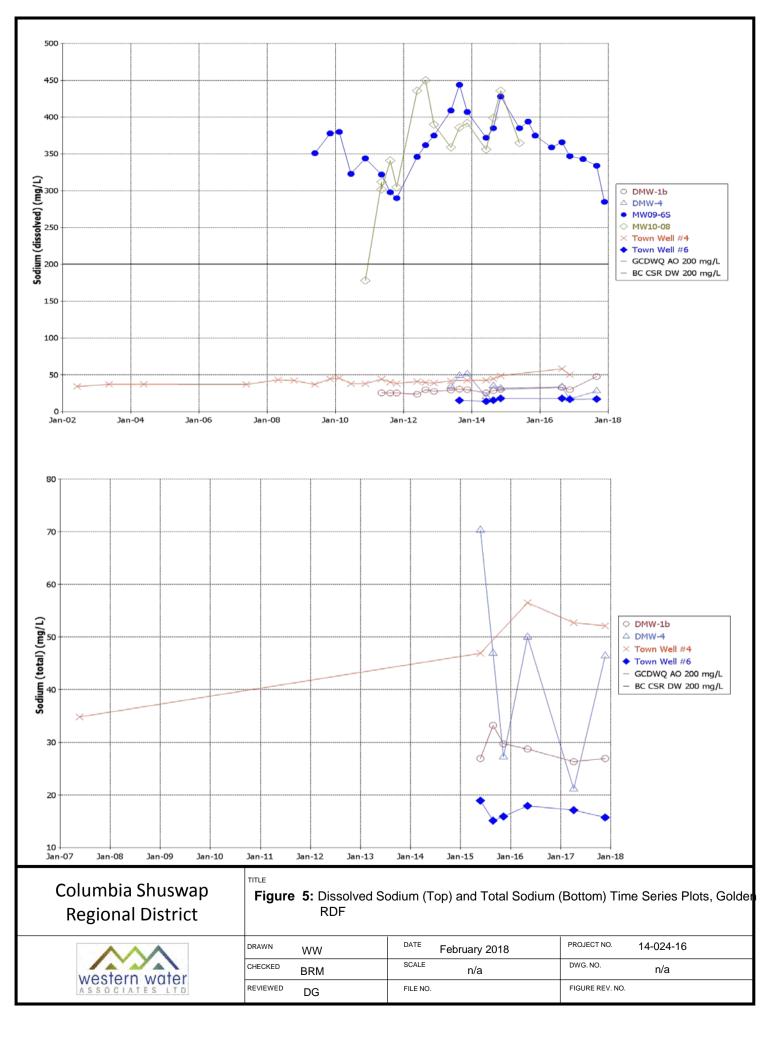

 http://www.env.gov.bc.ca/epd/wamr/labsys/field_man_pdfs/fld_man_03.pdf
- British Columbia Ministry of Environment (MoE). 2015. British Columbia Approved and Working Water Quality Guidelines. British Columbia Ministry of Environment. Updated May 2016. http://www2.gov.bc.ca/gov/content/environment/air-land-water/water-quality/water-quality-guidelines/approved-water-quality-guidelines
- British Columbia Ministry of Environment (MoE). 2012. Operational Certificate MR-17006.
- British Columbia Ministry of Environment (MoE). 2016. Landfill Criteria for Municipal Solid Waste, Draft Interim Second Edition.
- British Columbia Ministry of Environment (MoE). 2017. On-line Water Resources Atlas. http://vvvw.env.gov.bc.ca/wsd/data_searches/wrbc/.
- British Columbia Ministry of Environment (MoE). 2017b. Environmental Protection & Sustainability Air, Land & Water Site Remediation Guidance & Resources:

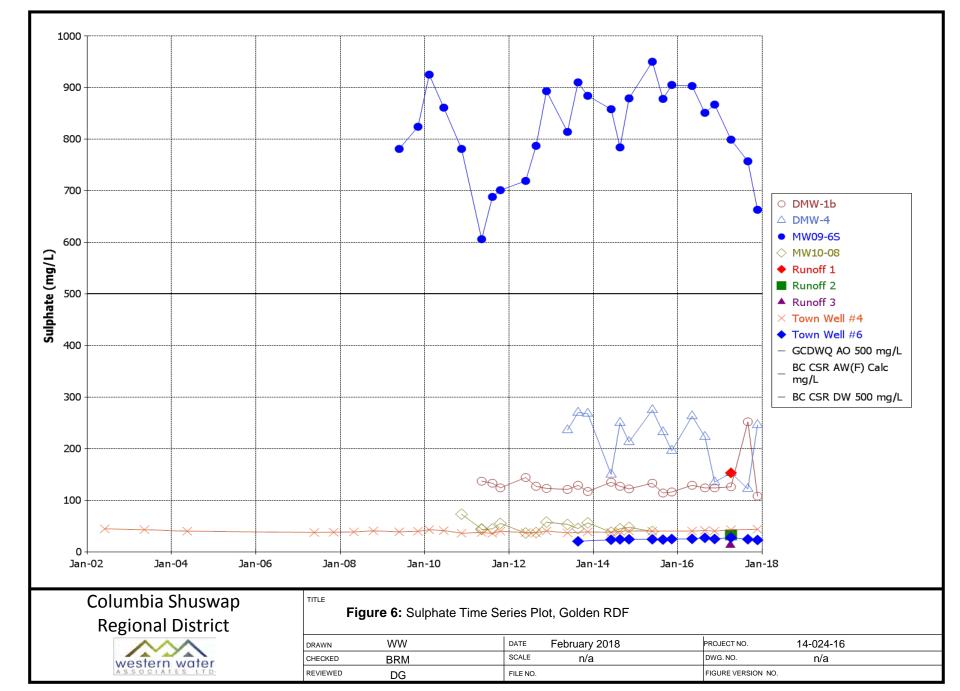
 <a href="https://www2.gov.bc.ca/gov/content/environment/air-land-water/site-remediation/guidance-resources/technical-guida
- Christensen T.H., P.Kjeldsen, P.L. Bjerg, D.L. Jensen, J.B. Christensen, A.Baun, H. Albrechtsen, G. Heron. 2001. Biochemistry of landfill leachate plumes. Applied Geochemistry. 16(659-718). http://engineeringonline.ncsu.edu/onlinecourses/coursehomepages/fal12007/Christen_ApplGeochem.pdf
- Columbia Shuswap Regional District (CSRD). 2007. Solid Waste Management Program Sites and Stats Solid Waste Management Plan Review, Advisory Committee Meeting: http://vvvw.csrd.bc.ca/works/solid-waste.htm
- Environment Canada. 2018. Water Survey, accessed on-line at: http://www.wsc.ec.gc.ca.

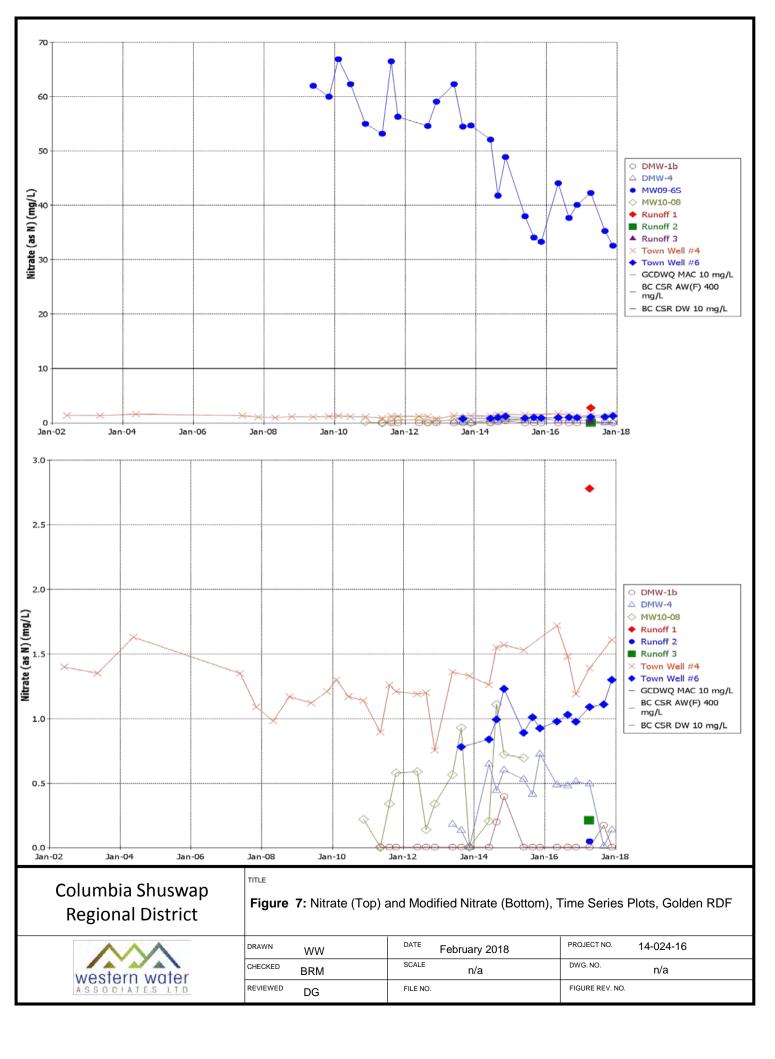
- Environment Canada. 2018. Canadian Climate Normals, accessed on-line: http://climate.weather.gc.ca/climate_normals/
- Geological Survey of Canada, 2014. Surficial geology of Canada; Geological Survey of Canada, Canadian Geoscience Map 195 (preliminary, Surficial Data Model v. 2.0 conversion of Map 1880A), Scale 1:5 000 000. doi: 10.4095/295462.
- Golder Associates Ltd. (Golder). 2006. Conceptual Model, Preliminary Numerical Model and Contaminant Inventory. Town of Golden, B.C. Aquifer Protection Plan.
- Health Canada 2014. Guidelines for Canadian Drinking Water Quality. October 2014. Health Canada. Prepared by the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment. http://vvvvw.hc-sc.gc.ca/ewh-semt/pubs/water-eau/2012-sum_guide-res_recom/index-eng.php
- Kala Groundwater Consulting Ltd. (Kala). 1995. Hydrogeological assessment, Columbia Shuswap Regional District Sanitary Landfill Golden, B.C., Report Prepared for Reid Crother & Partners Ltd. Kelowna BC, Reference No. KG095.-05 7
- Massey, N.W.D., MacIntyre, D.G., Desjardin, P.J., and Cooney, R. T. 2005. Geology of British Columbia. Geological Survey of Canada, Geoscience Map 2005-3, scale1:1 000 000.
- Sperling Hansen Associates (SHA). 2008. Golden Landfill Water Quality Report 2007. Prepared for CSRD. Reference No. SHA PR|8007.
- Summit Environmental Consultants Inc. (Summit). 2010a. Statistical assessment in support of reducing the number of annual groundwater samples required at the Columbia Shuswap Regional District Refuse and Disposal Sites. Prepared for Columbia Shuswap Regional District.
- Summit Environmental Consultants Inc. (Summit). 2010b. 2009 Annual Environmental Monitoring Report Golden Refuse Disposal Site, Golden, BC. Report prepared for the CSRD.
- Summit Environmental Consultants Inc. (Summit). 2012. 2011 Annual Environmental Monitoring Report Golden Refuse Disposal Site, Golden, BC. Report prepared for the CSRD.
- Summit Environmental Consultants Inc. (Summit). 2013. 2012 Annual Environmental Monitoring Report Golden Refuse Disposal Site, Golden, BC. Report prepared for the CSRD.
- Summit Environmental Consultants Inc. (Summit). 2016. 2013 Annual Environmental Monitoring Report, Golden Refuse Disposal Site, Golden, B.C. File. 2013-8054.000. Report prepared for the CSRD.
- Western Water Associates Ltd. (WWAL). 2013. Brief Hydrogeological Assessment of the Golden Landfill (OC 17006) at Golden, B.C. Report 13-050-01, prepared for CSRD November 2013.

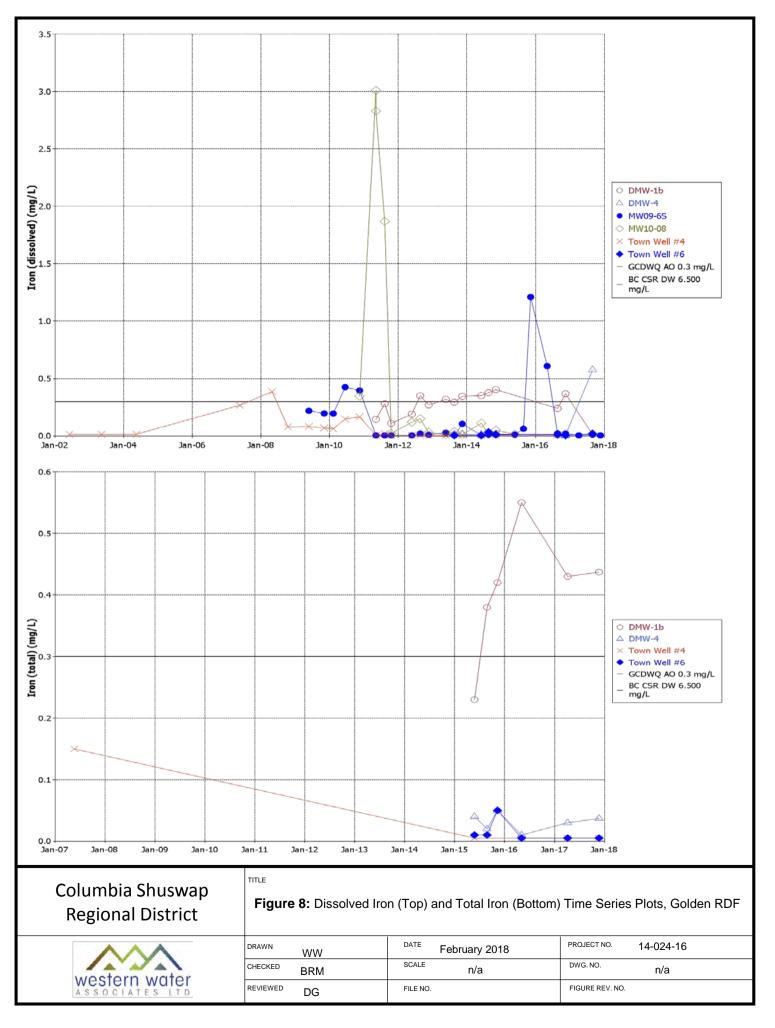

Figures

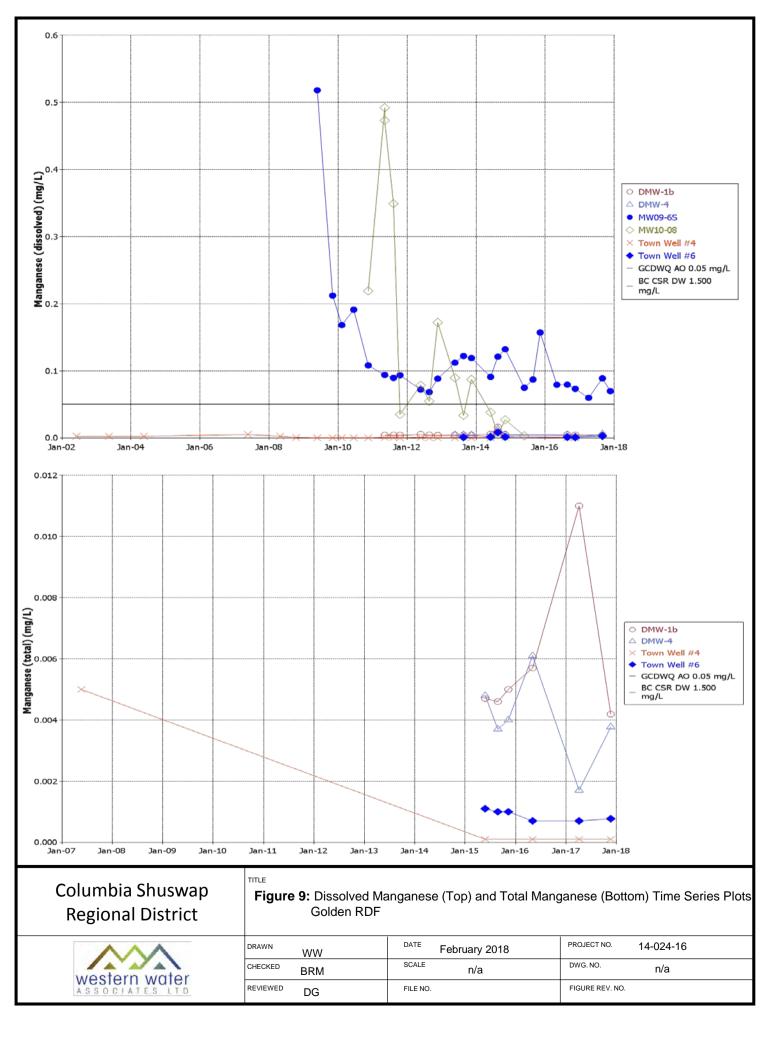


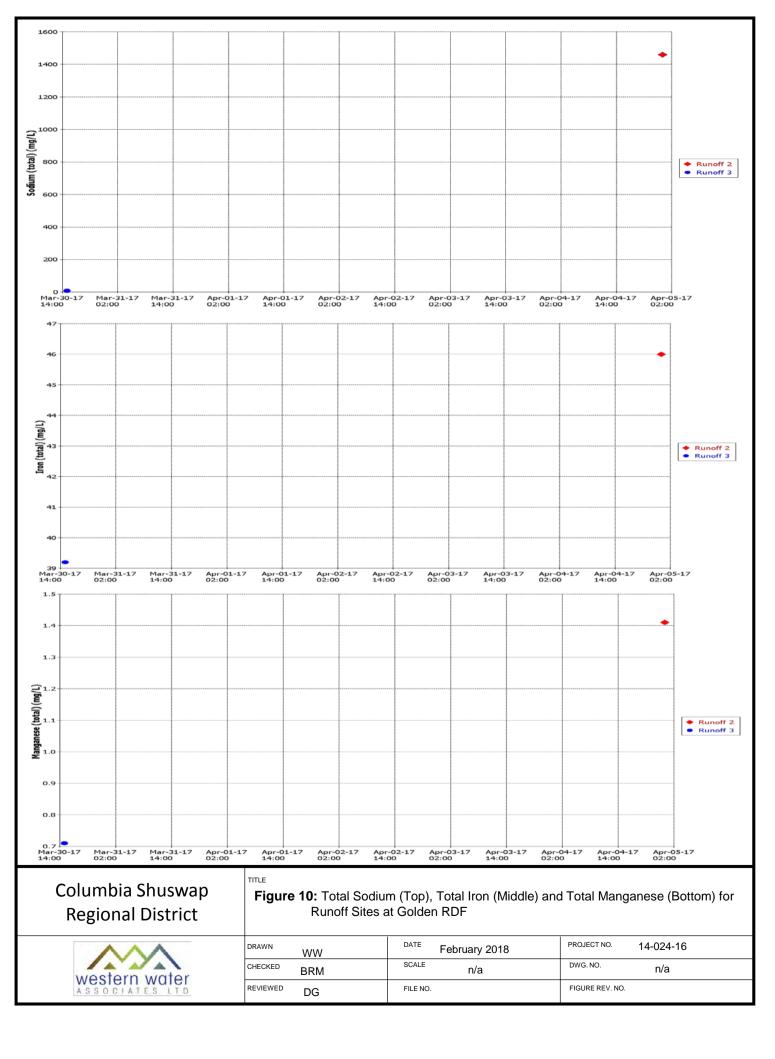



DRAWN		DATE	February 2018	PROJECT NO.	14-024-16
CHECKED	BRM	SCALE	See figure	DWG. NO.	n/a
REVIEWED	DG	FILE NO.		FIGURE VERSION NO.	









Appendix A

Operational Certificate – OC 17006

August 29, 2012 Tracking Number: 243578 Authorization Number: 17006

REGISTERED MAIL

Columbia Shuswap Regional District Box 978 781 Marine Park Drive NE Salmon Arm, BC V1E 4P1

Dear Operational Certificate Holder:

Enclosed is Amended Operational Certificate 17006 issued under the provisions of the Environmental Management Act. Your attention is respectfully directed to the terms and conditions outlined in the operational certificate. An annual fee will be determined according to the Permit Fees Regulation.

This operational certificate does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority rests with the operational certificate holder. It is also the responsibility of the operational certificate holder to ensure that all activities conducted under this authorization are carried out with regard to the rights of third parties, and comply with other applicable legislation that may be in force.

This decision may be appealed to the Environmental Appeal Board in accordance with Part 8 of the *Environmental Management Act*. An appeal must be delivered within 30 days from the date that notice of this decision is given. For further information, please contact the Environmental Appeal Board at (250) 387-3464.

Southern Interior Region - Kootenay Telephone: (250) 354-6333

Facsimile: (250) 354-6332

Administration of this operational certificate will be carried out by staff from the Southern Interior Region - Kootenay. Plans, data and reports pertinent to the operational certificate are to be submitted to the Regional Manager, Environmental Protection, at Ministry of Environment, Regional Operations, Southern Interior Region - Kootenay, 401 - 333 Victoria St., Nelson, BC V1L 4K3.

Yours truly,

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

Enclosure

cc: Environment Canada

MINISTRY OF ENVIRONMENT OPERATIONAL CERTIFICATE

17006

Under the Provisions of the Environmental Management Act

Columbia Shuswap Regional District

Box 978 781 Marine Park Drive NE Salmon Arm, BC V1E 4P1

is authorized to manage waste and recyclable material from the Columbia Shuswap Regional District and environs at the Columbia Shuswap Regional District in Golden landfill located near Golden, British Columbia, subject to the conditions listed below. Contravention of any of these conditions is a violation of the *Environmental Management Act* and may result in prosecution.

This Operational Certificate supersedes all previous versions of the Operational Certificate MR-17006 issued under the authority of the *Environmental Management Act*.

1. AUTHORIZED DISCHARGE

This section applies to the discharge of refuse from municipal, commercial and light industrial sources to a sanitary landfill known as the GOLDEN LANDFILL. The site reference number for this discharge is E246600.

1.1 The authorized works are a sanitary landfill and related appurtenances approximately located as shown on the attached location map.

Date issued:
Date amended:

May 5, 2003 August 29, 2012

(most recent)

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

- 1.2 The maximum quantity of waste discharges must not exceed the design capacity of the landfill as specified in the approved Design and Operations Plan. The final footprint and profile of the discharged waste must be within that specified in the Design and Operations Plan, and approximately as shown on the attached location map.
- 1.3 The authorized discharge is municipal solid waste as defined in the *Environmental Management Act* and other waste as may be authorized by the Director.
- 1.4 The legal description of the location of the authorized landfill facility is Subdivision 12 of Section 18, Township 27, Range 21, West of the 5th Meridian, Kootenay District.
- 1.5 The site is located approximately 2 kilometres travelling northeast on Highway 1 as shown on the location map.

2. <u>DESIGN AND PERFORMANCE REQUIREMENTS</u>

2.1 **Design and Operating Plan**

The Operational Certificate holder must prepare and maintain a current Design and Operations Plan prepared by a qualified professional. The Plan must be reviewed and updated as needed at least once every five years. The next update must be undertaken and completed in 2013. The Plan must address, but not be limited to, each of the subsections in the Landfill Criteria for Municipal Solid Waste including performance, siting, design, operational, closure and post-closure criteria. The facilities must be developed, operated and closed in accordance with the Plan. Should there be any inconsistency between this Operational Certificate and the Plan, this Operational Certificate must take precedence.

Written authorization from the Director must be obtained prior to implementing any changes to the approved plans. Based on any information obtained in connection with this facility, the Director may require revision of, or addition to, the design, operating and closure plans.

Date issued:
Date amended:
(most recent)

May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

2.2 **Qualified Professionals**

All facilities and information, including works, plans, assessments, monitoring, investigations, surveys, programs and reports, must be certified by Qualified Professionals.

2.3 Maintenance of Works and Emergency Procedures

The authorized works must be inspected regularly and maintained in good working order. In the event of an emergency or condition beyond the control of the Columbia Shuswap Regional District including, but not limited to, unauthorized fires arising from spontaneous combustion or other causes, or detection of surfacing leachate on the property, the Columbia Shuswap Regional District must take appropriate remedial action and notify the Regional Office. The Director may reduce or suspend operations to protect the environment until the authorized works has been restored, and/or corrective steps taken to prevent unauthorized discharges.

2.4 Additional Facilities or Works

The Director may require investigations, surveys, and the construction of additional facilities or works. The Director may also amend any information requirements of this Operational Certificate including plans, programs, monitoring, assessments and reports.

2.5 Public Health, Safety and Nuisance

The landfill must be operated in a manner such that it will not create a public nuisance or become a significant threat to public health or safety with respect to landfill gas, unauthorized access, roads, traffic, airport activity, noise, dust, litter, vectors, or wildlife attraction.

2.6 Ground and Surface Water Quality Impairment

The landfill must be operated in a manner such that ground or surface water quality does not decrease beyond that specified by the British Columbia Water Quality Guidelines, or other appropriate criteria as may be specified by the Director, at or beyond the landfill property boundary.

Date issued:
Date amended:
(most recent)

May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

The certificate holder must take all reasonable measures to ensure that BCWQG are met at or beyond the property boundary. These measures include but are not limited to:

- a) Prohibiting the discharge of municipal solid waste into water.
- b) Ensuring that no new waste is landfilled within 1.2 m of the highest groundwater level.
- c) Ensuring that adequate surface water and groundwater diversion works are constructed and maintained to minimize surface water run-off and groundwater seepage from entering the landfill.
- d) Ensuring that the management systems for surface water that has not come in contact with waste are hydraulically separate from those for managing impacted surface water.
- e) Ensuring that the landfill is operated in a manner that prevents the exceedance in surface water and groundwater of anticipated leachate indicators or parameters distinctive of leachate or those specified by the Director at the landfill boundary.
- f) Ensuring that the indicators in e) above, at specified groundwater monitoring wells within the property boundary are in accordance with those predicted by design and that suitable measures are taken to address the cause of any exceedances above the trigger levels identified in the most current Design and Operations Plan.
- g) Ensuring that the landfill is operated in accordance with a Design & Operations Plan which specifies measures to prevent decreases in groundwater and surface water quality at and beyond the property boundary.

If exceedances to the specified water quality criteria occur as a result of landfill operations, the Director may require that leachate management control measures or works be undertaken. Terms of reference for any leachate management study and/or design work must be submitted to the Director for review prior to conducting the work.

Date issued:
Date amended:
(most recent)

May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

2.7 **Landfill Gas Management**

The Landfill must not cause combustible gas concentrations to exceed the lower explosive limit in soils at the property boundary or 25% of the lower explosive limit at or in on-site or off-site structures.

The Operational Certificate holder must ensure that the facility is in compliance with the requirements of the Landfill Gas Management Regulation under the *Greenhouse Gas Reduction (Emissions Standards) Statutes Amendment Act*, 2008 on or before applicable dates specified in the regulation. The requirements of the regulation and its guideline documents must be incorporated by the Operational Certificate holder into the Design and Operation Plan revisions as they come into effect and as applicable.

2.8 **Buffer Zone**

No material must be landfilled within 50 metres of the property boundary.

3. OPERATIONAL REQUIREMENTS

3.1 Waste Compaction and Coverage

The Operational Certificate holder must ensure that waste deposition and compaction meets or exceeds the requirements of the BC Landfill Criteria or its most current version for daily, intermediate and final cover. Control must be exercised to ensure keeping freshly deposited refuse in a well defined and small / manageable working face.

3.2 **Prohibited Wastes**

The disposal of the following types of wastes is strictly prohibited:

- (a) Hazardous Wastes other than those specifically approved for disposal to authorized landfills in the Hazardous Waste Regulation under the *Environmental Management Act*.
- (b) Biomedical wastes as defined in the <u>Guidelines for the Management of Biomedical Wastes in Canada</u> (Canadian Council of Ministers of the Environment, February 1992),

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

- (c) Bulk liquids and semi-solid wastes, which contain free liquids, as determined by US EPA Method 90954 Paint Filter Liquids Test, Test Methods for Evaluating Solid Wastes-Physical/Chemical Methods (EPA Publication No. Sw-846),
- (d) Release of ozone depleting substances from the storage, handling and disposal of used appliances, equipment, or any material containing ozone depleting substances is prohibited in accordance with the requirements of the Ozone Depleting Substances Regulation. Onsite removal or evacuation of Ozone Depleting Substances (ODS) from appliances and the subsequent storage of appliances on site is permitted subject to both activities being in compliance with the Ozone Depleting Substances Regulation.

3.3 Waste Asbestos

Waste asbestos is authorized for disposal subject to compliance with the requirements of section 40 of the Hazardous Waste Regulation and the following conditions:

- (a) The asbestos waste may not be mixed with any other hazardous waste.
- (b) The Regional District must approve the disposal before disposal takes place.
- (c) All other applicable requirements of the Hazardous Waste Regulation, including but not limited to manifesting and waste record keeping, must also be complied with.

3.4 Contaminated Soil

Soil that contains contaminants in concentrations less than "hazardous waste" as defined by the Hazardous Waste Regulation may be disposed of at the landfill site. Disposal includes monofilling, co-disposal with other wastes, use as a refuse cell berm material and use as a refuse cell cover material. Disposal does not include use as final cover material.

3.5 Wildlife and Vector Control

Vectors (carriers capable of transmitting a pathogen from one organism to another including, but not limited to flies and other insects, rodents, and birds) must be controlled by the application of cover material at the required frequency or by such additional methods as specified by the Director. Wildlife control fencing must be maintained around the perimeter of the landfill site and must be

Date issued:
Date amended:
(most recent)

May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

electrified for at least the active bear season of each year.

This landfill must be operated so as to minimize the attraction of wildlife such as bears and birds by applying cover at required frequencies and instituting a good housekeeping program.

3.6 Site Access and Supervision

A landfill operator that has received BC Qualified Landfill Operator training, is familiar with the requirements of the Operational Certificate and the specifications of the Design and Operations Plan, must be present at all times during operating hours.

Locking gates must be maintained at all access routes to the landfill site. Gates, perimeter fencing and/or barriers must be installed where necessary to prevent unauthorized access to the site by vehicles. Gates must be locked during non-operating hours.

3.7 **Dust Control**

Dust created within the landfill property must be controlled, using methods and materials acceptable to the Director, such that it does not cause a public nuisance.

3.8 Litter Control

The best practical means must be used to prevent the scatter of litter. Any litter scattered into the neighbouring property, along access roads, in drainage ditches, along litter-control fences, into surrounding trees or elsewhere on the landfill site must be cleaned up. The frequency of clean up and other additional requirements for refuse scatter control must be determined by the Director.

3.9 Waste Reduction and Alternate Disposal

The Provincial Government has developed policies to promote the reduction, reuse and recycling of wastes. The Operational Certificate holder is encouraged to segregate for recycling and reuse, where possible, materials destined for disposal at this site.

Public scavenging must not be permitted at the landfill. The controlled salvaging of waste by the landfill operator or persons authorized by the

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

Operational Certificate holder is encouraged if areas or facilities for separation and storage of recyclable or reusable materials are provided.

In certain landfill environments, some construction and demolition debris or other wastes may create specific air and water quality concerns. If problems arise at this site that are attributable to specific wastes, the Director may require that alternate disposal/storage procedures be implemented.

3.10 Operations and Maintenance Manual

The Operational Certificate holder must prepare an Operations and Maintenance Manual to be reviewed and updated as necessary on at least an annual basis.

4. MONITORING AND REPORTING REQUIREMENTS

4.1 **Landfill Monitoring**

A monitoring program must be developed by a Qualified Professional and identify potential environmental impacts of the authorized facility and must address but not be limited to the Landfill Criteria for Municipal Solid Waste and Guidelines for Environmental Monitoring. The monitoring program must be updated every five years and submitted to the satisfaction of the Director. The next monitoring plan update is required to be undertaken and completed in 2013. Monitoring must be conducted in accordance with the monitoring program.

The program must be designed to assess and identify:

- The design performance of the landfill as per the Design & Operations Plan including but not limited to compliance with water quality performance standards at the landfill boundary.
- Landfill leachate as a contaminant source.
- Residential well water quality.
- Surface water quality.

The monitoring program must address, but not be limited to relevant sections of the Landfill Criteria for Municipal Solid Waste and the Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills. The Environmental Monitoring Program must take into consideration results from previous monitoring programs and any other investigations conducted at the site to ensure that early detection of potential impacts is possible.

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

4.2 **Sampling Techniques**

Sampling must be carried out in accordance with the procedures described in the most recent edition of the "British Columbia Field Sampling Manual for Continuous Monitoring Plus the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples", or by suitable alternative procedures as authorized by the Director. A copy of the above manual may be purchased from the Queen's Printer Publications Centre, P.O. Box 9452, Stn. Prov. Gov't., Victoria, British Columbia, V8W 9V7 (1-800-663-6105 or (250) 387-6409).

4.3 **Analysis**

Analyses must be carried out in accordance with procedures described in the most recent edition of the "British Columbia Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials", or by suitable alternative procedures as authorized by the Director. A copy of the above manual may be purchased from the Queen's Printer Publication Centre.

4.4 **Quality Assurance**

The Operational Certificate holder must produce, within 60 days on the request of the Regional Manager Environmental Protection, 'Field and Laboratory Quality Protocols and Quality Assurance Criteria' acceptable to the Director. The 'Laboratory Quality Protocols' must include the procedures used to assess precision, accuracy and blank quality, including frequency of application of those procedures, the procedures for sampling, handling (e.g. preservation, hold times) and corrective measures to be initiated when deficiencies are indicated. The 'Quality Assurance Criteria' must include the acceptance criteria for accuracy (based on recoveries for reference samples/spikes), for precision (based on deviation in field and lab duplicates) and method blanks (designed to indicate false positives).

5. LANDFILL REPORTING

5.1 **Annual Report**

The Operation Certificate Holder must submit an Annual Report to the Director on or before April 30th each year for the previous calendar year. The report must contain at least the following information:

Date issued:
Date amended:
(most recent)

May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

- (a) an executive summary;
- (b) the type and tonnage of waste received, recycled, stored on-site and discharged / landfilled for the year;
- (c) Any proposed changes to the Design and Operations Plan and the environmental monitoring program (EMP), with rationale for the changes; a description of unanticipated occurrences and any changes to the closure or post-closure plans and funds;
- (d) A review of the preceding year of operation or an operations update which summarizes landfill development work completed in the subject reporting year and work planned for the subsequent year. A summary of any new information or changes to the facilities and plans, assessments, surveys, programs and reports;
- (e) Occurrences or observations of wildlife (medium and large carnivores) at the facility;
- (f) A statement regarding the facility's progress in reducing the regional solid waste stream being landfilled and the objectives of the Regional Solid Waste Management Plan;
- (g) An outline of the current Environmental Monitoring Program and a compendium of all environmental monitoring data in accordance with requirements specified in the most recent version of Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills and Landfill Criteria for Municipal Solid Waste. The annual report must document any effect of the discharge on the quality of the receiving environment using appropriate statistical and graphical analysis. Trend analyses, as well as an evaluation of the impacts of the discharges on the receiving environment must be included;
- (h) A list of training programs completed for landfill operators during the previous year; and
- (i) Any additional information requested by the Director.

All reports must be submitted, suitably formatted and tabulated in both print and electronic format (portable document format).

Date issued:
Date amended:
(most recent)

May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

5.2 **Five Year Report**

The Operation Certificate Holder must submit a Five Year Report to the Director on or before April 30th on the five year anniversary of the last submission. The next report is due by the end of 2013. The report must contain at least the following information:

- (a) An executive summary;
- (b) An updated Design and Operations Plan;
- (c) A detailed hydrogeological assessment;
- (d) The type and tonnage of waste received, recycled, stored on-site and discharged / landfilled for the year;
- (e) A current topographic map detailing airspace consumption, on-site borrow pit changes and future developments;
- (f) Volume and density analysis or an in-place material summary, updated estimates for the remaining capacity, site life, revised closure date for the current phase or sequence and revised closure date for the current landfill footprint;
- (g) An outline of the current Environmental Monitoring Program and a compendium of all environmental monitoring data in accordance with requirements specified in the most recent version of Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills and Landfill Criteria for Municipal Solid Waste. The annual report must document any effect of the discharge on the quality of the receiving environment using appropriate statistical and graphical analysis. Trend analyses, as well as an evaluation of the impacts of the discharges on the receiving environment must be included;
- (h) An update on the financial assurance mechanism including a statement of the current dollar value of the Closure Fund and the amount earmarked for the Landfill site; and
- (i) Any additional information requested by the Director.

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

6. LANDFILL CLOSURE PLAN

6.1 Closure Plan and Post Closure

The Operational Certificate holder must perform closure and post-closure care in accordance with all applicable requirements of the BC Landfill Criteria for Municipal Solid Waste. This Operational Certificate is issued on the condition that a Closure Plan and Final Cover Design that meets or exceeds the requirements of the criteria will be submitted to the Director during the operating life of the landfill. The Closure Plan must be reviewed every five years throughout the operating life of the landfill.

A certification by a Qualified Professional attesting that all closure works have been completed in accordance with the Closure Plan and Final Cover Design is to be submitted to the Director no later than 60 days after the implementation of the Final Cover Design.

The Operational Certificate Holder must submit a Post Closure or Aftercare Plan to the Ministry at least two years prior to the anticipated closure date of the landfill.

6.2 Closure Fund

The Operational Certificate holder must provide for the funding of progressive closure operations, final closure and operations beyond closure by maintaining a closure fund. The value of the closure fund must meet or exceed the estimated closure and post-closure costs as established in the approved Design and Operations Plan and updated in the annual report, plus a reasonable contingency for any remediation which may be required. Reported costs must be adjusted for inflation annually. Alternately, a closure and post-closure financial security acceptable to the Director may be built over time.

The Operational Certificate holder must determine and ensure that the closure fund is adequate by preparing annually a financial statement of the fund which must be made available to the Director upon request. The financial statement must report the accrued capital, interest and additions to the fund for the previous year and review the sufficiency of the fund and the rate of accrual in consideration of the projected costs of closure and post-closure obligations.

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

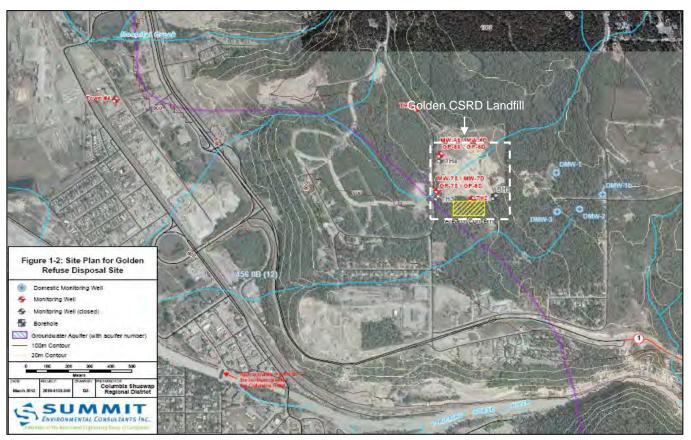
6.3 <u>Site Decommissioning</u>

In accordance with Section 40 of the *Environmental Management Act* and Part 2 of the Contaminated Sites Regulation, the Operational Certificate holder must submit a site profile to the manager at least ten days prior to decommissioning the facilities authorized in Section 1.

6.4 **Declaration of Landfill**

Landfills sited on titled land must register a covenant that the property was used for the purpose of waste disposal as a charge against the title to the property as provided for under Section 215.1 of the *Land Title Act*. Landfills located on crown land are to have a "notation on file" registered that the property was used for the purpose of waste disposal.

The Operational Certificate holder must, upon closure of the landfill, register a charge against the property title, or provide other legal notification acceptable to the Director that the property described in Section 1 was used for the purpose of waste disposal. The Director must be notified of the charge or legal notification.


Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

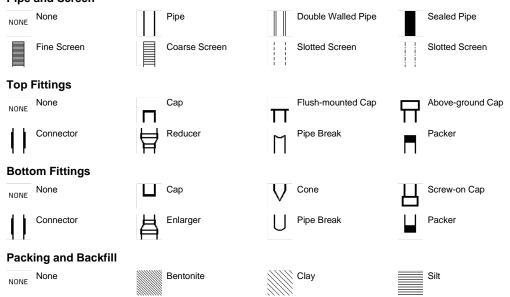
Southern Interior Region - Kootenay

Location Map

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag. for Director, *Environmental Management Act* Southern Interior Region - Kootenay

Appendix B


Well Logs

Symbol Legend

Common Symbols Sand Sand Silty Sand Sandy Silt Clayey Sand Clayey Silt Clayey Silt Clayey Silt Clayey Silt Silty Clay Silty Clay Silty Clay Silty Clay Topsoil Peat Well Symbols

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH-6 (6")

Well I.D.: MW-6S, MW-6D, GP-6S, GP-6D

Location on site: near weight scale (replaces TH4)

Northing/ Easting/ Elevation: 0

SU	JBSURFACE PROFILE		SAMPL	E		
Depth	Description	Type	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks
10	Ground Surface Light brown, GRAVEL, w. sand, loose, dry Light brown, SILT w/ sand, trace gravel, loose, dry Grey, GRAVEL w/ sand and silt, loose, dry Grey, GRAVEL w/ sand and silt, loose, dry Note: larger gravel than above Light brown, (f.) SAND w/ silt and trace gravel, dense, moist Grey, (m.) SAND, w/ silt and gravel, dense, moist Grey, cemented GRAVEL, dense, dry Yellow, SILT w/ some angular gravel and mc. sand, dense, moist Black, Limestone bedrock				Configuration: Two groundwater monitoring wells (each 2" diameter) Two gas monitoring probes (each 1" diameter) Schedule 40 PVC Gas piezos. are threaded 20/40 sand pack around each monitoring well Screen Assembly: No. 10 slot PVC MW6D Screened in bedrock Screened btw 59.76 m (196 ft) and 65.85 (216 ft) bgs MW6S Screened in surficial deposits (overburden) Screened btw 31.40 m (103 ft) and 34.45 m (113 ft) bgs GP6D Screened btw 12.20 m (40 ft) and 16.77 m (55 ft) bgs GP6S Screened btw 7.93 m (26 ft) and 9.45 m (31 ft) bgs Casing height =	32.77 m April 22/09 MW-6S-
	End of Borehole				Casing neight -	

Contractor: JR Drilling Central Ltd.

Operator(s): Jerry Opper

Drill Method: Dual Air Rotary

Ground conditions: bare

Date: April 20, 2009

Time:

Temperature: 10 degC

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH-7 (6")

Well I.D.: MW-7, GP-7S, GP-7D (replaces TH3)

Location on site: Golden-Donald Upper Rd.

Northing/ Easting/ Elevation: 0

	SU	IBSURFACE PROFILE		SAMPL	E		
Depth	Symbol	Description	Туре	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks
0 ft m 0 - 10 - 20 - 30 - 10 40 - 60 - 20 70 - 80 - 30 110 - 120 - 120 - 130 - 40		Ground Surface Yellow/ brown, SILT, loose, damp Grey, SILTand clay, dense, moist Grey, SILT, dense, moist Light brown, SILT w/ (f.) sand and gravel, loose, moist, fining upwards Grey, cemented GRAVEL w/ sand and silt, dense, damp Grey, SILT trace sand, dense, moist Grey, GRAVEL w/ (m.) sand and silt, dense, moist Grey, (fm.) SAND w/ silt, dense, moist, coarsening upward Grey, cemented GRAVEL, dense, dry Grey, (f.) angular GRAVEL w/ sand and silt, dense, dry, End of Borehole				Configuration: ◆ One groundwater monitoring well (2" diameter) ◆ Two gas monitoring probes (each 1" diameter) ◆ Schedule 40 PVC ◆ Gas probes are threaded ◆ 20/40 sand pack around each monitoring well Screen Assembly: - No. 10 slot PVC MW-7 - Screened in the surficial deposits (overburden) - Screened btw 25.6 m (84 ft) and 31.7 m (104 ft) bgs GP-7D - Screened btw 13.72 m (45 ft) and 15.24 m (50 ft) bgs GP-7S - Screened btw 4.5 m (15 ft) and 6.10 m (20 ft) bgs Casing Height: 1.2 m (3.9 ft)	Sorieen Backfill (pea gravel)
140							

Contractor: JR Drilling Central Ltd.

Operator(s): Jerry Opper

Drill Method: Dual Air Rotary

Ground conditions: bare

Date: April 23, 2009

Time:

Temperature: 7 deg C

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH3

Well I.D.: TH-3 (well closure)

Location on site: on Golden-Donald Upper Rd

Northing/ Easting/ Elevation: 0

	SU	JBSURFACE PROFILE		SAMPL	E		
Depth	Symbol	Description	Type	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks
o_ft m		Ground Surface					
10 10						TH-3 was replaced by MW-7. TH-3 was decommissioned according to the Groundwater Protection Regulation. The surface casing was removed, the 2" piezometer was cut approximately 4" below ground surface and bentonite chips were poured into the casing. Bentonite was poured around the outer annulus of the piezometer to bring the hole to ground surface.	
60		End of Borehole					
70_							

Contractor: JR Drilling Operator(s): Jerry

Drill Method:

Ground conditions: bare

Date: April 20, 2009

Time:

Temperature: 10 degC

Groundwater Depth: no groundwater

TESTHOLE LOG

CLIENT:	RCP	PR	OJECT: Hydrogeologial	TI	ESTHOLE:		BH95-03
LOCATION:	Golden Landfill	As	sessment - Golden BC	PF	ROJECT NO:	-	KE95-057
DRILL RIG:	Becker Hammer	SU	JRF ELV: 908.5m ASL.	CO	O-ORDINATES	S:	
DEPTH (m) ELV. (m)	INDEX: METHANE %	Plot	SOIL DESCRIPTION	Lab Test	SAMPLES		COMPLETION DETAILS
Gravel	0 5 10 15 20)			Depth (m)	1	Stickup 1.2m
2.0 906.5	0-8.54		Silt-some fine sand, some gravel, fine to coarse, iso. cobbles, non- plastic, red/brown, dense, damp		ARI 1.5		50mm dia. Solid pipe
4.0 904.5					AR2 3.0 D1 3.5/3.95	io	Bentonite Grout
6.0 902.5					AR3 4.5		Top 6.0m
8.0 900.2					AR4 6.0 D2 6.5/6.95 5	60	Top 6.0iii
10.0 898.2	8.54-11.3		Silt-and fine sand, trace gravel, fine to coarse, non-plastic, iso. cobbles, grey, hard, moist.		AR5 7.5		Sand —
12.0 896.2	11.3-15.5		Silt-some fine sand, trace gravel, fine to coarse, non-plastic, grey/brown, hard, moist		AR6 10.0		
14.0 894.2					AR8 13.0	0	0.010" slotted pipe
<u>— 16.0</u> 892.2	15.5-18.3	A Control of the Cont	Sand-fine and silt, some gravel fine to coarse, occ. cobbles, dense, light brown, damp.	:	AR10 15.0 D4 16/16.45 7 AR11 16.5	5	
		Accommendation	End of TH95-01 at 18.3m - No		AR12 18.0		18.3m
20.0 888.2			groundwater seepage Monitoring Well installed				
22.0	DIs about	T n		1 12:	2		
Prepared by: Par	и власкец	K	eviewed by:	rı	gure: 3		

Borehole Depth: 18.3m below surface Date: 10/9/95

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH4

Well I.D.: TH-4 (well closure)

Location on site: near weight scale

Northing/ Easting/ Elevation: 0

SI	JBSURFACE PROFILE		SAMPL	E		
Depth Symbol	Description	Type	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks
o ft m	Ground Surface					
10					TH-4 was replaced by MW-6S. TH-4 was decommissioned according to the Groundwater Protection Regulation. The surface casing was removed, the 2" piezometer was cut approximately 4" below ground surface and bentonite chips were poured into the casing. Bentonite was poured around the outer annulus of the piezometer to bring the hole to ground surface.	
100	End of Borehole					
110						

Contractor: JR Drilling

Operator(s): Jerry

Drill Method:

Ground conditions: bare

Date: April 20, 2009

Time:

Temperature: 10 degC

CLIENT: I	RCP	PROJECT: Hydrogeologial	-	ESTHOLE:		BH95-04
	Golden Landfill	Assessment - Golden BC		ROJECT NO:	******	KE95-057
DRILL RIG:	Becker Hammer	SURF ELV: 916.9m ASL.	C	O-ORDINAT	ES.	
DEPTH (m) ELV. (m)	INDEX: METHANE %	SOIL DESCRIPTION	Lab Test	SAMPLE	s	COMPLETION DETAILS
Grass	0 5 10 15 20			Depth (m)	N	Stickup 1.2m
2.0 914.9	0-3.35	Silt-and fine sand, trace gravel fine to coarse, occ. cobbles, non-plastic, dense, yellow/brown, damp.		ARI 1.5		50mm dia. Solid pipe Bentonite Grout &
4.0 912.9	3.35-5.49	Gravel-fine to coarse, and silt, trace sand fine to coarse, occ. cobbles, light brown, moist.		DI 3.5/3.95 AR3 4.5	35	backfill
6.0 910.9 - 8.0 908.9	5,49-11,0	Silt-and fine sand, trace coarse sand, trace gravel, fine to coarse, iso. cobbles, non-plastic, grey/brown, hard, moist.		AR4 6.0 D2 6.5/6.95 AR5 7.5	50	
<u>10.0</u> 906.9	11.0-12.8	Sand-fine to medium, and gravel,		AR6 10.0 D3 10/10.45	45	Sand ————
12.0 904.9		fine to coarse, iso. cobbles, trace silt, dense, red/brown, moist.		AR7 11.5		
14.0 902.9	12.8-17.7	Sand- fine to medium, and silt, little gravel fine to coarse, iso. cobbles, brown, hard, moist.		AR8 13.0 D2 13.5/13.9 AR9 14.0	50	0.010" slotted pipe
<u></u>				AR10 15.0 D4 15/15.45	70	
18.0 898.2		Sand - fine and silt, trace gravel, fine to coarse, brown, hard, moist.		AR11 16.5 AR12 18.0		
20.0 896.2				AR 14 25.0		Top 20.0m
30.0 894.2		End of TH95-01 at 30.48m - No groundwater seepage Monitoring Well installed	.	AR 16 30.0		Bot 30.5m
Prepared by: Par		Reviewed by:		igure:		
Groundwater De	epth: no groundwater	Borehole Depth: 30.5m below surface	LD	ate: 10/9/95		

		<u> </u>	T	UNIFIED		CAI	VI 31	JIEM	-UK 3C	NE2	1	LAD	00.4	TORY	
	MAJOR	DIVISION	GROUP SYMBOL	GRAPH SYMBOL	COLOR	~~~	TYPICA	L DESC	RIPTIO	N		CLAS		TORY ATION RIA	
_	COARSE THAN	CLEAN GRAVELS (LITTLE OR NO FINES)	GW		RED	FINE	WELL GRADED GRAVELS, LITTLE OR NO FINES				$C_U = \frac{D_{60}}{D_{10}} > 4 C_C = \frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$				
ZOO SIEVE)	GRAVELS THAM HALF CO INS LARGER TH NO 4 SIEVE		GP	00000	RED				LS, AND G OR NO FINE				REOUI	TING REMENT	S
DILS 7 THAN 2	GRA MORE THAN GRAINS U	DIRTY GRAVELS	GM		YELLOW	SILTY	GRAVELS URES	GRAVEL	-SAND-SIL	1	CONTEN OF FINE		BELO	RBERG & DW "A" LESS THA	LINE OR
COARSE-GRAINED SOILS HALF BY WEIGHT LARGER THAN	. 3	(WITH SOME FINES)	GC		YELLOW		EY GRAVE MIXTURE		EL-SAND-		EXCEED 12%	s	ABO	RBERG L VE "A" NORE TH	LINE
ARSE-GR	¥4	CLEAN SANDS	sw		RED	WELI	GRADED E OR NO	SANDS, G FINES	RAVELLY	SANDS,	$C^0 = \frac{D^{10}}{D^{0}}$	>60	Cc = <u>D</u>	(D ₃₀) ²	= 1 to :
CO.	ADS HERT FOR	(LITTLE OR NO FINES)	SP		RED	POO	RLY GRAD	D SAND	S, LITTLE (DR NO			T MEE	TING REMENT	s
T 3HOM)	SANDS MORE HAN HALF FINE GRAINS SMALLER THAN MD 4 SIEVE	DIRTY SANDS	SM		YELLOW	SILTY	SANDS,	AND-SILT	MIXTURE	5	CONTEN OF FINE	S	BELO	RBERG LI W "A" LESS THA	LINE
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\$C		AEITOM	CLAY	EY SANDS URES	SAND (LAY		12%	5	ABO'	RBERG L VE "A" NORE TH	LINE
	.TS A" LINE GIBLE ANIC IENT	W ₁ < 50%	ML		GREEN	ROCI	GANIC SILTS AND VERY FINE SANDS, FLOUR, SILTY SANDS OF SLIGHT								
200 Stf VE)	SILTS BELOW A" LINE NEGLIGIBLE OPGANIC CONTENT	W _L > 50 %	мн		BLUE				EOUS OR OR SILTY SO			PLAST	ASED (TICITY (see belo	CHART	
SOILS PASSES	AR ON CANIC	W _L < 30%	α		GREEN		ORGANIC CLAYS OF LOW PLASTICITY, RAVELLY, SANDY, OR SILTY CLAYS, LEAN AYS ORGANIC CLAYS OF MEDIUM PLASTI- TY, SILTY CLAYS								
FINE-GRAINED SOILS HALT BY WEIGHT PASSES	CLAYS ABOVE "A" LINE ON PLASTICITY CHART HIGHERE ORGANIC CONTENT	30% < W _L < 50%	Cí		GREEN- BLUE	INOR CITY.									
	ABO) PC	W _L > 50%	СН		BLUE INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS										
(MORE THAN	ORGANIC SILTS & CLAYS BELOW "A" LINE ON CHART	W _L < 50%	Oι		GREEN	CLAYS OF LOW PLASTICITY			WHENEVER THE NATURE OF THE FINE CONTENT HAS NOT BEEN DETERMINED. IT IS DESIGNATED BY THE LETTER "F", E.G. SF IS A MIXTURE OF SAND WITH SILT OR						
	ORG SILI CL/ CL/ BELOW ON C	W ₁ > 50%	Он		BLUE	ORG	NIC CLAY	OF HIGH	PLASTICE	ſΥ	SF IS A M	NIXTURE	E OF SA	IND WITE	H SILT OR
	HIGHLY OR	GANIC SOILS	Pt		ORANGE	PEAT	AND OTH	R HIGHLY	ORGANIC	SOILS	STRONG FIBROUS	COLOR TEXTUR	OR O	OOR, AN	D OFTEN
		SPECIAL	. SYMBOL	_S			50		ASTICITY	CHART	F		СН		
	/ ~ ~ \	BEDROCK (Undifferentiated)		VOLCANI	C ASH		40-		FOR ASSING N		EVE		,HE		
• • • •		SOIL COM	PONENTS	**************************************		Administra	NDEX 30			Cı				МН	1
FF	RACTION	U S STANDARD SIEVE SIZE	PERÇ	FINING RAN ENTAGE BY N NOR COMPO	WEIGHT OF		PLASTICITY II		cı				ОН		
GRAV	·E1	PASSING RETAINED	PERC		DESCRIPT	OR	PLAS				OL				
GRAV	coarse fine	76 mm 19 mm 19 mm No 4	50 -	35	and		4	10	20 20	30 ML	40 50	60	0 7	0 8	30 %
SAND	cogree medium	4.75 mm 2.00 mm 2.00 mm 4254 m	. 35 - 20 -		little		1. ALL E.11.	SIEVE SIZE	S MENTION		HIS CHART				
70	fine (non plastic)	75 y m	10 -	1	trace		2. BOU GRO GRA	NDARY C UPS ARE C DED GRAV	SIVEN COA	ABINED G	SSESSING ROUP SYM	BOLS, E	E.G. GW	/-GC 15 /	A WELL
CLAT	(plastic)	OVERSIZE I	MATERIAL			—	12%								
co	unded or eubro BBLES 76 m	n to 203 mm	Not roun ROCK F	ded RAGMENTS > 0.76 cui			к		round ernon		<i>r Cons</i> Kamloo		ng L	.td.	

Testhole Log - TH95-01					
Depth (m)	Soil Description				
0-5.8	Silt-and fine sand, little gravel fine to coarse, iso. cobbles, non-plastic, dense, yellow/brown, moist.				
5.8-6.71	Silt-and sand fine to medium, some gravel fine to coarse, non-plastic, hard, grey, moist.				
6.71-8.54	Silt-and fine sand, trace coarse sand, trace gravel, fine to coarse, iso. cobbles, non-plastic, gre/brown, hard, moist.				
8.54-11.3	Silt-and fine sand, trace gravel, fine to coarse, non-plastic, iso. cobbles, grey, hard, moist.				
11.3-14.9	Silt-some fine sand, trace gravel, fine to coarse, occ. cobbles, non-plastic, red/brown, hard, damp.				
14.9-18.9	Clay-and silt, trace fine sand, trace fine gravel, iso. cobbles, low to none plastic, grey, hard, moist.				
	End of TH95-01 at 18.9m - No groundwater seepage - Monitoring Well installed				

	Testhole Log - TH95-02
Depth (m)	Soil Description
0-9.76	Sand-fine and silt, some gravel fine to coarse, occ. cobbles, dense, light brown, damp. Upper 0.3m fill
9.76-12.8	Sand-afine and silt, some gravel fine to coarse, iso. cobbles, dense, red/brown, moist.
12.8-15.5	Sand-fine, some silt, some gravel fine to coarse, occ. cobbles. dense, red/brown, moist.
15.5-16.5	Silt-some fine sand, trace gravel, fine to coarse, non-plastic, iso. grey/brown, cobbles, stiff, moist.
16.5-20.1	Silt-little fine sand, trace clay, trace gravel, fine to coarse, occ. cobbles, non-plastic, red/brown, hard, damp.
20.1-22.9	Silt - some sand, fine to coarse, trace gravel fine to coasre, iso. cobbles, grey, very hard, non-plastic,
	End of TH95-02 at 22.9m - No groundwater seepage - Monitoring Well installed

	Testhole Log - TH95-03
Depth (m)	Soil Description
0-8.54	Silt-some fine sand, some gravel, fine to coarse, iso. cobbles, non-plastic, red/brown, dense, damp
8.54-11.3	Silt-and fine sand, trace gravel, fine to coarse, non-plastic, iso. cobbles, grey, hard, moist
11.3-15.5	Silt-some fine sand, trace gravel, fine to coarse, non-plastic, grey/brown, hard, moist
15.5-18.3	Sand-fine and silt, some gravel fine to coarse, occ. cobbles, dense, light brown, damp.
	End of TH95-03at 18.3m - No groundwater seepage -Monitoring Well installed

	Testhole Log - TH95-04
Depth (m)	Soil Description
0-3,35	Silt-and fine sand, trace gravel fine to coarse, occ. cobbles, non-plastic, dense, yellow/brown, damp.
3.35-5.49	Gravel-fine to coarse, and silt, trace sand fine to coarse, occ. cobbles, light brown, moist.
5.49-11.0	Silt-and fine sand, trace coarse sand, trace gravel, fine to coarse, iso. cobbles, non-plastic, gre/brown, hard, moist.
11.0-12.8	Sand-fine to medium, and gravel, fine to coarse, iso. cobbles, trace silt, dense, red/brown, moist.
12.8-17.7	Sand- fine to medium, and silt, little gravel fine to coarse, iso. cobbles, brown, hard, moist.
17.7-30.48	Sand - fine and silt, trace gravel, fine to coarse, brown, hard, moist.
	End of TH95-04 at 26.2m - No groundwater seepage - Monitoring Well installed

Depth (m)	Soil Description
0-1.3	Silt-and fine sand, little gravel fine to coarse, iso. cobbles, non- plastic, dense, yellow/brown, moist.
1.3-3.1	Waste-municipal debris, paper,tin plastics, mixed with soil, damp.
3.1-3.4	Sand-fine to medium, some silt, little gravel, fine to coarse, compact, brown, moist.
3.4-5.1	Waste-municipal debris, paper,tin plastics,mixed with soil, damp.
5.1-5.4	Sand-fine to medium, some silt, little gravel, fine to coarse, compact, brown, moist.
5.4-6.2	Waste-municipal debris, paper,tin plastics,mixed with soil, damp.
6.2-7.1	Sand-fine to medium, some silt, little gravel, fine to coarse, compact, brown, moist.
	End of TH5 at 7.1m no groundwater-temporary installation

CLIENT:	RCP	PR	OJECT: Hydrogeologial	TI	ESTHOLE:		BH95-02		
LOCATION:	Golden Landfill		sessment - Golden BC		ROJECT NO:	KE95-057			
DRILL RIG:	Becker Hammer	SU	JRF ELV: 914.0m ASL	C	O-ORDINATE	S:			
DEPTH (m) ELV. (m)	INDEX:	Plot	SOIL DESCRIPTION	장 SAMPLES			COMPLETION DETAILS		
Grass	0 20 40 60 80 100 120 140	·			Depth (m)	N	Stickup 1.2m		
2.0 912	0-9.76		Sand-fine and silt, some gravel fine to coarse, occ. cobbles, dense, light brown, damp. Upper 0.3m fill		AR1 1.5		50mm dia. Solid pipe		
4.0 910					AR2 3.0		Bentonite Grout		
6.0 908					AR3 4.5		Top 6.0m		
8.0 906					AR4 6.0 D1 6.5/6.95	50			
10.0 904	9.76-12.8		Sand-fine and silt, some gravel fine to coarse, iso. cobbles, dense, grey, moist.		AR5 7.5		Sand ——"		
12.0 902					AR7 11.5				
14.0 900	12.8-15.5		Sand-fine, some silt, some gravel fine to coarse, occ. cobbles. dense, red/brown, moist.		AR8 13.0 D2 13.5/13.9 AR9 14.0	50	0.010" slotted pipe		
16.0 898	15.5-16.5		Silt-some fine sand, trace gravel, fine to coarse, non-plastic, iso. grey/brown, cobbles, stiff, moist. Silt-little fine sand, trace clay, trace		AR10 15.0				
<u>18.0</u> 896	20.2		gravel, fine to coarse, occ. cobbles, non-plastic, red/brown, hard, damp		AR11 16.5 AR12 18.0				
20.0 894 ————————————————————————————————————	20.1-22.9		Silt - some sand, fine to coarse, trace gravel fine to coarse, iso cobbles, grey, very hard, non-plastic, moist. End of TH95-01 at 18.9m - No		D3 20/20.45	80	Well base		
Prepared by: Pa			groundwater seepage Well installed eviewed by:	_	igure:		22.9m		
Groundwater D	epth: no groundwater	B	orehole Depth: 22.9m below surface	<u>⊥D</u>	ate: 10/9/95				

Project No: 2010-8835.010.006 Well I.D.: BH9

Client: CSRD First Water: n/a

Location: Golden Landfill Stabilized Water Level: n/a

Location on site: 5 m SE of landfill

Ground Elevation: Approx. 928 m asl

Top of Casing Elevation: 0

Reviewed by: Tilman Roschinski

Loca	ation	on site: 5 m SE of landfill	Logged by: Bryer Manwell							
	,	Subsurface Geology								
Depth	Symbol	Description	Well Details and Notes	Well Construction						
o ft m		Ground Surface								
10 — 10 — 15 — 16 — 16 — 16 — 16 — 15 — 15 — 15		SILT Silt, occasional cobbles, dry to moist, yellowish-grey.	No well installed.	Matural slough						

End of Borehole

Contractor: Target Drilling Inc.

Drill Method: Coring

Boring Diameter/ Depth: 6 in

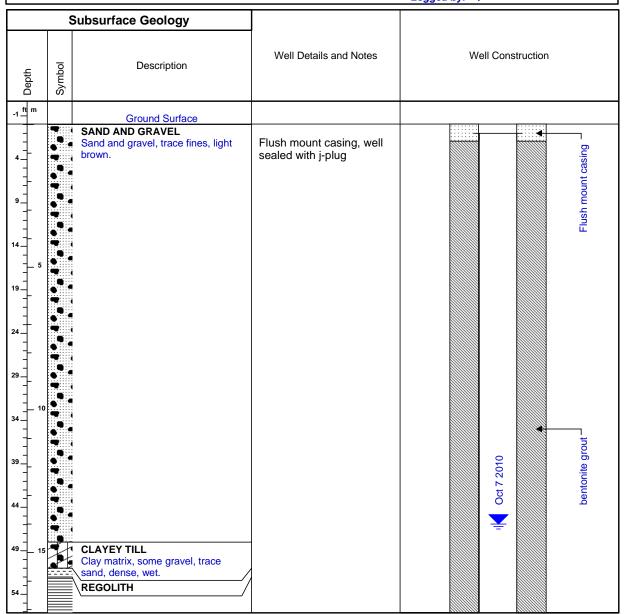
Operator(s):

Date: Oct 8 2010

Project No: 2010-8835.010.006 Well I.D.: TH-8

Client: CSRD First Water: n/a

Location on site: 150 m NW of landfill on Golden Donald Upper Road


Location: Golden Landfill Stabilized Water Level: 14 m btoc

Top of Casing Elevation: flush mount

Reviewed by: Tilman Roschinski

Ground Elevation: Approx. 915 m asl

Logged by: Bryer Manwell

Contractor: Target Drilling Inc.

Drill Method: Coring

Boring Diameter/ Depth: 6 in / 27.3 m

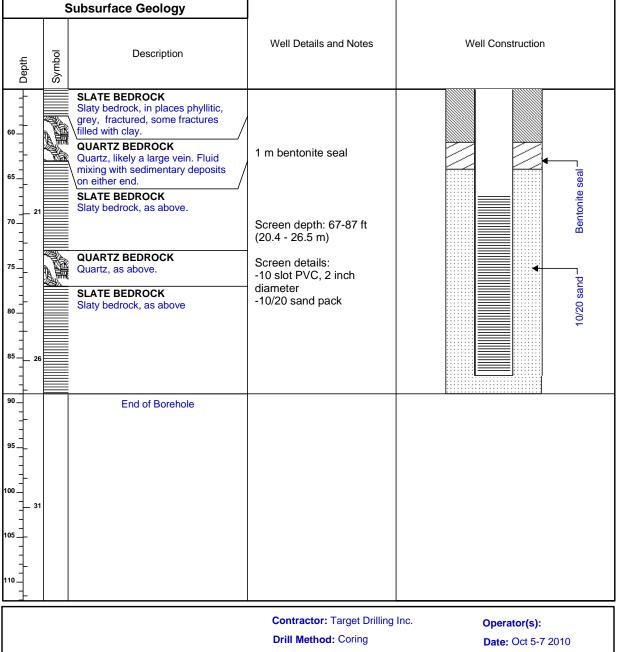
Operator(s):

Date: Oct 5-7 2010

Project No: 2010-8835.010.006 Well I.D.: TH-8

Client: CSRD First Water: n/a

Location on site: 150 m NW of landfill on Golden Donald Upper Road


Location: Golden Landfill Stabilized Water Level: 14 m btoc

Ground Elevation: Approx. 915 m asl

Top of Casing Elevation: flush mount

Reviewed by: Tilman Roschinski

Logged by: Bryer Manwell

Boring Diameter/ Depth: 6 in / 27.3 m

Report 1 - Detailed Well Record

```
Construction Date: 2000-10-25 00:00:00.0
Well Tag Number: 99638
                                             Driller: Owen's Drilling Ltd.
                                             Well Identification Plate Number:
Owner: KATS CONTRACTING
                                             Plate Attached By:
                                             Where Plate Attached:
Address: 532 HIETALA ROAD
                                             PRODUCTION DATA AT TIME OF DRILLING:
Area: GOLDEN
                                             Well Yield: 6 (Driller's Estimate) U.S. Gallons per Minute
Development Method: Air lifting
WELL LOCATION:
                                             Pump Test Info Flag: N
KOOTENAY Land District
                                             Artesian Flow:
District Lot: Plan: Lot:
Township: 27 Section: 18 Range: 21
                                             Artesian Pressure (ft):
                                             Static Level: 50 feet
Indian Reserve: Meridian: W5M Block: A
Ouarter:
                                             WATER QUALITY:
-
Island:
                                             Character:
BCGS Number (NAD 27): 082N036121 Well:
                                             Colour:
                                             Odour:
Class of Well: Water supply
                                             Well Disinfected: N
Subclass of Well: Domestic
                                             EMS ID:
Orientation of Well: Vertical
                                             Water Chemistry Info Flag: N
Status of Well: New
                                             Field Chemistry Info Flag:
Well Use: Private Domestic
                                             Site Info (SEAM):
Observation Well Number:
Observation Well Status:
                                             Water Utility:
Construction Method:
Diameter: inches
                                             Water Supply System Name:
Water Supply System Well Name:
Casing drive shoe: Y N
Well Depth: 276 feet
                                             SURFACE SEAL:
                 feet (ASL)
Elevation:
                                             Flag: N
Final Casing Stick Up: 6 inches
                                             Material:
Well Cap Type: PLASTIC CAP
                                             Method:
Bedrock Depth: 18 feet
                                             Depth (ft):
Lithology Info Flag: N
File Info Flag: N
                                             Thickness (in):
                                             Liner from
                                                               To:
                                                                           feet
Sieve Info Flag: N
Screen Info Flag: N
                                             WELL CLOSURE INFORMATION:
                                             Reason For Closure:
Site Info Details:
                                             Method of Closure:
Other Info Flag:
                                             Closure Sealant Material:
Other Info Details:
                                             Closure Backfill Material:
                                             Details of Closure:
Screen from
                       to feet
                                              Type
                                                                     Slot Size
Casing from
                       to feet
                                              Diameter
                                                                     Material
                                                                                            Drive Shoe
                       36
                                                                     Steel
                       276
                                              5.88
                                                                     Open hole
GENERAL REMARKS:
260' OF PVC LINER. BOTTOM 40' PERFORATED. SHOE: 1X6" CARBIDE BOTTON. RECOMMENDED PUMP TYPE: SUB
LITHOLOGY INFORMATION:
         0 to
                             CLAY, GRAVEL, COBBLES
                  18 Ft.
From
        18 to
                  36 Ft.
                             BEDROCK, BROKEN
From
        36 to
                 150 Ft.
                             2 Gallons per Minute (U.S./Imperial)
                                                                          bedrock
                             2 Gallons per Minute (U.S./Imperial)
1 Gallons per Minute (U.S./Imperial)
       150 to
                 257 Ft.
From
                                                                          bedrock
       256 to
                 276 Ft
```

- Return to Main
- Return to Search Options
- Return to Search Criteria

Information Disclaimer

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

Appendix C

Water Quality Database

Legend of Naming Scheme for Refuse Disposal Monitoring Locations

Site Location	Pervious Monitoring Location Identification	New Monitoring Location Identification						
	TH-2	MW97-02						
	MW-3	MW09-03						
SICAMOUS	MW-4S	MW09-04S						
SICAIVIOUS	MW-4D	MW09-045						
	MW15-05	MW15-05						
	TH-1	MW95-01						
	TH-2	MW95-02						
	TH-3	MW95-03						
	TH-5	MW08-05						
	TH-6	MW11-06						
SALMON ARM	DMW-1	DMW-1						
	IW-1a	IW-1a						
	IW-1a	IW-1a						
	Leachate Pond	Leachate Pond						
	MW16-07	MW16-07						
	BH-5	MW94-05						
	TH-8	MW97-08						
	TH-11	MW97-11						
	TH-12	MW97-12						
SKIMIKIN	TH-13	MW97-13						
	DMW-1	DMW-1						
	DMW-2	DMW-2						
	SW-1	SW-1						
	SW-1a	SW-1a						
	TH-1	MW95-01						
	TH-2	MW95-02						
	TH-3	MW95-03						
	TH-4	MW95-04						
	TH-5	MW95-05						
	MW-6S	MW09-06S						
	MW-6D	MW09-06D						
	GP-6S/D	GP-6S/D						
	TH-7	MW09-07						
GOLDEN	GP-7S/D	GP-7S/D						
	TH-8	MW10-08						
	BH-9	BH-9						
	Town Well #4	Town Well #4						
	Town Well #6	Town Well #6						
	DMW-1	DMW-1						
	DMW-1b	DMW-1b						
	DMW-2	DMW-2						
	DMW-3	DMW-3						
	DMW-4	DMW-4						
<u> </u>	D14144 ±	DIVIVY T						

Site Location	Pervious Monitoring Location Identification	New Monitoring Location Identification
	TH-1	MW92-01
	TH-2	MW92-02
	TH-3	MW92-03
	TH-4	MW92-04
	TH-4A	MW06-04A
	TH-5	MW92-05
	TH-5A	MW06-05A
	TH-5A1	MW06-05A1
	TH-5A2	MW06-05A2
	TH-6	MW94-06
	TH-7	MW94-07
	TH-8	MW94-08
	TH-9	MW94-09
	TH-10	MW94-10
	TH-11	MW94-11
	TH-12	MW94-12
	TH-13	MW92-13
REVELSTOKE	TH-15	MW-15
REVELSTORE	TH-17	MW-17
	TH-18	MW10-18
	TH-19	MW10-19
	TH-20	MW11-20
	BH-06-1	BH06-1
	SW-7	SW-7
	SW-8	SW-8
	SW-10	SW-10
	SW-11	SW-11
	SW-12	SW-12
	SW-12b	SW-12b
	SW-14	SW-14
	DC-1	DC-1
	Leachate 1	Leachate 1
	Leachate 2	Leachate 2
	SWG (PW-12)	SWG
	FS-12	FS-12
	HZ-15	HZ-15

Golden Refuse Disposal Site

Water Quality Results

Legend for Reports for CSRD Refuse Disposal Sites Water Quality Results

Less than reported detection limit

> Greater than reported upper detection limit

>= Greater than or equal to

A Absent

BC CSR AW(F) BC CSR, Schedule 3.2, Generic Numerical Water Standards for Freshwater Aquatic Life (2017 and updates)

BC CSR DW BC CSR, Schedule 3.2, Generic Numerical Water Standards for Drinking Water (2017 and updates)

Calculated guideline or standard. The guideline or standard is dependent on the value of one or more other analytes, and is

Calc calculated from a formula or table.

GCDWQ AO Guidelines for Canadian Drinking Water Quality - Aesthetic Objectives

GCDWQ MAC Guidelines for Canadian Drinking Water Quality - Maximum Acceptable Concentrations

L Laboratory reading type (Lab result)

m asl metres above sea level

N Narrative type of guideline or standard, or Result Note.

ND Non-detect. Result is less than lower detection limit.

NG No Guideline
NR No Result
NS No Standard
NT Not Tested
OG Overgrown
P Present
PR Presumptive

TK Test kit reading type (Field result)

TNTC Too numerous to count

	Highlighted value has a lower detection limit that is greater than the guideline/standard maximum and/or the guideline/standard minimum, or has an upper detection limit that is less than the guideline/standard maximum and/or the guideline/standard minimum.
	Highlighted value exceeds BC CSR AW(F)

BC CSR AW(F)

BC CSR DW

Highlighted value exceeds BC CSR AW(F)

GCDWQ AO

GCDWQ MAC

Highlighted value exceeds GCDWQ AO

Highlighted value exceeds GCDWQ MAC

SL Criteria Override Highlighted value exceeds sampling location criteria override

Golden Refuse Disposal Site

Water Quality Results

				s	ampling Location		DMW-1	DMW-1	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b
					Date Sampled Lab Sample ID Sample Type	K0B0397-04	15-Jun-10 K0F0788-01	16-Nov-10 K0K0729-04	09-May-11 K1E0403-05	10-Aug-11 K1H0536-03	18-Oct-11 K1J0685-03	24-May-12 2051369-01 Normal	22-Aug-12 2081484-03 Normal	20-Nov-12 2111131-03 Normal	21-May-13 3051354-03 Normal	20-Aug-13 3081378-03 Normal	12-Nov-13 3110772-03 Normal	02-Jun-14 4060249-03 Normal	18-Aug-14 4081094-03 Normal
			Guid	leline	Sample Type							Noma	Noma	Noma	Nomai	Nomai	Noma	Nomai	Nomai
Analyte	Unit	GCDWQ MAC	GCDWQ AO	BC CSR AW(F	BC CSR DW														
Field Results																			
Conductivity	μS/cm	NG	NG	NG	NG	1120	1220	1150	1220	1000	1150	1170	1140	1070	870	750	1040	1075	1030
Depth to Water	m	NG	NG	NG	NG						9.890								
Dissolved oxygen	mg/L	NG	NG	NG	NG													0.29	0.59
Dissolved oxygen (percent)	%	NG	NG	NG	NG													2.8	3.5
Field measured depth to bottom	m	NG	NG	NG	NG														
Flow rate - container	L/s	NG	NG	NG	NG				075	075	075	075	075	075	075	075	075	075	075
Ground Elevation	m m)/	NG	NG	NG NG	NG		64.0	10.0	975	975 40	975	975	975 44	975	975	975	975	975	975
Oxidation reduction potential	mV	NG NG	NG 7.0 - 10.5 ^{2.1}	NG	NG NG	7.31	61.0 7.28	-18.0 7.30	-199 7.40	7.31	162 7.23	99 7.15	7.54	-12 7.4	7.36	8 7.22	19 7.16	-41 7.3	-86 7.3
Temperature	°C	NG	7.0 - 10.5 15	NG NG	NG	6.5	9.9	6.2	8.8	9.5	6.1	8.2	10.0	8.0	8.7	7.7	8.0	7.8	9.1
Lab Results																			
Chlorinated Hydrocarbons																			
1,2-Dichlorobenzene	mg/L	0.2	0.003	0.007	0.200 4.1														
1,3-Dichlorobenzene	mg/L	NG	NG	1.500	NG														
1,4-Dichlorobenzene	mg/L	0.005	0.001	0.260	0.005 4.2														
1,1-Dichloroethane	mg/L	NG	NG	NG	0.030														
1,2-Dichloroethane	mg/L	0.005	NG	1.000	0.005														
1,1-Dichloroethylene	mg/L	0.014	NG	NG	0.014														
cis-1,2-Dichloroethylene	mg/L	NG	NG	NG	0.008														
trans-1,2-Dichloroethylene	mg/L	NG	NG	NG	0.080														
Monochlorobenzene	mg/L	0.08	0.03	0.013	0.080 4.3														
1,1,2,2-Tetrachloroethane	mg/L	NG	NG	NG	0.0008														
Tetrachloroethylene	mg/L	0.01	NG	1.100	0.030														
1,1,1-Trichloroethane	mg/L	NG	NG	NG	8.000														
1,1,2-Trichloroethane	mg/L	NG	NG	NG	0.003														
Trichloroethylene	mg/L	0.005	NG	0.200	0.005														
General																			
Alkalinity (bicarbonate, as CaCO3)	mg/L	NG	NG	NG	NG														
Alkalinity (carbonate, as CaCO3)	mg/L	NG	NG	NG	NG														
Alkalinity (hydroxide, as CaCO3)	mg/L	NG	NG	NG	NG														
Alkalinity (phenolphthalein, as CaCO3)	mg/L	NG	NG	NG	NG														
Alkalinity (total, as CaCO3)	mg/L	NG	NG	NG	NG	444	453	475	509	509	495	486	480	512	497	463	479	499	479
Bicarbonate Alkalinity (as HCO3)	mg/L	NG	NG	NG	NG														
Carbonate Alkalinity (as CO3)	mg/L	NG	NG	NG	NG														
Hydroxide Alkalinity (as OH)	mg/L	NG	NG	NG	NG														
Bromide	mg/L	NG	NG	NG	NG														
Chemical Oxygen Demand	mg/L	NG	NG	NG	NG														
Chloride	mg/L	NG	250	1500	250 ^{4.4}	26.8	23.3	30.1	26.0	27.7	32.7	28.4	32.2	35.7	38.9	40.9	41.1	35.8	39.7
Conductivity	μS/cm	NG	NG	NG	NG	1130	1140	1090	1120	1090	1100	1150	1120	1120	1110	1140	1150	1160	1140
Fluoride	mg/L	1.5	NG	Calc 3.1	1.500							1.10	0.81	1.05	1.23	1.31	1.02	1.13	0.84
Hardness, Total (dissolved as CaCO3)	mg/L	NG	NG	NG	NG	583	558	611	655	590	550	654	618	590	629	644	641	692	650
Hardness, Total (total as CaCO3)	mg/L	NG	NG	NG	NG	_						_		_	_		_		
pH	-	NG	7.0 - 10.5 2.2	NG	NG	7.73	7.89	7.69	7.84	7.79	7.79	7.86	7.85	7.09	7.78	7.86	7.86	7.89	7.66
Sulphate	mg/L	NG	500 ^{2.3}	Calc 3.2	500 ^{4.5}	208	213	91.7	137	133	124	144	127	123	121	129	117	135	127
Total organic carbon	mg/L	NG	NG	NG	NG			1				_	47	40					
Total suspended solids Turbidity	mg/L NTU	NG N ^{1.1}	NG NG	NG NG	NG NG	0.8	<1 0.5	<1 3.6	<1 2.0	<1 3.4	<1 1.8	1.6	17 3.0	12 3.4	3.0	<1 3.4	3.2	<1 4.3	3.7
Halogenated Methanes																			
Bromodichloromethane	mg/L	0.100 1.2	NG	NG	0.100 4.6														<u> </u>
			NG	NG				1											+
Bromoform	mg/L	0.100 1.3	ING	ING	0.100 4.7			1	<u> </u>					<u> </u>					<u> </u>

Golden Refuse Disposal Site

Water Quality Results

				Sa	ampling Location	DMW-1	DMW-1	DMW-1	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b
					Date Sampled	09-Feb-10	15-Jun-10	16-Nov-10	09-May-11	10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14
					Lab Sample ID	K0B0397-04	K0F0788-01	K0K0729-04	K1E0403-05	K1H0536-03	K1J0685-03	2051369-01	2081484-03	2111131-03	3051354-03	3081378-03	3110772-03	4060249-03	4081094-03
	T				Sample Type							Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit			deline															
		GCDWQ MAC		BC CSR AW(F)	BC CSR DW														
Carbon tetrachloride	mg/L	0.002	NG	0.130	0.002														
Chloroform	mg/L	0.100 1.4	NG	0.020	0.100 4.8														
Dibromochloromethane	mg/L	0.100 1.5	NG	NG	0.100 4.9														
Dibromomethane	mg/L	NG	NG	NG	NG														
Dichloromethane	mg/L	0.05	NG	0.980	0.050														
Total Trihalomethanes (calculated)	mg/L	0.100 1.6	NG	NG	0.100 4.10														
Trichlorofluoromethane	mg/L	NG	NG	NG	1.000														
Metals			2.4		4.11														
Aluminum (dissolved)	mg/L	NG	N ^{2.4}	NG	9.500 4.11	<0.005	0.007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.006	0.005
Aluminum (total)	mg/L	NG		NG	9.500 4.12														
Antimony (dissolved)	mg/L	0.006	NG	0.090	0.006	0.0002	0.0002	<0.0001	0.0002	0.0002	<0.0020	0.0001	0.0002	0.0004	0.0004	0.0004	0.0005	0.0003	0.0003
Antimony (total)	mg/L	0.006	NG	0.090	0.006	0.0040	0.0070	0.0000	0.0040	0.007.0	0.0005	0.0107	0.0440	0.0000	0.0000	0.0007	0.0000	0.0054	0.0070
Arsenic (dissolved)	mg/L	0.010 1.7	NG	0.050	0.010	0.0043	0.0070	0.0389	0.0260	0.0362	0.0285	0.0196	0.0419	0.0392	0.0388	0.0397	0.0382	0.0351	0.0378
Arsenic (total)	mg/L	0.010 1.8	NG	0.050	0.010	0.0000	0.0000	0.0000	0.0040	0.000	0.004	0.004	0.000	0.000	0.000	0.000	0.000	0.004	0.004
Barium (dissolved)	mg/L	1.0	NG	10.000	1.000	0.0236	0.0230	0.0269	0.0242	0.022	0.021	0.024	0.023	0.022	0.023	0.023	0.023	0.024	0.024
Barium (total)	mg/L	1.0	NG	10.000	1.000	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0000	0.0004
Beryllium (dissolved)	mg/L	NG	NG	0.0015	0.008	<0.0001	<0.0001	0.0001	0.0001	<0.0001	0.0001	0.0001	<0.0001	0.0001	0.0001	<0.0001	0.0001	0.0002	0.0001
Beryllium (total)	mg/L	NG NG	NG	0.0015	0.008	-0.0004	-0.0004	-0.0004	-0.0004	-0.0004	-0.0004	-0.0004	-0.0004	-0.0004	-0.0004	-0.0004	0.0000	-0.0001	-0.0004
Bismuth (dissolved)	mg/L	NG NG	NG NG	NG NG	NG NG	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0002	<0.0001	<0.0001
Bismuth (total) Boron (dissolved)	mg/L	5	NG	12.000	5.000	0.171	0.233	0.174	0.143	0.135	0.104	0.138	0.137	0.133	0.145	0.166	0.158	0.153	0.138
Boron (total)	mg/L mg/L	5	NG	12.000	5.000	0.171	0.233	0.174	0.143	0.133	0.104	0.136	0.137	0.133	0.143	0.100	0.136	0.133	0.136
Cadmium (dissolved)	mg/L	0.005	NG	Calc ^{3.3}	0.005	0.00002	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00003	<0.00001	<0.00001	0.00001	<0.00001	<0.00001	<0.00001	0.00001
Cadmium (disserved)	mg/L	0.005	NG	Calc 3.4	0.005	0.00002	40.00001	VO.00001	40.00001	10.00001	40.00001	0.00000	40.00001	40.00001	0.00001	40.00001	40.00001	40.00001	0.00001
Calcium (dissolved)	mg/L	NG	NG	NG	NG	73.9	70.9	73.5	71.9	63.2	65.9	61.2	63.9	64.0	68.7	71.8	73.4	74.0	73.1
Calcium (total)	mg/L	NG	NG	NG	NG	70.0	70.5	70.0	71.0	00.2	00.0	01.2	00.0	04.0	00.7	71.0	70.4	74.0	75.1
Chromium (dissolved)	mg/L	0.05	NG	0.010 3.5	0.050 4.13	0.0146	0.0014	0.0009	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Chromium (total)	mg/L	0.05	NG	0.010	0.050 4.14	0.0110	0.0011	0.0000	10.0000	10.0000	40.0000	40.0000	40.0000	40.0000	10.0000	10.0000	40.0000	40.0000	40.0000
Cobalt (dissolved)	mg/L	NG	NG	0.040	0.001	0.00063	0.00075	0.00012	0.00011	0.00009	<0.00005	0.00017	<0.00005	<0.0005	<0.0005	<0.00005	<0.0005	0.00013	0.00012
Cobalt (total)	mg/L	NG	NG	0.040	0.001	0.0000	0.000.0	0.000.2	0.00011	0.00000	10.0000	0.00011	10.0000	10.0000	10.00000	10.0000	10.0000	0.000.0	0.000.12
Copper (dissolved)	mg/L	NG	1.0	Calc 3.7	1.500 4.15	0.0297	0.0392	0.0004	0.0006	0.0008	0.0020	0.0002	0.0002	0.0014	0.0004	<0.0002	<0.0002	0.0007	<0.0002
Copper (total)	mg/L	NG	1.0	Calc 3.8	1.500 4.16														
Iron (dissolved)	mg/L	NG	0.3	NG	6.500 4.17	0.053	0.260	0.418	0.145	0.28	0.11	0.19	0.35	0.27	0.318	0.294	0.345	0.351	0.378
Iron (total)	mg/L	NG	0.3	NG	6.500 4.18														
Lead (dissolved)	mg/L	0.010	NG	Calc 3.9	0.010	0.0001	0.0004	<0.0001	0.0002	0.0001	0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0003	0.0002
Lead (total)	mg/L	0.010	NG	Calc 3.10	0.010														
Lithium (dissolved)	mg/L	NG	NG	NG	0.008	0.0232	0.0310	0.0260	0.0238	0.0218	0.0209	0.0196	0.0228	0.0227	0.0251	0.0251	0.0259	0.0264	0.0252
Lithium (total)	mg/L	NG	NG	NG	0.008														
Magnesium (dissolved)	mg/L	NG	NG	NG	NG	96.7	92.5	104	116	104	94.7	122	111	104	111	113	111	123	114
Magnesium (total)	mg/L	NG	NG	NG	NG														
Manganese (dissolved)	mg/L	NG	0.05	NG	1.500 4.19	0.0022	0.0032	0.0042	0.0039	0.0040	0.0039	0.0050	0.0041	0.0037	0.0040	0.0039	0.0039	0.0054	0.0158
Manganese (total)	mg/L	NG	0.05	NG	1.500 4.20														1
Mercury (dissolved)	mg/L	0.001	NG	0.00025	0.001	<0.00005	<0.00005	<0.00005	<0.00002	<0.00002	<0.00002	<0.00002	0.00033	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Mercury (total)	mg/L	0.001	NG	0.00025	0.001														
Molybdenum (dissolved)	mg/L	NG	NG	10.000	0.250	0.0011	0.0008	0.0004	0.0003	0.0004	0.0017	0.0006	0.0004	0.0004	0.0004	0.0002	0.0004	0.0003	0.0004
Molybdenum (total)	mg/L	NG	NG	10.000	0.250														
Nickel (dissolved)	mg/L	NG	NG	Calc 3.11	0.080	0.0034	0.0046	0.0036	0.0011	0.0014	0.0011	<0.0002	0.0014	0.0012	0.0014	0.0015	0.0016	0.0012	0.0021
Nickel (total)	mg/L	NG	NG	Calc 3.12	0.080														
Selenium (dissolved)	mg/L	0.05	NG	0.020	0.010	0.0005	<0.0003	<0.0003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Selenium (total)	mg/L	0.05	NG	0.020	0.010														
Silicon (dissolved, as Si)	mg/L	NG	NG	NG	NG	10.4	6.09	4.55	7.93	8.0	7.3	7.6	7.9	8.0	7.9	8.0	7.4	7.4	8.0
Silicon (total, as Si)	mg/L	NG	NG	NG	NG														
Silver (dissolved)	mg/L	NG	NG	Calc 3.13	0.020	<0.00005	<0.00005	<0.00005	0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005

				Sa	mpling Location	DMW-1	DMW-1	DMW-1	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b
					Date Sampled		15-Jun-10	16-Nov-10	09-May-11	10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14
					Lab Sample ID	K0B0397-04	K0F0788-01	K0K0729-04	K1E0403-05	K1H0536-03	K1J0685-03	2051369-01	2081484-03	2111131-03	3051354-03	3081378-03	3110772-03	4060249-03	4081094-03
					Sample Type							Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit			deline															
7 mary to	O.m.	GCDWQ MAC	GCDWQ AO	BC CSR AW(F)	BC CSR DW														
Silver (total)	mg/L	NG	NG	Calc 3.14	0.020														
Sodium (dissolved)	mg/L	NG	200	NG	200 4.21	25.8	23.7	26.6	25.4	25.1	25.3	23.5	29.6	27.4	29.1	30.4	29.7	25.4	28.4
Sodium (total)	mg/L	NG	200	NG	200 4.22														
Strontium (dissolved)	mg/L	NG	NG	NG	2.500	3.07	3.89	1.88	1.80	1.69	1.62	1.69	1.72	1.67	1.76	1.74	1.70	1.81	1.76
Strontium (total)	mg/L	NG	NG	NG	2.500														
Sulphur (dissolved)	mg/L	NG	NG	NG	NG							55	50	46	46	45	37	52	46
Sulphur (total)	mg/L	NG NG	NG NG	NG NG	NG NG	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tellurium (dissolved) Tellurium (total)	mg/L mg/L	NG	NG	NG	NG	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Thallium (dissolved)	mg/L	NG	NG	0.003	NG	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	0.00004	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Thallium (total)	mg/L	NG	NG	0.003	NG	10.00002	40.0002	10.00002	10.00002	10.00002	10.00002	10.00002	10.00002	0.00001	40.00002	10.00002	10.00002	10.00002	10.00002
Thorium (dissolved)	mg/L	NG	NG	NG	NG	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thorium (total)	mg/L	NG	NG	NG	NG														
Tin (dissolved)	mg/L	NG	NG	NG	2.500	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0002	<0.0002
Tin (total)	mg/L	NG	NG	NG	2.500														
Titanium (dissolved)	mg/L	NG	NG	1.000	NG	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Titanium (total)	mg/L	NG	NG	1.000	NG														
Tungsten (dissolved)	mg/L	NG	NG	NG	0.003														
Tungsten (total)	mg/L	NG	NG	NG	0.003														
Uranium (dissolved)	mg/L	0.02	NG	0.085	0.020	0.00173	0.00165	0.00008	0.00013	0.00011	0.00009	0.00014	0.00007	0.00009	0.00009	0.00007	0.00008	0.00014	0.00014
Uranium (total)	mg/L	0.02	NG	0.085	0.020														
Vanadium (dissolved)	mg/L	NG	NG	NG	0.020	0.0055	0.0028	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium (total)	mg/L	NG	NG	NG	0.020	0.0000	0.0400	0.0007	0.0004	0.005	0.040	0.000	0.004	0.005	0.004	0.004	0.004	0.004	0.004
Zinc (dissolved)	mg/L	NG	5.0	Calc 3.15	3.000 4.23	0.0096	0.0193	0.0097	0.0321	0.005	0.010	0.009	<0.004	0.005	<0.004	<0.004	<0.004	<0.004	<0.004
Zinc (total)	mg/L	NG NC	5.0 NG	Calc 3.16	3.000 ^{4.24} NG	0.0006	0.0004	0.0000	0.0045	0.0042	0.0044	0.0011	0.0042	0.0044	0.0014	0.0040	0.0044	0.0012	0.0042
Zirconium (dissolved) Zirconium (total)	mg/L mg/L	NG NG	NG	NG NG	NG	0.0006	0.0004	0.0020	0.0015	0.0013	0.0011	0.0011	0.0013	0.0014	0.0011	0.0010	0.0011	0.0012	0.0012
Zircomum (total)	mg/L	140	110	NO	110														
Microbiological																			
E. coli (counts)	CFU/100 mL	0 1.9	NG	NG	NG														
E. coli (MPN)	MPN/100 mL	0 1.10	NG	NG	NG														
Fecal coliforms (counts)	CFU/100 mL	0 1.11	NG	NG	NG														
Fecal coliforms (MPN)	MPN/100 mL	0 1.12	NG	NG	NG														
Total coliforms (counts)	CFU/100 mL	0 ^{1.13}	NG	NG	NG														
Total coliforms (MPN)	MPN/100 mL	0 1.14	NG	NG	NG														
Miscellaneous Organic Substances																			
Chloroethane	mg/L	NG	NG	NG	NG														
1,2-Dibromoethane	mg/L	NG	NG	NG	0.0005			1											
1,2-Dichloropropane	mg/L	NG NC	NG	NG	0.0045			1											
1,3-Dichloropropene	mg/L	NG NC	NG 0.015	NG	0.0015 0.095 ^{4.25}			1											
Methyl tert-butyl ether (MTBE)	mg/L	NG NG	0.015 NG	34.000 15.000 ^{3.17}	0.095 ^{4.23}			1											
VHw6-10 Vinyl chloride	mg/L mg/L	0.002 ^{1.15}	NG NG	15.000 STA	0.002														
VPHw	mg/L	0.002 NG	NG	1.500 ^{3.18}	0.002 NG														
	mg/L	140	140	1.300	140			1											
Monocyclic Aromatic Hydrocarbons (MAHs)																			
Benzene	mg/L	0.005	NG	0.400	0.005														
Ethylbenzene	mg/L	0.14	0.0016	2.000	0.140 4.27														
Styrene	mg/L	NG	NG	0.720	0.800														
Toluene	mg/L	0.06	0.024	0.005	0.060 4.28														
Xylenes	mg/L	0.09	0.02	0.300	0.090														
Nutrients																			
	· · · · · · · · · · · · · · · · · · ·	·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		·		

				Sa	mpling Location	DMW-1	DMW-1	DMW-1	DMW-1b										
					Date Sampled	09-Feb-10	15-Jun-10	16-Nov-10	09-May-11	10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14
					Lab Sample ID	K0B0397-04	K0F0788-01	K0K0729-04	K1E0403-05	K1H0536-03	K1J0685-03	2051369-01	2081484-03	2111131-03	3051354-03	3081378-03	3110772-03	4060249-03	4081094-03
					Sample Type							Normal							
			Gui	deline															1
Analyte	Unit	GCDWQ MAC	GCDWQ AO	BC CSR AW(F)	BC CSR DW														1
Ammonia (total, as N)	mg/L	NG	NG	Calc 3.19	NG	0.65	0.76	0.29	0.20	0.26	0.26	0.155	0.263	0.031	0.274	0.274	0.295	0.261	0.280
Nitrate (as N)	mg/L	10	NG	400 ^{3.20}	10 ^{4.29}	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.199
Nitrate + Nitrite (as N)	mg/L	10 ^{1.16}	NG	400 ^{3.21}	10 ^{4.30}														
Nitrate + Nitrite (as N) (calculated)	mg/L	10 ^{1.17}	NG	400 ^{3.22}	10 ^{4.31}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	0.199
Nitrite (as N)	mg/L	1	NG	Calc 3.23	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Total kjeldahl nitrogen	mg/L	NG	NG	NG	NG														
Orthophosphate (dissolved, as P)	mg/L	NG	NG	NG	NG														
Phosphorus (dissolved, by ICPMS/ICPOES)	mg/L	NG	NG	NG	NG	<0.020	<0.020	<0.020	<0.020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04
Phosphorus (total, by ICPMS/ICPOES)	mg/L	NG	NG	NG	NG														
Phosphorus (total, APHA 4500-P)	mg/L	NG	NG	NG	NG														1
Potassium (dissolved)	mg/L	NG	NG	NG	NG	6.64	9.66	4.75	4.72	4.85	4.24	5.17	5.08	4.72	5.11	5.31	4.86	4.76	5.06
Potassium (total)	mg/L	NG	NG	NG	NG														

		DMM 4h	DMM 4h	DMM 45	DMM 4h	DMM 45	DMW 4h	DMM 4h	DMM/ 4h	DMM 4h	DMM 4h	DMM 4	DMMA/ 4	DMMA/ 4	DMMA/ 4	DMMA/ 4	DMMA/ 4	DMM 4	DMM 4
		DMW-1b	DMW-4																
		04-Nov-14	25-May-15	25-Aug-15	09-Nov-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	25-Aug-15
		4110161-03 Normal	5051773-04 Normal	5081710-02 Normal	5110693-01 Normal	6050336-02 Normal	6081698-02 Normal	6111141-04 Normal	7040434-07 Normal	7090074-04 Normal	7111886-05 Normal	3051354-05 Normal	3081378-04 Normal	3110772-04 Normal	4060249-04 Normal	4081094-04 Normal	4110161-04 Normal	5051773-03 Normal	5081710-03 Normal
Analyte	Unit																		
Field Results																			
Conductivity	μS/cm	1118	1021	1142	1155	1134	1201	1127	1113	1128	1137	900	1130	1100	914	1062	953	922	1043
Depth to Water	m																		
Dissolved oxygen	mg/L	1.98	1.21	2.34	0.34	0.01	4.73			2.53	4.67				2.33	0.30	3.22	2.98	2.04
Dissolved oxygen (percent)	%	16.5	10.6	20.5			40.3			23.0	39.8				20.00	2.6	27.4	25.8	17.9
Field measured depth to bottom	m																		
Flow rate - container	L/s																		
Ground Elevation	m	975	975	975	975	975	975	975	975	975	975								
Oxidation reduction potential	mV	-65	-28	-26	53	-35	97	29	83	17		235	68	204	78	77	-8	69	-5
рН		7.0	7.5	7.2	6.3	7.3	7.3	7.4	7.7	7.4	7.3	7.25	7.16	7.11	7.3	7.1	7.1	7.5	7.3
Temperature	°C	8.2	9.8	8.5	8.0	8.1	7.9	9.1	6.8	9.6	7.9	8.7	7.8	7.2	7.9	8.6	8.2	9.0	8.2
Lab Results																			
Chlorinated Hydrocarbons			1					1											
1,2-Dichlorobenzene	mg/L								<0.0005										
1,3-Dichlorobenzene	mg/L								<0.0010										
1,4-Dichlorobenzene	mg/L		1	1		1		1	<0.0010			ļ							
1,1-Dichloroethane	mg/L								<0.0010										
1,2-Dichloroethane	mg/L								<0.0010										
1,1-Dichloroethylene	mg/L								<0.0010										
cis-1,2-Dichloroethylene	mg/L								<0.0010										<u> </u>
trans-1,2-Dichloroethylene	mg/L								<0.0010										
Monochlorobenzene	mg/L								<0.0010										<u> </u>
1,1,2,2-Tetrachloroethane	mg/L								<0.0005 <0.0010										
Tetrachloroethylene	mg/L								<0.0010										
1,1,1-Trichloroethane 1,1,2-Trichloroethane	mg/L mg/L								<0.0010										
Trichloroethylene	mg/L								<0.0010										
Themoroeutylene	IIIg/L								20.0010										<u> </u>
General																			
Alkalinity (bicarbonate, as CaCO3)	mg/L					481	482	480	504	432	481								-
Alkalinity (carbonate, as CaCO3)	mg/L					<1	<1	<1	<1.0	<1.0	<1.0								
Alkalinity (hydroxide, as CaCO3)	mg/L					<1	<1	<1	<1.0	<1.0	<1.0								
Alkalinity (phenolphthalein, as CaCO3)	mg/L					<1	<1	<1	<1.0	<1.0	<1.0								
Alkalinity (total, as CaCO3)	mg/L	478	490	478	500	481	482	480	504	432	481	437	427	435	392	399	416	430	429
Bicarbonate Alkalinity (as HCO3)	mg/L					587	588	586	614	527	587								
Carbonate Alkalinity (as CO3)	mg/L					<1	<0.6	<0.6	<0.600	<0.600	<0.600								
Hydroxide Alkalinity (as OH)	mg/L					<1	<0.3	<0.3	<0.340	<0.340	<0.340								
Bromide	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10							<0.10	<0.10
Chemical Oxygen Demand	mg/L																		
Chloride	mg/L	40.1	39.7	42.4	51.7	38.7	47.1	50.4	42.1	12.4	52.8	22.4	16.2	16.9	20.6	19.7	17.4	12.1	13.2
Conductivity	μS/cm	1160	1150	1120	<2	1170	1160	1180	1140	1170	1170	1160	1220	1230	979	1170	1120	1220	1130
Fluoride	mg/L	1.15	1.25	1.28	1.31	1.28	1.28	1.25	1.25	0.73	1.30	0.48	0.61	0.52	0.28	0.32	0.42	0.89	0.74
Hardness, Total (dissolved as CaCO3)	mg/L	606				700	697	644	676	595		619	641	643	571	635	584		<u> </u>
Hardness, Total (total as CaCO3)	mg/L		649	678	645						582							619	611
pH		7.81	7.74	7.70	7.63	7.60	7.73	7.89	7.67	7.92	7.86	7.76	7.84	7.77	7.90	7.64	7.81	7.79	7.74
Sulphate	mg/L	122	133	114	116	129	124	124	126	252	108	236	270	268	150	250	213	275	232
Total organic carbon	mg/L										_								<u></u>
Total suspended solids	mg/L	<1	<2	<2	<3	<2	<2	<2	<2	<2.0	2.8	<1	<1	1	<1	<1	<1	<2	<2
Turbidity	NTU	4.3	1.5	3.0	4.5	4.8	1.68	1.49	2.40	0.63	5.34	0.2	0.2	0.3	5.5	0.2	0.2	0.5	0.2
Halogenated Methanes																			
Bromodichloromethane	mg/L								<0.0010										
Bromoform	mg/L								<0.0010										

		DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4						
		04-Nov-14	25-May-15	25-Aug-15	09-Nov-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	25-Aug-15
		4110161-03	5051773-04	5081710-02	5110693-01	6050336-02	6081698-02	6111141-04	7040434-07	7090074-04	7111886-05	3051354-05	3081378-04	3110772-04	4060249-04	4081094-04	4110161-04	5051773-03	5081710-03
		Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal						
Analyte	Unit																		
Carbon tetrachloride	mg/L								<0.0005										
Chloroform	mg/L								<0.0010										-
Dibromochloromethane	mg/L								<0.0010										
Dibromomethane	mg/L								<0.0010										
Dichloromethane	mg/L								<0.0030										
Total Trihalomethanes (calculated)	mg/L								<0.0020										
Trichlorofluoromethane	mg/L								<0.0010										
Metals																			
Aluminum (dissolved)	mg/L	<0.005					<0.005	<0.005		<0.0050		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Aluminum (total)	mg/L		0.005	<0.005	<0.05	<0.005			0.005		<0.0050							<0.005	<0.005
Antimony (dissolved)	mg/L	0.0002					<0.0001	<0.0001		<0.00020		0.0004	0.0005	0.0005	0.0004	0.0004	0.0003		
Antimony (total)	mg/L	1	<0.0001	<0.0001	<0.001	<0.0001		1	0.0003		<0.00020				1		1	0.0002	0.0003
Arsenic (dissolved)	mg/L	0.0436					0.0421	0.0407		0.00124		0.0013	0.0013	0.0014	0.0012	0.0014	0.0013		
Arsenic (total)	mg/L	1	0.0236	0.0489	0.042	0.0375		1	0.0326		0.0476				1		1	0.0014	0.0018
Barium (dissolved)	mg/L	0.026					0.025	0.024		0.0149		0.015	0.014	0.015	0.015	0.017	0.017		<u> </u>
Barium (total)	mg/L		0.022	0.026	<0.05	0.024			0.025		0.0246							0.017	0.016
Beryllium (dissolved)	mg/L	0.0001					<0.0001	<0.0001		<0.00010		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<u> </u>
Beryllium (total)	mg/L		<0.0001	0.0001	<0.001	0.0001			<0.0001		0.00011	0.0004		2 2224	2 2224	2 2224	2 2224	<0.0001	<0.0001
Bismuth (dissolved)	mg/L	<0.0001	2 2224	0.0001	0.004		<0.0001	<0.0001	2 2224	<0.00010		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
Bismuth (total)	mg/L	0.404	<0.0001	<0.0001	<0.001	<0.0001	0.404	0.470	<0.0001	0.000	<0.00010	0.000	0.445	0.405	0.070	0.000	0.040	<0.0001	<0.0001
Boron (dissolved)	mg/L	0.134	0.140	0.400	0.44	0.440	0.191	0.172	0.407	0.386	0.404	0.263	0.415	0.465	0.070	0.286	0.218	0.050	0.000
Boron (total)	mg/L	0.00004	0.146	0.139	0.14	0.146	0.00000	0.00004	0.137	0.000040	0.101	0.00000	0.00000	0.00004	0.00000	0.00004	0.00000	0.659	0.392
Cadmium (dissolved)	mg/L	0.00001	-0.00004	-0.00004	-0.0001	-0.00004	0.00003	0.00001	-0.00004	<0.000010	-0.000010	0.00002	0.00003	<0.00001	0.00002	0.00001	0.00002	0.00004	-0.00001
Cadmium (total)	mg/L	70.5	<0.00001	<0.00001	<0.0001	<0.00001	74.5	70.0	<0.00001	75.4	<0.000010	78.2	00.7	00.5	75.4	86.4	70.0	0.00001	<0.00001
Calcium (dissolved)	mg/L	70.5	74.3	75.8	75.1	79.2	74.5	70.8	77.3	75.4	65.9	76.2	80.7	82.5	75.1	80.4	79.9	79.0	81.9
Calcium (total) Chromium (dissolved)	mg/L	<0.0005	74.3	75.6	75.1	79.2	<0.0005	<0.0005	11.3	<0.00050	65.9	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	79.0	61.9
Chromium (total)	mg/L mg/L	<0.0003	<0.0005	<0.0005	<0.005	<0.0005	<0.0003	<0.0003	<0.0005	<0.00030	<0.00050	<0.0003	VO.0003	20.0003	<0.0003	<0.0003	<0.0003	<0.0005	<0.0005
Cobalt (dissolved)	mg/L	0.00008	<0.0003	<0.0003	<0.003	<0.0003	0.00007	<0.00005	<0.0003	0.00075	<0.00030	0.00084	0.00075	0.00059	0.00126	0.00133	0.00106	<0.0003	\0.0003
Cobalt (total)	mg/L	0.00000	0.00014	<0.00005	<0.0005	<0.0005	0.00007	VO.00000	0.00050	0.00070	<0.00010	0.00004	0.00070	0.0003	0.00120	0.00100	0.00100	0.00079	0.00083
Copper (dissolved)	mg/L	0.0004	0.00011	40.0000	40.000	40.00000	0.0004	0.0185	0.00000	0.00361	40.00010	0.0036	0.0030	0.0024	0.0668	0.0060	0.0065	0.00070	0.00000
Copper (total)	mg/L	0.000	0.0078	0.0009	<0.002	0.0003	0.000	0.0.00	0.0079	0.0000.	0.00073	0.0000	0.0000	0.002	0.0000	0.0000	0.0000	0.0100	0.0027
Iron (dissolved)	mg/L	0.404	0.007.0	0.0000	10.002	0.0000	0.239	0.368	0.00.0	0.014	0.000.0	0.014	0.014	0.013	0.011	0.021	0.014	0.0.00	0.002.
Iron (total)	mg/L		0.23	0.38	0.42	0.55	0.200		0.43		0.437					0.021		0.04	0.02
Lead (dissolved)	mg/L	<0.0001					<0.0001	0.0003		<0.00020		0.0003	0.0004	0.0002	0.0003	0.0002	0.0003		
Lead (total)	mg/L		0.0022	0.0003	<0.001	0.0003			0.0002		<0.00020							0.0004	0.0003
Lithium (dissolved)	mg/L	0.0252					0.0222	0.0240		0.0477		0.0347	0.0478	0.0516	0.0178	0.0385	0.0317		
Lithium (total)	mg/L		0.0243	0.0244	0.026	0.0265			0.0236		0.0217							0.0696	0.0462
Magnesium (dissolved)	mg/L	104					124	113		98.8		103	107	106	93.0	102	93.3		
Magnesium (total)	mg/L		112	119	111	122			117		101							102	98.6
Manganese (dissolved)	mg/L	0.0048					0.0046	0.0041		0.00401		0.0039	0.0042	0.0040	0.0021	0.0127	0.0043		
Manganese (total)	mg/L		0.0047	0.0046	0.005	0.0057			0.0110		0.00419							0.0048	0.0037
Mercury (dissolved)	mg/L	<0.00002					<0.00002	<0.00002		<0.000010		<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002		
Mercury (total)	mg/L		<0.00002		<0.00002	<0.00002			<0.00002		<0.000010							<0.00002	
Molybdenum (dissolved)	mg/L	0.0004					0.0004	0.0004		0.00058		0.0008	0.0004	0.0006	0.0014	0.0008	0.0010		
Molybdenum (total)	mg/L		0.0004	0.0004	<0.001	0.0003			0.0003		0.00035							0.0006	0.0007
Nickel (dissolved)	mg/L	0.0016					0.0017	0.0022		0.00115		0.0018	0.0015	0.0012	0.0027	0.0026	0.0019		
Nickel (total)	mg/L		0.0006	0.0026	<0.002	0.0016			0.0020		0.00204							<0.0002	0.0025
Selenium (dissolved)	mg/L	<0.0005					<0.0005	<0.0005		<0.00050		<0.0005	<0.0005	<0.0005	0.0008	0.0007	0.0007		
Selenium (total)	mg/L		<0.0005	<0.0005	<0.005	<0.0005			<0.0005		<0.00050							<0.0005	<0.0005
Silicon (dissolved, as Si)	mg/L	8.4					8.0	8.3		6.4		7.2	7.0	6.6	7.4	7.3	7.9		
Silicon (total, as Si)	mg/L		7.9	9.0	8	8.3			7.5		7.6							7.0	7.2
Silver (dissolved)	mg/L	<0.00005					<0.00005	<0.00005		<0.000050		<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005		1

		DMW-1b	DAMA/ 41-	DAMA/ 45	DAMA/ 41-	DAMA/ 41-	DAMA/ 41-	DAMA/ 41-	DAMA/ 45	DAMA/ 45	DAMA/ 41-	DAMA/ 4	DMM 4	DAMA/ 4	DAMA/ 4	DAMA/ 4	DAMA/ 4	DAMA/ 4	DMM 4
			DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4							
		04-Nov-14	25-May-15	25-Aug-15	09-Nov-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	25-Aug-15
		4110161-03	5051773-04	5081710-02	5110693-01	6050336-02	6081698-02	6111141-04	7040434-07	7090074-04	7111886-05	3051354-05	3081378-04	3110772-04	4060249-04	4081094-04	4110161-04	5051773-03	5081710-03
		Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit																		
, and yet	•																		
Silver (total)	mg/L		0.00005	0.00163	<0.0005	<0.00005			<0.00005		<0.000050							0.00005	0.00129
Sodium (dissolved)	mg/L	30.1					32.8	29.8		47.5		34.2	48.8	51.0	20.2	34.8	31.6		
Sodium (total)	mg/L		26.9	33.2	29.7	28.7			26.3		26.9							70.3	46.9
Strontium (dissolved)	mg/L	1.71					1.96	1.79		4.33		4.26	5.03	5.11	2.07	4.53	3.80		
Strontium (total)	mg/L		1.68	1.99	1.74	1.82			1.78		1.85							6.04	5.09
Sulphur (dissolved)	mg/L	47					52	44		80.3		80	95	88	58	87	80		
Sulphur (total)	mg/L		46	51	37	45			43		42.6							98	87
Tellurium (dissolved)	mg/L	<0.0002					<0.0002	<0.0002		<0.00050		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Tellurium (total)	mg/L		<0.0002	<0.0002	<0.002	<0.0002			<0.0002		<0.00050							<0.0002	<0.0002
Thallium (dissolved)	mg/L	<0.00002					<0.00002	<0.00002		<0.000020		<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002		
Thallium (total)	mg/L		<0.00002	<0.00002	<0.0002	<0.00002			<0.00002		<0.000020							<0.00002	<0.00002
Thorium (dissolved)	mg/L	<0.0001					<0.0001	<0.0001		<0.00010		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
Thorium (total)	mg/L		<0.0001	<0.0001	<0.001	<0.0001			<0.0001		<0.00010							<0.0001	<0.0001
Tin (dissolved)	mg/L	0.0003					0.0002	<0.0002		<0.00020		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Tin (total)	mg/L		0.0004	<0.0002	<0.002	<0.0002			<0.0002		<0.00020							0.0003	<0.0002
Titanium (dissolved)	mg/L	<0.005				1	<0.005	<0.005		<0.0050	1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Titanium (total)	mg/L		<0.005	<0.005	<0.05	<0.005			<0.005		<0.0050							<0.005	<0.005
Tungsten (dissolved)	mg/L																		
Tungsten (total)	mg/L										<0.0010								
Uranium (dissolved)	mg/L	0.00009					0.00005	0.00007		0.00103		0.00155	0.00115	0.00100	0.00262	0.00152	0.00175		
Uranium (total)	mg/L		0.00011	0.00007	<0.0002	0.00013			0.00020		0.000068							0.00051	0.00108
Vanadium (dissolved)	mg/L	<0.001					<0.001	<0.001		<0.0010		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Vanadium (total)	mg/L		<0.001	<0.001	<0.01	<0.001			<0.001		<0.0010							<0.001	<0.001
Zinc (dissolved)	mg/L	0.005	10.001	10.001	10.01	10.00	<0.004	0.067	10.001	0.0380	10.00.0	0.029	0.046	0.019	0.045	0.028	0.032	10.00	10.001
Zinc (total)	mg/L		<0.004	<0.004	<0.04	<0.004			0.017		0.0084							0.030	0.030
Zirconium (dissolved)	mg/L	0.0015					0.0019	0.0015		0.00056		0.0007	0.0007	0.0007	0.0004	0.0006	0.0006		
Zirconium (total)	mg/L	0.00.0	0.0012	0.0019	0.001	0.0014	0.00.0	0.00.0	0.0012	0.00000	0.00161	0.000.	0.000.	0.0007	0.000 .	0.0000	0.0000	0.0007	0.0008
Microbiological																			
E. coli (counts)	CFU/100 mL																		
E. coli (MPN)	MPN/100 mL																		
Fecal coliforms (counts)	CFU/100 mL																		
Fecal coliforms (MPN)	MPN/100 mL																		
Total coliforms (counts)	CFU/100 mL																		
Total coliforms (MPN)	MPN/100 mL																		
rotal comotine (ivii 14)	WII TW TOO TILE																		
Miscellaneous Organic Substances	1																		
Chloroethane	mg/L					1		1	<0.0020		1								
1,2-Dibromoethane	mg/L					1		1	<0.0020		1								
1,2-Dichloropropane	mg/L								<0.0010				<u> </u>						
1,3-Dichloropropene	mg/L								<0.0010										
Methyl tert-butyl ether (MTBE)	mg/L								<0.0010										
VHw6-10	mg/L							1	30.0010										
Vinyl chloride	mg/L					1		1	<0.0010		1								
VPHw	mg/L					1		1	33.0010		1								
	mg/L					1		1			1								
Monocyclic Aromatic Hydrocarbons (MAHs)																			
Benzene	mg/L								<0.0005										
	mg/L								<0.0005										
Ethylbenzene Styrene	mg/L								<0.0010										
Styrene						 		 	<0.0010		 								
Toluene	mg/L					-		-	<0.0010		-								
Xylenes	mg/L					-		-	<0.0020		-								
Nutrionto						1		1			1								
Nutrients			<u> </u>			L		L	<u> </u>		L					<u> </u>	<u> </u>]	

		5104/41	5104/41	D1 01/ 11	51044.41	D1 01/ //	51.047.41	D104/41	5104/41	510444	D1 01/ //	51.04/ 4	51.04/ /	51.04/ /	51.04/ 4	51.04/ /	51.01/ /	51.04/ 4	5104 4
		DMW-1b	DMW-4																
		04-Nov-14	25-May-15	25-Aug-15	09-Nov-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	25-Aug-15
		4110161-03	5051773-04	5081710-02	5110693-01	6050336-02	6081698-02	6111141-04	7040434-07	7090074-04	7111886-05	3051354-05	3081378-04	3110772-04	4060249-04	4081094-04	4110161-04	5051773-03	5081710-03
	T	Normal																	
Analyte	Unit																		
Ammonia (total, as N)	mg/L	0.240	0.234	0.210	0.276	0.196	0.251	0.228	0.239	0.758	0.262	0.596	0.952	1.07	0.028	0.814	0.341	1.26	0.816
Nitrate (as N)	mg/L	0.397	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.175	<0.010	0.181	0.135	<0.010	0.647	0.443	0.602	0.530	0.414
Nitrate + Nitrite (as N)	mg/L																		
Nitrate + Nitrite (as N) (calculated)	mg/L	0.397	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	0.175	<0.014	0.181	0.135	<0.014	0.647	0.443	0.602	0.530	0.414
Nitrite (as N)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.012	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Total kjeldahl nitrogen	mg/L																		
Orthophosphate (dissolved, as P)	mg/L		<0.01	<0.01														<0.01	<0.01
Phosphorus (dissolved, by ICPMS/ICPOES)	mg/L	<0.02					<0.02	0.24		<0.050		<0.02	<0.02	<0.02	<0.02	0.02	<0.02		
Phosphorus (total, by ICPMS/ICPOES)	mg/L		<0.020	0.08	<0.2	<0.02			<0.05		<0.050							<0.020	<0.02
Phosphorus (total, APHA 4500-P)	mg/L																		
Potassium (dissolved)	mg/L	4.94					5.62	5.20		8.08		7.63	9.49	9.36	3.66	7.73	6.80		
Potassium (total)	mg/L		4.93	5.94	5.1	5.10			4.73		4.63							11.7	9.42

		DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	MW09-06D	MW09-06D	MW09-06D	MW09-06D	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
		09-Nov-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	16-Nov-10	09-May-11	10-Aug-11
		5110693-02	6050336-03	6081698-03	6111141-05	7040434-06	7090074-03	7111886-06	K9E0816-03	K9K0184-01	K0B0397-02	K0F0788-04	K9E0816-02	K9K0184-02	K0B0397-01	K0F0788-03	K0K0729-01	K1E0403-03	K1H0536-02
		Normal	Normal	Normal	Normal	Normal	Normal	Normal											
Analyte	Unit																		
Field Results																			
Conductivity	μS/cm	1109	1271	1139	790	927	1159	1187	6700	4700	4400	4300	4600	4700	4400	4430	6600	4200	3600
Depth to Water	m								32.972	34	32.69	33.55	32.619	33	33.49	32.68	32.70	31.618	32.625
Dissolved oxygen	mg/L	0.40	0	9.12	4.63		0.54	4.21	0.83	1.92			2.21	1.07					
Dissolved oxygen (percent)	%			36.6	40.0		5.0	36.1											
Field measured depth to bottom	m																		
Flow rate - container	L/s																		
Ground Elevation	m												920	920	920	920	920	920	920
Oxidation reduction potential pH	mV	37 6.3	80 7.1	206 7.3	152 7.3	235 7.6	-47 7.4	7.2	6.78	6.86	6.76	73.0 7.01	6.87	6.84	6.79	73.0 6.86	173 6.91	175 6.75	67 6.87
Temperature	°C	8.0	8.5	8.2	7.7	7.8	9.5	8.0	10.8	9.4	9.4	11.3	12.5	10.5	10.9	11.6	10.0	12.2	12.4
Lab Results																			
Chlorinated Hydrocarbons	0		-			-0.0005		1						1				1	
1,2-Dichlorobenzene	mg/L					<0.0005		1						1		 		1	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/L mg/L					<0.0010 <0.0010		-						-				-	
1,1-Dichloroethane	mg/L					<0.0010										 			
1,2-Dichloroethane	mg/L					<0.0010										<u> </u>			
1,1-Dichloroethylene	mg/L					<0.0010													
cis-1,2-Dichloroethylene	mg/L					<0.0010													
trans-1,2-Dichloroethylene	mg/L					<0.0010													
Monochlorobenzene	mg/L					<0.0010													
1,1,2,2-Tetrachloroethane	mg/L					<0.0005													
Tetrachloroethylene	mg/L					<0.0010													
1,1,1-Trichloroethane	mg/L					<0.0010													
1,1,2-Trichloroethane	mg/L					<0.0010													
Trichloroethylene	mg/L					<0.0010													
General																			
Alkalinity (bicarbonate, as CaCO3)	mg/L		419	410	396	399	489	439											
Alkalinity (carbonate, as CaCO3)	mg/L		<1	<1	<1	<1.0	<1.0	<1.0											
Alkalinity (hydroxide, as CaCO3)	mg/L		<1	<1	<1	<1.0	<1.0	<1.0								 			
Alkalinity (phenolphthalein, as CaCO3)	mg/L	100	<1	<1	<1	<1.0	<1.0	<1.0	1000				4=00					201	
Alkalinity (total, as CaCO3)	mg/L	422	419	410	396	399	489	439	1380	762	768	787	1590	780	794	778	757	801	800
Bicarbonate Alkalinity (as HCO3) Carbonate Alkalinity (as CO3)	mg/L mg/L		511 <1	500 <0.6	483 <0.6	486 <0.600	596 <0.600	536 <0.600						1		 			
Hydroxide Alkalinity (as OH)	mg/L		<1	<0.6	<0.8	<0.800	<0.800	<0.340						1		<u> </u>		1	
Bromide	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10											
Chemical Oxygen Demand	mg/L	100	100	100	155	100	-55	100											
Chloride Chloride	mg/L	15.7	15.7	15.1	14.5	12.8	46.5	11.7	688	574	715	665	674	604	713	667	732	556	632
Conductivity	μS/cm	1090	1210	1100	951	955	1160	1190	5110	4820	4790	4720	5090	4840	4780	4680	4640	4250	4230
Fluoride	mg/L	0.48	0.69	0.49	0.42	0.34	1.45	0.79											
Hardness, Total (dissolved as CaCO3)	mg/L		733	625	522	515	649		1790	1770	1810	1550	1780	1770	1810	1580	1710	1660	1510
Hardness, Total (total as CaCO3)	mg/L	587						565											
рН		7.72	7.66	7.72	7.87	7.76	7.87	7.95	7.4	7.28	7.32	7.55	7.4	7.29	7.49	7.57	7.35	7.50	7.39
Sulphate	mg/L	196	263	223	135	153	122	246	788	783	945	873	781	824	925	861	781	606	688
Total organic carbon	mg/L															<u> </u>			
Total suspended solids	mg/L	<3	2	<2	<2	<2	2.0	<2.0	2640	34	1110	1690	2320	1720	751	1090	1020	228	96
Turbidity	NTU	0.2	0.2	0.30	0.24	0.25	7.35	0.37	>4000	9.1	1600	3500	2400	2900	830	1500	730	188	79
														1					
Halogenated Methanes														1					
Bromodichloromethane	mg/L	1	1	1	1	< 0.0010	1	1	1		1	1	1	1	I	1	1	1	1

		DMW-4	MW09-06D	MW09-06D	MW09-06D	MW09-06D	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S						
		09-Nov-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	16-Nov-10	09-May-11	10-Aug-11
		5110693-02	6050336-03	6081698-03	6111141-05	7040434-06	7090074-03	7111886-06	K9E0816-03	K9K0184-01	K0B0397-02	K0F0788-04	K9E0816-02	K9K0184-02	K0B0397-01	K0F0788-03	K0K0729-01	K1E0403-03	K1H0536-02
		Normal																	
Analyte	Unit																		
Carbon tetrachloride	mg/L					<0.0005													
Chloroform	mg/L					<0.0010													
Dibromochloromethane	mg/L					<0.0010													
Dibromomethane	mg/L					<0.0010													
Dichloromethane	mg/L					<0.0030													
Total Trihalomethanes (calculated)	mg/L					<0.0020													
Trichlorofluoromethane	mg/L					<0.0010													<u> </u>
PR. 4.1																			
Metals				0.005	0.005		0.0050		0.000	0.005	0.00	0.005	0.040	0.005	0.000	0.000	0.005	0.005	0.005
Aluminum (dissolved)	mg/L	-0.05	-0.005	<0.005	<0.005	-0.005	<0.0050	-0.0050	0.006	<0.005	0.23	<0.005	0.012	<0.005	0.009	0.006	<0.005	<0.005	<0.005
Aluminum (total)	mg/L	<0.05	<0.005	-0.0001	0.0002	<0.005	<0.00020	<0.0050	0.0003	0.0003	0.0005	0.0005	0.0006	0.0002	0.0006	0.0004	0.0010	0.0006	0.0004
Antimony (dissolved)	mg/L	<0.001	0.0002	<0.0001	0.0002	0.0001	<0.00020	<0.00020	0.0003	0.0003	0.0005	0.0005	0.0006	0.0002	0.0006	0.0004	0.0010	0.0006	0.0004
Antimony (total) Arsenic (dissolved)	mg/L mg/L	Q.001	0.0002	0.0010	0.0009	0.0001	0.0421	₹0.00020	0.0104	0.0029	0.003	0.0048	0.0033	0.0028	0.0021	0.0044	0.0057	<0.0005	<0.0005
Arsenic (total)	mg/L	<0.005	<0.0005	0.0010	0.0003	0.0010	0.0421	0.00149	0.0104	0.0025	0.000	0.0040	0.0000	0.0020	0.0021	0.0044	0.0007	VO.0000	VO.0000
Barium (dissolved)	mg/L	10.000	40.0000	0.017	0.015	0.0010	0.0223	0.00110	0.101	0.0566	0.0822	0.0620	0.087	0.0566	0.0831	0.0676	0.0740	0.0595	0.059
Barium (total)	mg/L	<0.05	0.019	0.017	0.010	0.016	0.0220	0.0165	0.101	0.0000	0.0022	0.0020	0.007	0.0000	0.0001	0.0070	0.07 10	0.0000	0.000
Beryllium (dissolved)	mg/L			<0.0001	<0.0001		0.00011		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Beryllium (total)	mg/L	<0.001	<0.0001			<0.0001		<0.00010											
Bismuth (dissolved)	mg/L			<0.0001	<0.0001		<0.00010		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth (total)	mg/L	<0.001	<0.0001			<0.0001		<0.00010											
Boron (dissolved)	mg/L			0.267	0.092		0.148		1.12	1.05	1.28	1.08	1.09	0.921	1.24	1.14	1.48	1.31	1.18
Boron (total)	mg/L	0.20	0.444			0.106		0.386											
Cadmium (dissolved)	mg/L			0.00003	0.00001		<0.000010		0.00006	0.00001	0.00002	0.00002	0.00005	0.00003	0.00004	0.00002	0.00002	0.00018	0.00001
Cadmium (total)	mg/L	<0.0001	<0.00001			<0.00001		<0.000010											
Calcium (dissolved)	mg/L			77.8	68.9		70.7		235	197	217	186	220	192	215	191	212	194	177
Calcium (total)	mg/L	81.6	97.0			73.2		76.1											
Chromium (dissolved)	mg/L			<0.0005	<0.0005		<0.00050		0.006	0.0065	0.0342	0.0109	0.004	0.0082	0.0341	0.0117	0.0019	<0.0005	<0.0005
Chromium (total)	mg/L	<0.005	<0.0005			<0.0005		<0.00050											
Cobalt (dissolved)	mg/L			0.00091	0.00088		<0.00010		0.00298	0.00108	0.00151	0.00142	0.00415	0.0022	0.00258	0.00228	0.00140	0.00124	0.00116
Cobalt (total)	mg/L	0.0009	0.00125			0.00077		0.00068											
Copper (dissolved)	mg/L	0.000	0.0074	0.0043	0.0593	0.0004	0.00044	0.00404	0.008	0.0055	0.0143	0.0097	0.0091	0.0056	0.0157	0.0077	0.0048	0.0019	0.0015
Copper (total)	mg/L	0.006	0.0071	0.044	0.040	0.0394	0.575	0.00181	0.00	0.004	0.400	0.207	0.040	0.400	0.405	0.425	0.207	0.040	0.04
Iron (dissolved)	mg/L	<0.10	0.01	0.011	<0.010	0.03	0.575	0.037	0.23	0.204	0.402	0.396	0.219	0.196	0.195	0.425	0.396	<0.010	<0.01
Iron (total) Lead (dissolved)	mg/L	<0.10	0.01	<0.0001	0.0004	0.03	<0.00020	0.037	<0.0001	<0.0001	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0001
Lead (dissolved) Lead (total)	mg/L mg/L	<0.001	0.0003	\U.UUU1	0.0004	0.0002	\J.00020	<0.00020	\U.UUU1	\0.0001	0.0002	\0.0001	\0.0001	\0.0001	\0.0001	\0.0001	\0.0001	0.0001	\0.0001
Lithium (dissolved)	mg/L	10.001	3.0003	0.0285	0.0173	5.0002	0.0245	30.00020	0.0341	0.0359	0.054	0.0477	0.0305	0.0278	0.0574	0.0488	0.0420	0.0377	0.0364
Lithium (total)	mg/L	0.030	0.0547	0.0200	0.0170	0.0192	5.52.15	0.0508	0.0011	2.2307	3.301	0.0177	2.2000	5.5276	3.3371	3.3 100	3.3 120	0.00,,	3.3001
Magnesium (dissolved)	mg/L			105	85.0		115		292	310	308	263	299	314	310	269	286	285	259
Magnesium (total)	mg/L	93.1	119			80.5		91.1	-						-				
Manganese (dissolved)	mg/L			0.0039	0.0015		0.00535		0.242	0.0862	0.115	0.113	0.518	0.212	0.168	0.191	0.108	0.0937	0.0894
Manganese (total)	mg/L	0.004	0.0061			0.0017		0.00377											
Mercury (dissolved)	mg/L			<0.00002	<0.00002		<0.000010		<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00002	<0.00002
Mercury (total)	mg/L	<0.00002	<0.00002			<0.00002		<0.000010											
Molybdenum (dissolved)	mg/L			0.0010	0.0012		0.00031		0.0006	0.0003	0.0003	0.0003	0.0023	0.0009	0.0004	0.0006	0.0005	0.0003	0.0003
Molybdenum (total)	mg/L	0.001	0.0009			0.0014		0.00049											
Nickel (dissolved)	mg/L			0.0014	0.0017		0.00179		0.0163	0.0085	0.0112	0.0132	0.0148	0.0094	0.0115	0.0137	0.0154	0.0070	0.0067
Nickel (total)	mg/L	<0.002	0.0018			0.0017		0.00105											
Selenium (dissolved)	mg/L	1		0.0005	0.0007		<0.00050	1	<0.0003	<0.0003	<0.0003	0.0018	<0.0003	<0.0003	<0.0003	0.0006	0.0018	0.0006	0.0006
Selenium (total)	mg/L	<0.005	<0.0005			0.0006		<0.00050											
Silicon (dissolved, as Si)	mg/L			6.8	7.6		7.2		10	10.1	22.4	8.42	9.21	9.1	17.6	10.8	8.95	12.4	11.5
Silicon (total, as Si)	mg/L	7	8.1			7.3		6.4											
Silver (dissolved)	mg/L			<0.00005	<0.00005		<0.000050		<0.00005	<0.00005	<0.00005	<0.00005	0.00005	<0.00005	<0.00005	0.00006	0.00014	<0.00005	0.00012

	İ	DMM 4	DAMA/ 4	DAMA/ 4	DMM/ 4	DAMA/ 4	DAMA/ 4	DAMA/ 4	MM/00 00D	MM/00 00D	MM/00 00D	MM/00 00D	MM/00.00	MM/00 00	MM/00.00	MM/00 00	MM/00.00	MM/00 CC	MM/00 CO
		DMW-4	MW09-06D	MW09-06D	MW09-06D	MW09-06D	MW09-6S												
		09-Nov-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	16-Nov-10	09-May-11	10-Aug-11
		5110693-02	6050336-03	6081698-03	6111141-05	7040434-06	7090074-03	7111886-06	K9E0816-03	K9K0184-01	K0B0397-02	K0F0788-04	K9E0816-02	K9K0184-02	K0B0397-01	K0F0788-03	K0K0729-01	K1E0403-03	K1H0536-02
	I	Normal																	
Analyte	Unit																		
-																			
Silver (total)	mg/L	<0.0005	<0.00005			<0.00005		<0.000050											
Sodium (dissolved)	mg/L			33.4	17.0		27.9		348	379	384	314	351	378	380	323	344	322	298
Sodium (total)	mg/L	27.2	50.0			21.1		46.4											
Strontium (dissolved)	mg/L			4.11	2.09		1.59		2.53	2.21	2.04	2.04	2.42	2.09	2.07	2.12	2.25	1.95	1.88
Strontium (total)	mg/L	3.55	5.47			2.30		5.49											
Sulphur (dissolved)	mg/L			83	48		43.0												
Sulphur (total)	mg/L	67	98			46		88.3											
Tellurium (dissolved)	mg/L			<0.0002	<0.0002		<0.00050		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tellurium (total)	mg/L	<0.002	<0.0002			<0.0002		<0.00050											
Thallium (dissolved)	mg/L			<0.00002	<0.00002		<0.000020		0.00009	0.00006	0.00006	0.00007	0.00008	0.00006	0.00007	0.00007	0.00007	0.00006	0.00005
Thallium (total)	mg/L	<0.0002	<0.00002			<0.00002		<0.000020											
Thorium (dissolved)	mg/L			<0.0001	<0.0001		<0.00010			<0.0001	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thorium (total)	mg/L	<0.001	<0.0001			<0.0001		<0.00010						1					1
Tin (dissolved)	mg/L			<0.0002	<0.0002		<0.00020	1	0.0002	0.0002	0.0002	0.0002	0.0003	<0.0002	<0.0002	<0.0002	0.0002	<0.0002	<0.0002
Tin (total)	mg/L	<0.002	<0.0002			<0.0002		<0.00020											
Titanium (dissolved)	mg/L			<0.005	<0.005		<0.0050		<0.005	0.006	0.017	0.008	<0.005	0.005	0.005	0.008	0.014	<0.005	<0.005
Titanium (total)	mg/L	<0.05	<0.005			<0.005		<0.0050											
Tungsten (dissolved)	mg/L																		
Tungsten (total)	mg/L							<0.0010											
Uranium (dissolved)	mg/L			0.00158	0.00206		0.000121		0.00761	0.00751	0.00639	0.00741	0.00886	0.00757	0.007	0.00757	0.00790	0.00607	0.00602
Uranium (total)	mg/L	0.0017	0.00134			0.00225		0.000895											
Vanadium (dissolved)	mg/L			<0.001	<0.001		<0.0010		0.0019	0.002	0.016	0.0062	0.0014	0.0026	0.0134	0.0090	<0.0010	<0.001	<0.001
Vanadium (total)	mg/L	<0.01	<0.001			<0.001		<0.0010											
Zinc (dissolved)	mg/L			0.015	0.022		0.0061		0.0063	0.0036	0.0086	0.0047	0.0063	0.0029	0.0103	0.0050	0.0044	0.0040	<0.004
Zinc (total)	mg/L	<0.04	0.018			0.024		0.0185											
Zirconium (dissolved)	mg/L			0.0005	0.0003		0.00140		0.0008	0.0002	0.0004	0.0002	0.001	0.0005	0.0003	0.0003	0.0002	0.0002	0.0001
Zirconium (total)	mg/L	<0.001	0.0008			0.0004		0.00058											
Microbiological																			
E. coli (counts)	CFU/100 mL																		
E. coli (MPN)	MPN/100 mL																		
Fecal coliforms (counts)	CFU/100 mL																		
Fecal coliforms (MPN)	MPN/100 mL																		
Total coliforms (counts)	CFU/100 mL																		
Total coliforms (MPN)	MPN/100 mL																		
Miscellaneous Organic Substances																			
Chloroethane	mg/L					<0.0020													
1,2-Dibromoethane	mg/L					<0.0002		1						1					1
1,2-Dichloropropane	mg/L					<0.0010		1						1					1
1,3-Dichloropropene	mg/L					<0.0010		1						1					1
Methyl tert-butyl ether (MTBE)	mg/L					<0.0010													
VHw6-10	mg/L																		
Vinyl chloride	mg/L					<0.0010		1						1					1
VPHw	mg/L							1						1					1
								1						1					1
Monocyclic Aromatic Hydrocarbons (MAHs)																			
Benzene	mg/L					<0.0005													
Ethylbenzene	mg/L					<0.0010													
Styrene	mg/L					<0.0010		1						1					1
Toluene	mg/L					<0.0010		1						1					1
Xylenes	mg/L					<0.0020		1						1					1
Nutrients]]					

		DMW-4	MW09-06D	MW09-06D	MW09-06D	MW09-06D	MW09-6S												
		09-Nov-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	16-Nov-10	09-May-11	10-Aug-11
		5110693-02	6050336-03	6081698-03	6111141-05	7040434-06	7090074-03	7111886-06	K9E0816-03	K9K0184-01	K0B0397-02	K0F0788-04	K9E0816-02	K9K0184-02	K0B0397-01	K0F0788-03	K0K0729-01	K1E0403-03	K1H0536-02
		Normal																	
Analyte	Unit																		
Ammonia (total, as N)	mg/L	0.283	0.814	0.336	0.036	0.024	0.216	1.06	0.29	0.08	0.3	0.09	0.54	0.26	0.44	0.26	0.13	0.20	0.18
Nitrate (as N)	mg/L	0.725	0.488	0.479	0.511	0.494	0.012	0.138	62.6	56.4	67.7	61.4	62	60	66.9	62.3	55.0	53.2	66.5
Nitrate + Nitrite (as N)	mg/L																		
Nitrate + Nitrite (as N) (calculated)	mg/L	0.725	0.488	0.479	0.511	0.494	<0.014	0.138	62.6	56.4	67.7	61.4	62	60	66.9	62.3	55.0	53.2	66.5
Nitrite (as N)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.01	<0.01	<0.01	0.03	<0.01	<0.01	0.02	0.03	<0.01	<0.01	<0.01
Total kjeldahl nitrogen	mg/L																		
Orthophosphate (dissolved, as P)	mg/L																		
Phosphorus (dissolved, by ICPMS/ICPOES)	mg/L			<0.02	<0.02		<0.050		0.039	<0.020	0.03	<0.020	0.043	0.02	0.031	0.024	<0.020	<0.020	<0.02
Phosphorus (total, by ICPMS/ICPOES)	mg/L	<0.2	<0.02			<0.05		<0.050											
Phosphorus (total, APHA 4500-P)	mg/L																		
Potassium (dissolved)	mg/L			7.23	4.01		4.69		131	149	153	147	109	133	153	146	157	167	160
Potassium (total)	mg/L	6.2	9.74			4.15		8.59											

		MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
		18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	25-Aug-15	09-Nov-15	03-May-16	22-Aug-16	22-Aug-16	22-Aug-16	14-Nov-16
		K1J0685-01	2051369-03	2081484-01	2111131-01	3051354-01	3081378-01	3110772-01	4060249-06	4081094-06	4110161-06	5051773-06	5081710-04	5110693-03	6050336-01	6081698-06	6081698-07	6081698-01	6111141-03
		K130083-01	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Duplicate	Duplicate	Normal	Normal
Analyte	Unit																		
Field Results																			
Conductivity	μS/cm	4000	4100	4600	480	3300	4900	3700	4240	4030	4610	4710	4550	4530	4700	4520	4520	4520	2270
Depth to Water	m	32.625	32.590	32.605	32.624	32.629	32.640	32.651	32.60	32.61	32.60	32.67	32.78	32.74	32.76	32.59	32.59	32.59	32.57
Dissolved oxygen	mg/L	32.023	02.000	02.000	02.024	32.023	02.040	02.001	0.28	1.56	1.07	1.36	1.74	0.95	0.46	0.43	0.43	0.43	1.98
Dissolved oxygen (percent)	%								2.8	14.08	10.0	13.6	17.2	0.55	0.40	4.1	4.1	4.1	18.4
Field measured depth to bottom	m								2.0	14.00	10.0	10.0	17.2			7.1	7.1	7.1	10.4
Flow rate - container	L/s																		
Ground Elevation	m	920	920	920	920	920	920	920	920	920	920	920	920	920	920	920	920	920	920
Oxidation reduction potential	mV	167	135	210	164	231	228	-24	96	116	44	-7	-55	45	151	182	182	182	186
nH	iii v	6.73	6.86	6.97	6.9	6.87	6.63	6.64	4.8	7.3	6.7	6.5	6.7	6.0	6.7	6.7	6.7	6.7	7.0
Temperature	°C	11.1	11.2	12.5	12.2	12.4	12.1	12.2	13.0	13.0	12.3	14.1	12.8	12.5	12.5	13.5	13.5	13.5	12.2
Leb Besuite																			
Lab Results Chlorinated Hydrocarbons																			
1,2-Dichlorobenzene	ma/l	-		 		-									 		 	-	
·	mg/L	-		 		-									 		 	-	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/L	-		 		-									 		 	-	
	mg/L																		
1,1-Dichloroethane 1,2-Dichloroethane	mg/L mg/L																		
1,1-Dichloroethylene	mg/L																		
cis-1,2-Dichloroethylene	mg/L																		
trans-1,2-Dichloroethylene Monochlorobenzene	mg/L																		
	mg/L																		
1,1,2,2-Tetrachloroethane	mg/L																		
Tetrachloroethylene	mg/L																		
1,1,1-Trichloroethane	mg/L																		
1,1,2-Trichloroethane	mg/L																		
Trichloroethylene	mg/L																		
General																			
Alkalinity (bicarbonate, as CaCO3)	mg/L														857	868	867	878	907
Alkalinity (carbonate, as CaCO3)	mg/L														<1	<1	<1	<1	<1
Alkalinity (hydroxide, as CaCO3)	mg/L														<1	<1	<1	<1	<1
Alkalinity (phenolphthalein, as CaCO3)	mg/L														<1	<1	<1	<1	<1
Alkalinity (total, as CaCO3)	mg/L	784	805	813	790	902	771	798	818	802	832	855	865	897	857	868	867	878	907
Bicarbonate Alkalinity (as HCO3)	mg/L														1050	1060	1060	1070	1110
Carbonate Alkalinity (as CO3)	mg/L														<1	<0.6	<0.6	<0.6	<0.6
Hydroxide Alkalinity (as OH)	mg/L														<1	<0.3	<0.3	<0.3	<0.3
Bromide	mg/L											0.47	1.09	1.48	0.13	3.02	3.02	2.81	1.14
Chemical Oxygen Demand	mg/L																		
Chloride	mg/L	621	599	587	709	669	662	662	650	491	529	594	549	627	605	542	526	529	497
Conductivity	μS/cm	4320	4380	4670	5040	5020	5150	5220	4840	4750	4850	4640	4520	4570	4650	4580	4590	4480	4430
Fluoride	mg/L		0.11	0.31	0.14	0.12	0.14	<0.10	<0.10	0.11	0.25	0.14	0.10	0.23	0.17	0.15	0.17	0.16	0.33
Hardness, Total (dissolved as CaCO3)	mg/L	1460	1720	1720	1810	1980	2140	2010	1990	1920	1880	1870	1890	1850	1850	1930	1880	1810	1690
Hardness, Total (total as CaCO3)	mg/L																		
рН		7.35	7.45	7.35	6.96	7.40	7.46	7.36	7.65	7.39	7.49	7.37	7.34	7.30	7.55	7.40	7.43	7.42	7.68
Sulphate	mg/L	701	719	787	893	814	910	884	858	784	879	950	878	905	903	874	848	851	867
Total organic carbon	mg/L																		
Total suspended solids	mg/L	127	326	321	42	1080	176	140	19	66	292	22	7	226	<2	2	5	<2	334
Turbidity	NTU	155	437	267	32.2	448	163	84.6	3.7	47.2	196	6.9	1.6	205	1.6	1.82	1.99	1.89	220
Halogenated Methanes																+		+	
Bromodichloromethane	mg/L																	1	1
Bromoform	mg/L				•				-										

		MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
		18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	25-Aug-15	09-Nov-15	03-May-16	22-Aug-16	22-Aug-16	22-Aug-16	14-Nov-16
		K1J0685-01	2051369-03 Normal	2081484-01 Normal	2111131-01 Normal	3051354-01 Normal	3081378-01 Normal	3110772-01 Normal	4060249-06 Normal	4081094-06 Normal	4110161-06 Normal	5051773-06 Normal	5081710-04 Normal	5110693-03 Normal	6050336-01 Normal	6081698-06 Duplicate	6081698-07 Duplicate	6081698-01 Normal	6111141-03 Normal
Analyte	Unit																		
Carbon tetrachloride	mg/L																		
Chloroform	mg/L																		
Dibromochloromethane	mg/L																		
Dibromomethane	mg/L																		
Dichloromethane	mg/L																		
Total Trihalomethanes (calculated)	mg/L																		
Trichlorofluoromethane	mg/L																		
Madala																			
Metals Aluminum (disselved)	ma/l	<0.005	0.005	<0.005	-0.00E	0.006	<0.005	<0.005	<0.005	40 00E	0.005	<0.005	0.024	0.859	<0.005	<0.005	<0.005	<0.005	0.007
Aluminum (dissolved) Aluminum (total)	mg/L	<0.005	0.005	<0.005	<0.005	0.006	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	0.024	0.659	<0.005	<0.005	<0.005	<0.005	0.007
Antimony (dissolved)	mg/L mg/L	<0.0020	0.0002	0.0009	0.0009	0.0009	0.0011	0.0010	0.0003	0.0005	0.0003	0.0005	0.0005	0.0004	0.0006	<0.0001	<0.0001	<0.0001	0.0002
Antimony (total)	mg/L	V0.0020	0.0002	0.0003	0.0003	0.0003	0.0011	0.0010	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0000	VO.0001	V0.0001	VO.0001	0.0002
Arsenic (dissolved)	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0010	0.0034	<0.0005	<0.0005	<0.0005	<0.0005
Arsenic (total)	mg/L																		
Barium (dissolved)	mg/L	0.051	0.062	0.066	0.067	0.067	0.065	0.061	0.059	0.054	0.058	0.062	0.062	0.071	0.055	0.060	0.059	0.058	0.057
Barium (total)	mg/L																		
Beryllium (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	<0.0001	<0.0001	0.0030
Beryllium (total)	mg/L																		
Bismuth (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth (total)	mg/L																		
Boron (dissolved)	mg/L	1.26	1.23	1.29	1.43	1.47	1.53	1.64	1.67	1.60	1.61	2.04	1.90	1.77	2.12	2.16	2.00	2.08	1.76
Boron (total)	mg/L																		
Cadmium (dissolved)	mg/L	0.00002	<0.00001	<0.00001	0.00002	0.00002	0.00003	0.00001	<0.00001	<0.00001	0.00001	0.00002	<0.00001	0.00003	<0.00001	0.00002	0.00001	0.00002	0.00003
Cadmium (total)	mg/L	477	400	400	400	040	005	004	040	047	000	400	407	000	000	400	404	470	400
Calcium (dissolved) Calcium (total)	mg/L	177	180	182	193	218	235	231	218	217	209	199	197	208	202	188	181	179	168
Chromium (dissolved)	mg/L mg/L	<0.0005	<0.0005	0.0016	0.0006	0.0009	<0.0005	0.0066	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0017	0.0057	0.0007	0.0007	0.0008	<0.0005
Chromium (total)	mg/L	VO.0000	V0.0000	0.0010	0.0000	0.0003	VO.0000	0.0000	VO.0000	V0.0000	VO.0003	VO.0000	VO.0000	0.0017	0.0007	0.0007	0.0007	0.0000	VO.0000
Cobalt (dissolved)	mg/L	0.00093	0.00136	0.00114	0.00108	0.00148	0.00128	0.00127	0.00100	0.00118	0.00133	0.00141	0.00149	0.00204	0.00198	0.00164	0.00161	0.00164	0.00183
Cobalt (total)	mg/L																		
Copper (dissolved)	mg/L	0.0170	0.0009	0.0018	0.0016	0.0014	0.0021	0.0013	0.0169	0.0017	0.0018	0.0028	0.0420	0.200	0.0065	0.0034	0.0033	0.0051	0.217
Copper (total)	mg/L																		
Iron (dissolved)	mg/L	<0.01	<0.01	0.02	0.01	0.028	<0.010	0.105	<0.010	0.012	0.011	0.011	0.062	1.21	0.609	0.014	0.015	0.021	0.020
Iron (total)	mg/L																		
Lead (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	<0.0001	0.0014	0.0039	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Lead (total)	mg/L																		
Lithium (dissolved)	mg/L	0.0335	0.0361	0.0382	0.0395	0.0450	0.0479	0.0486	0.0520	0.0497	0.0501	0.0483	0.0513	0.0462	0.0519	0.0409	0.0371	0.0396	0.0438
Lithium (total)	mg/L	246	308	308	321	349	378	347	351	335	329	332	339	322	327	353	347	331	309
Magnesium (dissolved) Magnesium (total)	mg/L mg/L	240	300	300	321	349	310	341	301	333	323	332	338	322	321	303	341	331	309
Manganese (dissolved)	mg/L	0.0932	0.0720	0.0683	0.0882	0.112	0.122	0.119	0.0908	0.121	0.132	0.0747	0.0870	0.157	0.0791	0.0824	0.0819	0.0793	0.0731
Manganese (total)	mg/L	0.0702	0.0720	0.0000	0.0002	0.112	0.122	0.117	0.0700	0.121	0.102	0.0717	0.0070	0.107	0.0771	0.0021	0.0017	0.0770	0.0701
Mercury (dissolved)	mg/L	0.00005	<0.00002	0.00008	0.00004	0.00002	0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002		<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Mercury (total)	mg/L																		
Molybdenum (dissolved)	mg/L	0.0036	0.0003	0.0018	0.0005	0.0006	0.0003	0.0007	0.0003	0.0003	0.0003	0.0004	0.0004	0.0037	0.0003	0.0003	0.0003	0.0003	0.0012
Molybdenum (total)	mg/L																		
Nickel (dissolved)	mg/L	0.0067	0.0073	0.0080	0.0080	0.0155	0.0097	0.0176	0.0078	0.0097	0.0103	0.0093	0.0109	0.0119	0.0139	0.0122	0.0119	0.0114	0.0116
Nickel (total)	mg/L																		
Selenium (dissolved)	mg/L	<0.0005	0.0007	<0.0005	<0.0005	<0.0005	0.0008	<0.0005	<0.0005	0.0006	0.0006	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Selenium (total)	mg/L																		
Silicon (dissolved, as Si)	mg/L	10.2	12.2	11.4	11.9	11.9	12.5	11.1	12.0	12.3	13.7	12.7	12.7	12.9	13.3	12.1	12.0	11.2	12.1
Silicon (total, as Si)	mg/L	0.00000	0.0000	0.0000	0.00011	0.00010	0.00007	0.00000	0.0000	0.0000	0.0000	0.0000=	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Silver (dissolved)	mg/L	0.00009	<0.00005	<0.00005	0.00011	0.00010	<0.00005	0.00008	<0.00005	<0.00005	<0.00005	0.00007	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005

		MW09-6S																	
		18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	25-Aug-15	09-Nov-15	03-May-16	22-Aug-16	22-Aug-16	22-Aug-16	14-Nov-16
		K1J0685-01	2051369-03	2081484-01	2111131-01	3051354-01	3081378-01	3110772-01	4060249-06	4081094-06	4110161-06	5051773-06	5081710-04	5110693-03	6050336-01	6081698-06	6081698-07	6081698-01	6111141-03
			Normal	Duplicate	Duplicate	Normal	Normal												
Analyte	Unit																		
Silver (total)	mg/L																		
Sodium (dissolved)	mg/L	290	346	362	375	409	444	407	372	385	428	385	394	375	359	386	379	366	347
Sodium (total)	mg/L																		
Strontium (dissolved)	mg/L	1.74	1.91	2.00	2.11	2.18	2.28	2.10	2.15	2.06	2.04	1.92	2.05	1.90	1.95	1.95	1.93	1.84	1.76
Strontium (total)	mg/L																		
Sulphur (dissolved)	mg/L		266	298	339	359	405	366	337	340	398	343	362	342	281	348	350	336	312
Sulphur (total)	mg/L																		
Tellurium (dissolved)	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0003	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tellurium (total)	mg/L																		
Thallium (dissolved)	mg/L	0.00006	0.00005	0.00005	0.00022	0.00005	0.00009	0.00007	0.00005	0.00007	0.00007	0.00007	0.00006	0.00007	0.00006	0.00007	0.00006	0.00006	0.00006
Thallium (total)	mg/L																		
Thorium (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thorium (total)	mg/L																		
Tin (dissolved)	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0005	0.0013	<0.0002	0.0003	0.0003	0.0003	0.0003
Tin (total)	mg/L	0.00-	0.00-	0.005	0.007	0.007	0.00-	0.00-	0.00-	0.00-	0.005	0.225	0.007	0.000	0.611	0.005	0.00-	0.00-	1 0 00-
Titanium (dissolved)	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.038	0.014	<0.005	<0.005	<0.005	<0.005
Titanium (total)	mg/L																		
Tungsten (dissolved)	mg/L																		
Tungsten (total)	mg/L	0.00007	0.00500	0.0000	0.00000	0.00770	0.0000	0.00705	0.00704	0.00777	0.00000	0.00700	0.00770	0.00004	0.00000	0.00000	0.00705	0.00750	0.00747
Uranium (dissolved)	mg/L	0.00607	0.00580	0.00698	0.00686	0.00779	0.00823	0.00765	0.00721	0.00777	0.00802	0.00729	0.00779	0.00804	0.00863	0.00802	0.00765	0.00753	0.00717
Uranium (total)	mg/L	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.000	0.004	0.004	0.004	0.004
Vanadium (dissolved)	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.002	<0.001	<0.001	<0.001	<0.001
Vanadium (total)	mg/L	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	0.009	0.005	0.005	0.006	0.027	0.067	0.000	0.020	0.000	0.025	0.100
Zinc (dissolved) Zinc (total)	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.009	0.005	0.005	0.006	0.027	0.067	0.009	0.030	0.029	0.035	0.199
Ziric (total) Zirconium (dissolved)	mg/L mg/L	0.0001	0.0001	0.0003	0.0001	0.0002	0.0002	0.0001	0.0001	0.0004	0.0004	0.0002	0.0001	0.0008	0.0002	0.0002	0.0002	0.0001	0.0001
Zirconium (total)	mg/L	0.0001	0.0001	0.0003	0.0001	0.0002	0.0002	0.0001	0.0001	0.0004	0.0004	0.0002	0.0001	0.0008	0.0002	0.0002	0.0002	0.0001	0.0001
Ziromum (total)	mg/L																		+
Microbiological																			
E. coli (counts)	CFU/100 mL																		
E. coli (MPN)	MPN/100 mL																		
Fecal coliforms (counts)	CFU/100 mL																		
Fecal coliforms (MPN)	MPN/100 mL																		
Total coliforms (counts)	CFU/100 mL																		
Total coliforms (MPN)	MPN/100 mL																		
Miscellaneous Organic Substances																			
Chloroethane	mg/L																		
1,2-Dibromoethane	mg/L	_																	
1,2-Dichloropropane	mg/L									·									
1,3-Dichloropropene	mg/L																		
Methyl tert-butyl ether (MTBE)	mg/L																		
VHw6-10	mg/L																		
Vinyl chloride	mg/L																		
VPHw	mg/L																		
Monocyclic Aromatic Hydrocarbons (MAHs)																			
Benzene	mg/L																		
Ethylbenzene	mg/L																		
Styrene	mg/L																		
Toluene	mg/L							1											
Xylenes	mg/L																		
Nutrients																			

							1										1		T
		MW09-6S																	
		18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	25-Aug-15	09-Nov-15	03-May-16	22-Aug-16	22-Aug-16	22-Aug-16	14-Nov-16
		K1J0685-01	2051369-03	2081484-01	2111131-01	3051354-01	3081378-01	3110772-01	4060249-06	4081094-06	4110161-06	5051773-06	5081710-04	5110693-03	6050336-01	6081698-06	6081698-07	6081698-01	6111141-03
	T		Normal	Duplicate	Duplicate	Normal	Normal												
Analyte	Unit																		
Ammonia (total, as N)	mg/L	0.16	0.133	0.274	0.406	0.432	0.462	0.518	0.390	0.588	0.408	0.644	0.614	0.899	1.40	1.12	1.16	1.21	0.940
Nitrate (as N)	mg/L	56.3		54.6	59.1	62.3	54.5	54.7	52.1	41.8	48.9	38.0	34.1	33.3	44.1	37.9	38.1	37.7	40.1
Nitrate + Nitrite (as N)	mg/L																		
Nitrate + Nitrite (as N) (calculated)	mg/L	56.3		54.6	59.1	62.3	54.5	54.7	52.1	41.8	48.9	38.0	34.1	33.3	44.1	37.9	38.1	37.7	40.1
Nitrite (as N)	mg/L	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.016
Total kjeldahl nitrogen	mg/L																		
Orthophosphate (dissolved, as P)	mg/L											<0.01	<0.01						
Phosphorus (dissolved, by ICPMS/ICPOES)	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02
Phosphorus (total, by ICPMS/ICPOES)	mg/L																		
Phosphorus (total, APHA 4500-P)	mg/L																		
Potassium (dissolved)	mg/L	148	170	161	178	202	228	210	222	232	246	215	217	199	209	224	223	213	211
Potassium (total)	mg/L																		

		MW09-6S	MW09-6S	MW09-6S	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08
		05-Apr-17	29-Aug-17	20-Nov-17	16-Nov-10	09-May-11	09-May-11	10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	22-Aug-12	20-Nov-12	21-May-13	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14
		7040434-03	7090074-01	7111886-01	K0K0729-02	K1E0403-01	K1E0403-04	K1H0536-01	K1J0685-02	2051369-04	2081484-02	2081484-05	2111131-02	3051354-02	3051354-06	3081378-05	3110772-05	4060249-05	4081094-05
		Normal	Normal	Normal						Normal	Normal	Duplicate	Normal	Normal	Duplicate	Normal	Normal	Normal	Normal
Analyte	Unit																		
Field Results																			
Conductivity	μS/cm	4150	4120	3630	2100	2800		2700	3100	3200	3500	3500	340	2200	2200	3300	2700	2740	2770
Depth to Water	m		32.56	32.68	14.14	13.903		13.945	13.780	13.590	13.85	13.85	14.109	14.252	14.252	14.381	16.281	15.19	13.84
Dissolved oxygen	mg/L		1.17	0.60														7.43	7.85
Dissolved oxygen (percent)	%		11.6	5.7														67.1	71.7
Field measured depth to bottom	m		36.11																
Flow rate - container	L/s		0.033																
Ground Elevation	m	920	920	920	921	921	921	921	921	921	921	921	921	921	921	921	921	921	921
Oxidation reduction potential	mV	217 7.3	158 7.0	7.0	-138 8.44	2800 7.85		83 7.51	143 7.33	7.43	52 7.54	52 7.54	7.6	254 7.40	254 7.40	7.37	47 7.23	87 3.1	132 7.3
Temperature	°C	11.8	12.6	12.0	5.9	8.7		8.1	6.9	7.43	8.4	8.4	7.1	8.9	8.9	8.6	7.5	8.1	9.5
Lab Results																			
Chlorinated Hydrocarbons																			
1,2-Dichlorobenzene	mg/L	<0.0005																	
1,3-Dichlorobenzene	mg/L	<0.0010																	
1,4-Dichlorobenzene	mg/L	<0.0010																	
1,1-Dichloroethane	mg/L	<0.0010																	
1,2-Dichloroethane	mg/L	<0.0010																	
1,1-Dichloroethylene	mg/L	<0.0010																	
cis-1,2-Dichloroethylene	mg/L	<0.0010																	
trans-1,2-Dichloroethylene	mg/L	<0.0010																	
Monochlorobenzene	mg/L	<0.0010																	
1,1,2,2-Tetrachloroethane	mg/L	<0.0005																	
Tetrachloroethylene	mg/L	<0.0010																	
1,1,1-Trichloroethane	mg/L	<0.0010																	
1,1,2-Trichloroethane	mg/L	<0.0010																	
Trichloroethylene	mg/L	<0.0010																	
Comoral																			
General Alkalinity (higashonata as CaCO3)	ma/l	902	878	929															
Alkalinity (bicarbonate, as CaCO3) Alkalinity (carbonate, as CaCO3)	mg/L mg/L	<1.0	<1.0	<1.0															
Alkalinity (carbonate, as CaCO3) Alkalinity (hydroxide, as CaCO3)	mg/L	<1.0	<1.0	<1.0															
Alkalinity (henolphthalein, as CaCO3)	mg/L	<1.0	<1.0	<1.0															
Alkalinity (total, as CaCO3)	mg/L	902	878	929	425	459	455	462	446	515	768	676	731	619	637	516	598	514	476
Bicarbonate Alkalinity (as HCO3)	mg/L	1100	1070	1130				.02		0.0		0.0		0.0	00.	0.0	000	0	
Carbonate Alkalinity (as CO3)	mg/L	<0.600	<0.600	<0.600															
Hydroxide Alkalinity (as OH)	mg/L	<0.340	<0.340	<0.340															
Bromide	mg/L	0.88	2.16	2.84															
Chemical Oxygen Demand	mg/L																		
Chloride	mg/L	470	480	417	523	663	647	844	873	834	888	888	988	762	679	820	815	672	672
Conductivity	μS/cm	4350	4170	4190	2250	2850	2870	3150	3060	3340	3410	3430	3500	3070	3110	3300	3380	2940	3180
Fluoride	mg/L	0.14	<0.10	0.51						0.12	0.13	0.19	0.12	0.23	0.24	0.24	0.25	0.27	0.13
Hardness, Total (dissolved as CaCO3)	mg/L	1650	1680	1520	582	878	863	850	790	826	798	803	847	839	839	921	958	800	833
Hardness, Total (total as CaCO3)	mg/L																		
рН		7.42	7.60	7.51	7.97	7.84	7.95	7.76	7.78	7.85	7.74	7.75	6.95	7.78	7.78	7.86	7.86	7.94	7.74
Sulphate	mg/L	799	757	663	72.9	44.3	43.5	44.4	55.2	36.5	37.4	37.2	57.6	53.2	53.3	45.1	56.2	38.1	44.7
Total organic carbon	mg/L																		
Total suspended solids	mg/L	5	66.0	437	117	2960	2800	7470	116	2870	2600	2200	1640	1020	1220	814	1230	300	284
Turbidity	NTU	1.03	46.9	387	87	641	535	>4000	71.1	>4000	2350	2340	1910	620	800	664	1220	292	186
Halogenated Methanes			1																
Bromodichloromethane	mg/L	<0.0010		1			1				1	1							
Bromoform	mg/L	<0.0010									1								

		MW09-6S	MW09-6S	MW09-6S	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08
		05-Apr-17	29-Aug-17	20-Nov-17	16-Nov-10	09-May-11	09-May-11	10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	22-Aug-12	20-Nov-12	21-May-13	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14
		7040434-03 Normal	7090074-01 Normal	7111886-01 Normal	K0K0729-02	K1E0403-01	K1E0403-04	K1H0536-01	K1J0685-02	2051369-04 Normal	2081484-02 Normal	2081484-05 Duplicate	2111131-02 Normal	3051354-02 Normal	3051354-06 Duplicate	3081378-05 Normal	3110772-05 Normal	4060249-05 Normal	4081094-05 Normal
Analyte	Unit																		
Carbon tetrachloride	mg/L	<0.0005																	
Chloroform	mg/L	<0.0010																	
Dibromochloromethane	mg/L	<0.0010																	
Dibromomethane	mg/L	<0.0010																	
Dichloromethane	mg/L	<0.0030																	
Total Trihalomethanes (calculated)	mg/L	<0.0020																	
Trichlorofluoromethane	mg/L	<0.0010																	
Metals																			
Aluminum (dissolved)	mg/L	0.006	0.0067	<0.0050	0.007	<0.005	0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.006
Aluminum (total)	mg/L	0.000	0.0007	VO.0000	0.007	VO.000	0.000	VO.000	VO.000	0.000	VO.000	VO.000	VO.000	VO.000	VO.000	VO.000	VO.000	VO.000	0.000
Antimony (dissolved)	mg/L	0.0001	<0.00020	<0.00020	0.0008	0.0015	0.0006	0.0010	<0.0020	0.0003	0.0016	0.0015	0.0009	0.0007	0.0004	0.0004	0.0007	0.0003	0.0003
Antimony (total)	mg/L																		
Arsenic (dissolved)	mg/L	0.0007	0.00055	<0.00050	0.0107	0.0149	0.0147	0.0061	0.0031	0.0028	0.0039	0.0040	0.0024	0.0024	0.0024	0.0029	0.0018	0.0024	0.0042
Arsenic (total)	mg/L																		
Barium (dissolved)	mg/L	0.057	0.0510	0.0500	0.125	0.257	0.245	0.246	0.195	0.255	0.271	0.272	0.250	0.227	0.223	0.239	0.257	0.192	0.235
Barium (total)	mg/L																		
Beryllium (dissolved)	mg/L	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Beryllium (total)	mg/L																		
Bismuth (dissolved)	mg/L	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth (total)	mg/L						2.004												
Boron (dissolved)	mg/L	2.03	1.86	1.57	0.093	0.034	0.034	0.028	0.027	0.031	0.017	0.020	0.024	0.025	0.028	0.051	0.041	0.031	0.035
Boron (total)	mg/L	-0.00004	-0.000010	-0.000010	0.00000	0.00000	-0.00004	-0.00004	0.00000	-0.00004	-0.00004	-0.00001	0.00000	0.00004	0.00000	0.00004	0.00000	0.00000	0.00000
Cadmium (dissolved) Cadmium (total)	mg/L mg/L	<0.00001	<0.000010	<0.000010	0.00009	0.00002	<0.00001	<0.00001	0.00008	<0.00001	<0.00001	<0.00001	0.00003	0.00004	0.00002	0.00001	0.00002	0.00002	0.00003
Calcium (dissolved)	mg/L	163	180	167	73.8	87.6	90.6	103	100	102	107	105	110	107	107	120	128	103	116
Calcium (total)	mg/L	100	100	107	70.0	07.0	00.0	100	100	102	107	100	110	101	101	120	120	100	110
Chromium (dissolved)	mg/L	0.0006	0.00063	<0.00050	0.0025	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Chromium (total)	mg/L																		
Cobalt (dissolved)	mg/L	0.00164	0.00161	0.00164	0.00537	0.0198	0.0186	0.00674	0.00078	0.00219	0.00342	0.00355	0.00264	0.00126	0.00122	0.00127	0.00151	0.00111	0.00024
Cobalt (total)	mg/L																		
Copper (dissolved)	mg/L	0.0028	0.00681	0.00211	0.0031	<0.0002	<0.0002	<0.0002	0.0054	<0.0002	0.0010	0.0010	0.0010	0.0014	0.0013	<0.0002	0.0012	0.0011	0.0040
Copper (total)	mg/L																		
Iron (dissolved)	mg/L	<0.010	0.013	<0.010	0.347	3.01	2.83	1.87	0.02	0.12	0.15	0.13	0.03	0.011	0.014	0.038	0.012	0.111	0.015
Iron (total)	mg/L																		
Lead (dissolved)	mg/L	<0.0001	<0.00020	<0.00020	0.0002	<0.0001	<0.0001	<0.0001	0.0002	<0.0001	<0.0001	<0.0001	0.0007	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Lead (total)	mg/L	0.0484	0.0452	0.0420	0.0200	0.0242	0.0249	0.0224	0.0193	0.0193	0.0190	0.0187	0.0100	0.0202	0.0204	0.0220	0.0222	0.0223	0.0210
Lithium (dissolved) Lithium (total)	mg/L mg/L	0.0404	0.0432	0.0420	0.0200	0.0243	0.0248	0.0224	0.0193	0.0182	0.0190	0.0167	0.0190	0.0203	0.0204	0.0220	0.0233	0.0223	0.0219
Magnesium (dissolved)	mg/L	302	298	267	96.5	160	155	144	130	139	129	131	139	139	139	151	155	132	132
Magnesium (total)	mg/L	102			23.0				. 50	.00					. 50				1 2 1
Manganese (dissolved)	mg/L	0.0597	0.0887	0.0697	0.219	0.492	0.473	0.349	0.0350	0.0785	0.0546	0.0577	0.172	0.0896	0.0897	0.0336	0.0871	0.0380	0.0049
Manganese (total)	mg/L																		
Mercury (dissolved)	mg/L	<0.00002	<0.000010	0.000041	<0.00005	<0.00002	0.00002	0.00002	0.00008	0.00003	0.00006	0.00005	0.00003	0.00002	<0.00002	<0.00002	<0.00002	<0.00002	0.00002
Mercury (total)	mg/L																		
Molybdenum (dissolved)	mg/L	0.0003	0.00031	0.00032	0.0149	0.0046	0.0042	0.0019	0.0046	0.0009	0.0024	0.0023	0.0011	0.0007	0.0007	0.0004	0.0007	0.0006	0.0004
Molybdenum (total)	mg/L		1																ļ
Nickel (dissolved)	mg/L	0.0110	0.0113	0.0116	0.0175	0.0277	0.0259	0.0093	0.0099	0.0060	0.0087	0.0088	0.0077	0.0053	0.0051	0.0048	0.0060	0.0045	0.0032
Nickel (total)	mg/L	2 222	0.000=0	0.000=0	0.000=	0.000=	0.000=	0.000=	0.000=	0.000=	0.000=	2 222	0.000=	0.000=	0.000=	0.000=	0.005	0.000=	0.0000
Selenium (dissolved)	mg/L	<0.0005	<0.00050	<0.00050	0.0005	0.0007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0006
Selenium (total)	mg/L	12.6	11.6	11.2	4.21	10.1	9.77	9.0	8.1	10.3	9.6	9.4	9.7	9.4	9.4	9.6	9.1	9.2	9.9
Silicon (dissolved, as Si) Silicon (total, as Si)	mg/L mg/L	12.0	0.11	11.2	4.21	10.1	9.11	9.0	0.1	10.3	9.0	9.4	9.1	9.4	9.4	9.0	3.1	3.2	9.9
Silver (dissolved)	mg/L	<0.00005	<0.000050	<0.000050	<0.00005	0.00007	<0.00005	0.00016	0.00006	<0.00005	<0.00005	<0.00005	0.00008	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Oliver (dissolved)	IIIg/L	<0.00003	<0.000000	\0.000000	\0.00003	0.00007	\0.00003	0.00010	0.00000	\0.00003	\0.00003	<0.00003	0.00000	<0.00003	<0.00003	<0.00003	<u> </u>	<0.00003	<u> </u>

		MM/00.00	MM400 00	MM400 00	MM//40 00	MM440.00	MM/40.00	MM440.00	MM/40 00	MM440.00	NAV40.00	MM440.00	MM/40 00	NAV40.00	NNA/40 00	MM440.00	MM440.00	MM/40 00	MM/40.00
		MW09-6S	MW09-6S	MW09-6S	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08	MW10-08
		05-Apr-17	29-Aug-17	20-Nov-17	16-Nov-10	09-May-11	09-May-11	10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	22-Aug-12	20-Nov-12	21-May-13	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14
		7040434-03 Normal	7090074-01 Normal	7111886-01 Normal	K0K0729-02	K1E0403-01	K1E0403-04	K1H0536-01	K1J0685-02	2051369-04 Normal	2081484-02 Normal	2081484-05 Duplicate	2111131-02 Normal	3051354-02 Normal	3051354-06 Duplicate	3081378-05 Normal	3110772-05 Normal	4060249-05 Normal	4081094-05 Normal
Analyte	Unit	Nomai	Nomiai	Nomai						Nomai	Nomai	Duplicate	Noma	Nomai	Duplicate	Nomiai	Nomai	Nomai	Nomai
-																			
Silver (total)	mg/L																		
Sodium (dissolved)	mg/L	343	334	285	178	312	302	341	305	436	450	444	390	359	358	386	392	356	399
Sodium (total)	mg/L																		
Strontium (dissolved)	mg/L	1.74	1.62	1.73	1.03	1.66	1.62	1.60	1.49	1.53	1.60	1.60	1.64	1.52	1.51	1.61	1.64	1.43	1.52
Strontium (total)	mg/L																		
Sulphur (dissolved)	mg/L	284	268	273						19	17	20	23	21	22	20	18	18	17
Sulphur (total)	mg/L																		
Tellurium (dissolved)	mg/L	<0.0002	<0.00050	<0.00050	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tellurium (total)	mg/L																		
Thallium (dissolved)	mg/L	0.00006	<0.000020	0.000058	<0.00002	<0.00002	<0.00002	<0.00002	0.00011	<0.00002	<0.00002	<0.00002	0.00003	0.00007	0.00006	<0.00002	0.00008	<0.00002	0.00004
Thallium (total)	mg/L																		
Thorium (dissolved)	mg/L	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	0.0003	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thorium (total)	mg/L	0.5						0.5				0.5	0.5	0.5	0.5		0.5	0.5	0.5
Tin (dissolved)	mg/L	<0.0002	0.00026	0.00023	0.0010	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tin (total)	mg/L																		
Titanium (dissolved)	mg/L	<0.005	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Titanium (total)	mg/L																		
Tungsten (dissolved)	mg/L			<0.0010															
Tungsten (total)	mg/L																		
Uranium (dissolved)	mg/L	0.00734	0.00769	0.00796	0.00216	0.00164	0.00166	0.00196	0.00205	0.00173	0.00206	0.00200	0.00206	0.00213	0.00214	0.00218	0.00223	0.00205	0.00210
Uranium (total)	mg/L																		
Vanadium (dissolved)	mg/L	<0.001	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium (total)	mg/L																		
Zinc (dissolved)	mg/L	0.005	0.0340	<0.0040	0.0037	<0.0040	<0.0040	<0.004	0.007	0.008	0.008	0.012	<0.004	0.011	0.011	<0.004	<0.004	<0.004	0.005
Zinc (total)	mg/L																		
Zirconium (dissolved)	mg/L	0.0002	0.00014	0.00012	0.0003	0.0002	0.0002	0.0001	0.0002	0.0001	0.0002	0.0002	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001
Zirconium (total)	mg/L																		
Microbiological																			
E. coli (counts)	CFU/100 mL																		
E. coli (MPN)	MPN/100 mL																		
Fecal coliforms (counts)	CFU/100 mL																		
Fecal coliforms (MPN)	MPN/100 mL																		
Total coliforms (counts)	CFU/100 mL																		
Total coliforms (MPN)	MPN/100 mL																		
Miscellaneous Organic Substances		2 2222																	
Chloroethane	mg/L	<0.0020	1								1								
1,2-Dibromoethane	mg/L	<0.0002	1								-								
1,2-Dichloropropane	mg/L	<0.0010	1								-								
1,3-Dichloropropene	mg/L	<0.0010	1								1								
Methyl tert-butyl ether (MTBE)	mg/L	<0.0010	1								1								
VHw6-10	mg/L	-0.0040	1								1								
Vinyl chloride	mg/L	<0.0010	1								-								
VPHw	mg/L		1								-								
Monografia Aramatia Undras arbarra (MALLA)			1								1								
Monocyclic Aromatic Hydrocarbons (MAHs)	/I	10 0005	1								1								
Benzene	mg/L	<0.0005	1								1								
Ethylbenzene	mg/L	<0.0010																	
Styrene	mg/L	<0.0010																	
Toluene	mg/L	0.0066									1								
Xylenes	mg/L	<0.0020	1								1								
N. et a. e.			1								1								
Nutrients			<u> </u>								<u> </u>								

		MW09-6S	MW09-6S	MW09-6S	MW10-08														
		05-Apr-17	29-Aug-17	20-Nov-17	16-Nov-10	09-May-11	09-May-11	10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	22-Aug-12	20-Nov-12	21-May-13	21-May-13	20-Aug-13	12-Nov-13	02-Jun-14	18-Aug-14
		7040434-03	7090074-01	7111886-01	K0K0729-02	K1E0403-01	K1E0403-04	K1H0536-01	K1J0685-02	2051369-04	2081484-02	2081484-05	2111131-02	3051354-02	3051354-06	3081378-05	3110772-05	4060249-05	4081094-05
	,	Normal	Normal	Normal						Normal	Normal	Duplicate	Normal	Normal	Duplicate	Normal	Normal	Normal	Normal
Analyte	Unit																		
Ammonia (total, as N)	mg/L	1.19	0.935	1.17	0.05	0.04	<0.02	0.04	0.05	<0.020	0.100	0.091	0.026	0.034	0.060	0.020	1.24	0.118	0.023
Nitrate (as N)	mg/L	42.3	35.3	32.6	0.22	<0.010	<0.010	0.341	0.580	0.590	0.141	0.128	0.339	0.566	0.544	0.929	<0.010	0.206	1.11
Nitrate + Nitrite (as N)	mg/L																		
Nitrate + Nitrite (as N) (calculated)	mg/L	48.0	35.3	32.6	0.22	<0.01	<0.01	0.341	0.580	0.590	0.141	0.128	0.339	0.566	0.544	0.929	<0.014	0.206	1.11
Nitrite (as N)	mg/L	5.70	<0.010	<0.010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Total kjeldahl nitrogen	mg/L																		
Orthophosphate (dissolved, as P)	mg/L																		
Phosphorus (dissolved, by ICPMS/ICPOES)	mg/L	<0.05	<0.050	<0.050	<0.020	<0.020	<0.020	<0.02	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02
Phosphorus (total, by ICPMS/ICPOES)	mg/L																		
Phosphorus (total, APHA 4500-P)	mg/L																		
Potassium (dissolved)	mg/L	209	200	184	8.58	6.79	6.60	6.33	6.51	7.89	7.23	7.29	6.55	6.53	6.53	6.90	6.64	6.05	6.82
Potassium (total)	mg/L																		

		MW10-08	MW10-08	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02
		04-Nov-14	25-May-15	09-Nov-15	02-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	03-Jun-02	26-Aug-02	06-Nov-02	07-Mar-03	12-May-03	03-Nov-03	17-May-04	08-Nov-04	25-Apr-05
			-		-	_		•	-		03-3411-02	20-Aug-02	00-1107-02	07-IVIAI-03	12-Way-03	03-1107-03	17-iviay-04	08-1100-04	25-Apr-05
		4110161-05 Normal	5051773-05 Normal	5110701-01 Normal	6050110-01	6081657-01 Normal	6111045-01 Normal	7040391-01 Normal	7082760-01 Normal	7112039-01 Normal									
Analyte	Unit																		
Field Results																			
Conductivity	μS/cm	3150	2960	1056	1062	1033	1031	1047	1122	1107									
Depth to Water	m	14.99	15.37	11.04		11.475		10.955	10.425	11.24	9999	9999	9999	9999	21.25	21.25	21.3	21.82	21.28
Dissolved oxygen	mg/L	8.3	7.05	1.42	0.30	0.62	0.35		0.89	1.28									
Dissolved oxygen (percent)	%	71.0	62.5			5.4	3.1		7.9	11.2									
Field measured depth to bottom	m																		
Flow rate - container	L/s																		
Ground Elevation	m	921	921								915	915	915	915	915	915	915	915	915
Oxidation reduction potential	mV	24	23	50	-6	177	162	229	101										
pH		7.4	7.3	6.5	7.1	7.1	7.3	7.6	7.2	7.1									
Temperature	°C	7.5	9.7	9.3	9.2	9.8	8.8	8.7	9.5	8.7					11	11	13	11	12
Lab Results																			
Chlorinated Hydrocarbons																			
1,2-Dichlorobenzene	mg/L				<0.0005			<0.0005											
1,3-Dichlorobenzene	mg/L				<0.0010			<0.0010											
1,4-Dichlorobenzene	mg/L				<0.0010			<0.0010											
1,1-Dichloroethane	mg/L				<0.0010			<0.0010											
1,2-Dichloroethane	mg/L				<0.0010			<0.0010											
1,1-Dichloroethylene	mg/L				<0.0010			<0.0010											
cis-1,2-Dichloroethylene	mg/L				<0.0010			<0.0010											
trans-1,2-Dichloroethylene	mg/L				<0.0010			<0.0010											
Monochlorobenzene	mg/L				<0.0010			<0.0010											
1,1,2,2-Tetrachloroethane	mg/L				<0.0010			<0.0005											
Tetrachloroethylene	mg/L				<0.0010			<0.0010											
1,1,1-Trichloroethane	mg/L				<0.0010			<0.0010											
1,1,2-Trichloroethane	mg/L				<0.0010			<0.0010											
Trichloroethylene	mg/L				<0.0010			<0.0010											
General																			
Alkalinity (bicarbonate, as CaCO3)	mg/L				332	335	335	364	356	126									
Alkalinity (carbonate, as CaCO3)	mg/L				<1	<1	<1	<1.0	<1.0	<1.0									
Alkalinity (hydroxide, as CaCO3)	mg/L				<1	<1	<1	<1.0	<1.0	<1.0									
Alkalinity (phenolphthalein, as CaCO3)	mg/L				<1	<1	<1	<1.0	<1.0	<1.0									
Alkalinity (total, as CaCO3)	mg/L	592	492	350	332	335	335	364	356	126					2800	5600	1720	7040	4100
Bicarbonate Alkalinity (as HCO3)	mg/L				404	408	409	444	434	154									
Carbonate Alkalinity (as CO3)	mg/L				<1	<0.6	<0.6	<0.600	<0.600	<0.600									
Hydroxide Alkalinity (as OH)	mg/L				<1	<0.3	<0.3	<0.340	<0.340	<0.340									
Bromide	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.12	0.11									
Chemical Oxygen Demand	mg/L														69	202	108	184	136
Chloride	mg/L	700	666	125	117	107	94.5	125	125	116					57.5	63.8	72.5	75	128
Conductivity	μS/cm	3310	2890	1020	993	974	1030	1080	1110	327					1660	1620	1600	1900	2000
Fluoride	mg/L	0.26	0.26	<0.10	<0.10	<0.10	<0.10	0.16	0.14	<0.10									
Hardness, Total (dissolved as CaCO3)	mg/L	826	734	443	408		402	431										920	1020
Hardness, Total (total as CaCO3)	mg/L			532															
рН		7.82	7.81	7.65	7.86										7.1	6.8	6.9	7.1	7.2
Sulphate	mg/L	47.5	39.4	45.8	43.2	45.1	42.3	46.5	46.6	47.3				1	51	78	71	79	104
Total organic carbon	mg/L			1.0	<0.5	0.7	0.8	1.0	0.83	<0.50				1			1		
Total suspended solids Turbidity	mg/L NTU	1240 1180	214 122	37.8	2.5	12.1	7.28	1.60	1.30	2.48					>4000	>4000	>4000	>4000	>4000
					-		,												
Halogenated Methanes																			
Bromodichloromethane	mg/L				<0.0010	1		<0.0010			-			1		-	1		
Bromoform	mg/L]		<0.0010	l		<0.0010						<u> </u>			I		

		MW/40.00	MM/40 00	MM45 04	MM/4E 04	NAV45 04	MW4F 04	MM45 04	MM/45 04	MM45 04	MANOE OO	MWOE 02	MANAGE OO	MANAGE OO	MM/05 02	MM/OF OO	MM/OF OO	MM/OF OO	MANOE OO
		MW10-08	MW10-08	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02
		04-Nov-14	25-May-15	09-Nov-15	02-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	03-Jun-02	26-Aug-02	06-Nov-02	07-Mar-03	12-May-03	03-Nov-03	17-May-04	08-Nov-04	25-Apr-05
		4110161-05	5051773-05	5110701-01	6050110-01	6081657-01	6111045-01	7040391-01	7082760-01	7112039-01									
	1	Normal	Normal	Normal		Normal	Normal	Normal	Normal	Normal									
Analyte	Unit																		
Carbon tetrachloride	mg/L				<0.0010			<0.0005											
Chloroform	mg/L				<0.0010			<0.0010											
Dibromochloromethane	mg/L				<0.0010			<0.0010											
Dibromomethane	mg/L				<0.0010			<0.0010											
Dichloromethane	mg/L				<0.0030			<0.0030											
Total Trihalomethanes (calculated) Trichlorofluoromethane	mg/L				<0.0020 <0.0010			<0.0020 <0.0010											
Thenlorometrane	mg/L				<0.0010			<0.0010											
Metals																			
Aluminum (dissolved)	mg/L	0.010	<0.005	0.008	<0.005		0.007	<0.005							<0.2	<0.2	<0.2		<0.4
Aluminum (total)	mg/L	0.010	VO.000	0.455	0.069		0.122	0.047							\0.2	\0.2	\0.2		
Antimony (dissolved)	mg/L	0.0013	0.0019	<0.0001	0.0004		0.0001	<0.0001							<0.2	<0.2	<0.2		<0.4
Antimony (dissolved) Antimony (total)	mg/L	3.0010	5.5515	<0.0001	0.0004		0.0001	<0.0001											
Arsenic (dissolved)	mg/L	0.0016	0.0039	<0.0001	<0.0004		<0.0005	<0.0005							<0.2	<0.2	<0.2		<0.4
Arsenic (total)	mg/L	1.30.0		<0.0005	<0.0005		<0.0005	<0.0005	1										
Barium (dissolved)	mg/L	0.242	0.212	0.154	0.156		0.157	0.165							0.2	0.19	0.19		0.21
Barium (total)	mg/L			0.184	0.165		0.171	0.178											
Beryllium (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001											
Beryllium (total)	mg/L			0.0001	<0.0001		0.0002	<0.0001											
Bismuth (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001											
Bismuth (total)	mg/L			<0.0001	<0.0001		<0.0001	<0.0001											
Boron (dissolved)	mg/L	0.024	0.020	0.029	0.033		0.031	0.036							0.6	0.58	0.59		0.6
Boron (total)	mg/L			0.028	0.034		0.033	0.040											
Cadmium (dissolved)	mg/L	0.00001	0.00004	<0.00001	<0.00001		0.00001	<0.00001							<0.01	<0.01	<0.01		<0.02
Cadmium (total)	mg/L			<0.00001	<0.00001		<0.00001	<0.00001											
Calcium (dissolved)	mg/L	116	101	97.5	88.1		86.4	92.0							174	177	175		210
Calcium (total)	mg/L			118	89.6		92.2	102											
Chromium (dissolved)	mg/L	<0.0005	0.0007	< 0.0005	0.0018		<0.0005	<0.0005							<0.01	<0.01			<0.02
Chromium (total)	mg/L			0.0018	<0.0005		< 0.0005	<0.0005											1
Cobalt (dissolved)	mg/L	0.00096	0.00012	0.00007	0.00019		0.00006	<0.00005											1
Cobalt (total)	mg/L			0.00062	0.00022		0.00016	0.00006											1
Copper (dissolved)	mg/L	0.0008	0.0051	0.0019	0.0008		0.0030	<0.0002							<0.01	<0.01			<0.02
Copper (total)	mg/L			0.0281	0.0024		0.0181	0.0004											<u></u>
Iron (dissolved)	mg/L	0.049	0.015	0.019	0.279		<0.010	<0.010							<0.03	<0.03	<0.03		<0.06
Iron (total)	mg/L			1.07	0.36		0.27	0.06											
Lead (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001							<0.05	<0.05	<0.05		<0.1
Lead (total)	mg/L			0.0008	<0.0001		0.0002	<0.0001											
Lithium (dissolved)	mg/L	0.0212	0.0188	0.0049	0.0058		0.0047	0.0054	ļ										,
Lithium (total)	mg/L			0.0061	0.0059		0.0050	0.0052											
Magnesium (dissolved)	mg/L	130	117	48.5	45.6		45.3	48.7							99.4	103	91.3		120
Magnesium (total)	mg/L	0.005-	0.000	57.5	46.4		47.1	49.0							0.005	0.000	2.22		
Manganese (dissolved)	mg/L	0.0270	0.0031	0.0043	0.0012		0.0013	0.0003							0.009	0.083	0.02		0.04
Manganese (total)	mg/L	0.00000	0.00000	0.0238	0.0024		0.0046	0.0013											
Mercury (dissolved)	mg/L	0.00002	<0.00002	<0.00002	<0.00002		<0.00002	<0.00002											
Mercury (total)	mg/L	0.0007	0.0000	<0.00002	<0.00002		<0.00002	<0.00002	-						-0.00	-0.00	-0.00		-0.00
Molybdonum (dissolved)	mg/L	0.0007	0.0006	0.0003	0.0003		0.0003	0.0002							<0.03	<0.03	<0.03		<0.06
Molybdenum (total)	mg/L	0.0039	0.0007		0.0003		0.0004	0.0002							<0.05	-0.0E	<0.05		<0.1
Nickel (dissolved)	mg/L	0.0039	0.0007	0.0006	0.0017		0.0005	0.0003							<0.05	<0.05	<0.05		<0.1
Nickel (total) Selenium (dissolved)	mg/L	<0.0005	<0.0005	0.0003 <0.0005	0.0024 <0.0005		0.0005 <0.0005	0.0004 <0.0005							<0.2	<0.2	<0.2		<0.4
Selenium (dissolved) Selenium (total)	mg/L	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	+						< U.Z				<0.4
Silicon (dissolved, as Si)	mg/L mg/L	10.4	10.4	4.8	5.3		4.0	4.9	+										
Silicon (total, as Si)	mg/L	10.4	10.4	6.3	5.4		5.2	5.0											
Silver (dissolved)	mg/L	<0.00005	<0.00005	<0.00005	<0.00005		<0.00005	<0.00005	+										
Oliver (ulasolveu)	IIIg/L	<0.00005	<0.00005	<0.00005	<0.0000		<0.00005	<0.00005			l	1		1	l .				

		MW10-08	MW10-08	MW15-01	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02						
		04-Nov-14	25-May-15	09-Nov-15	02-May-16		14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	03-Jun-02	26-Aug-02	06-Nov-02	07-Mar-03	12-May-03	03-Nov-03	17-May-04	08-Nov-04	25-Apr-05
			-		.=	22-Aug-16			_		03-Jun-02	26-Aug-02	06-1107-02	07-Mar-03	12-May-03	03-1007-03	17-May-04	08-N0V-04	25-Apr-05
		4110161-05	5051773-05	5110701-01	6050110-01	6081657-01	6111045-01	7040391-01	7082760-01	7112039-01									
		Normal	Normal	Normal		Normal	Normal	Normal	Normal	Normal									
Analyte	Unit																		
Silver (total)	mg/L		0.5	0.00005	<0.00005		<0.00005	<0.00005								====			
Sodium (dissolved)	mg/L	436	365	61.0	64.0		55.4	61.1							68	73.8	74		120
Sodium (total)	mg/L			72.3	58.8		57.5	66.0											
Strontium (dissolved)	mg/L	1.56	1.35	0.542	0.592		0.548	0.561											<u> </u>
Strontium (total)	mg/L			0.634	0.609		0.571	0.597											
Sulphur (dissolved)	mg/L	20	16	17	17		14	14											
Sulphur (total)	mg/L			21	16		14	14											
Tellurium (dissolved)	mg/L	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002											
Tellurium (total)	mg/L			<0.0002	<0.0002		<0.0002	<0.0002											
Thallium (dissolved)	mg/L	<0.00002	0.00002	<0.00002	<0.00002		<0.00002	<0.00002											
Thallium (total)	mg/L			<0.00002	<0.00002		<0.00002	<0.00002											
Thorium (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001											<u> </u>
Thorium (total)	mg/L			0.0001	<0.0001		<0.0001	<0.0001			1								
Tin (dissolved)	mg/L	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002			1								
Tin (total)	mg/L			0.0004	<0.0002		<0.0002	0.0004											
Titanium (dissolved)	mg/L	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005			1								
Titanium (total)	mg/L			0.005	<0.005		<0.005	<0.005											
Tungsten (dissolved)	mg/L																		
Tungsten (total)	mg/L																		
Uranium (dissolved)	mg/L	0.00227	0.00193	0.00104	0.00115		0.00102	0.00110											
Uranium (total)	mg/L			0.00120	0.00114		0.00111	0.00108											
Vanadium (dissolved)	mg/L	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001											
Vanadium (total)	mg/L			<0.001	<0.001		<0.001	<0.001											
Zinc (dissolved)	mg/L	0.012	0.008	0.004	<0.004		0.007	<0.004							0.017	0.0197	0.02		0.01
Zinc (total)	mg/L			0.012	<0.004		0.011	<0.004											
Zirconium (dissolved)	mg/L	0.0025	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001											
Zirconium (total)	mg/L			0.0003	<0.0001		<0.0001	<0.0001											
Microbiological																			
E. coli (counts)	CFU/100 mL							<1	<1	<1									
E. coli (MPN)	MPN/100 mL			<3.0	<3.0	<3.0	<3.0												
Fecal coliforms (counts)	CFU/100 mL							<1	<1	<1									
Fecal coliforms (MPN)	MPN/100 mL			<3.0	<3.0	<3.0	<3.0												
Total coliforms (counts)	CFU/100 mL							<1	<1	<1									
Total coliforms (MPN)	MPN/100 mL			<3.0	<3.0	<3.0	<3.0												
Miscellaneous Organic Substances																			
Chloroethane	mg/L				<0.0020			<0.0020											
1,2-Dibromoethane	mg/L				<0.0003			<0.0002											
1,2-Dichloropropane	mg/L				<0.0010			<0.0010											
1,3-Dichloropropene	mg/L				<0.0010			<0.0010											
Methyl tert-butyl ether (MTBE)	mg/L			<0.0010	<0.0010		<0.0010	<0.0010											
VHw6-10	mg/L			<0.100	<0.100		<0.100	<0.100											
Vinyl chloride	mg/L				<0.0020			<0.0010											
VPHw	mg/L			<0.100	<0.100		<0.100	<0.100											
Monocyclic Aromatic Hydrocarbons (MAHs)																			
Benzene	mg/L			<0.0005	<0.0005		<0.0005	<0.0005											
Ethylbenzene	mg/L			<0.0010	<0.0010		<0.0010	<0.0010											
Styrene	mg/L			<0.0010	<0.0010		<0.0010	<0.0010											
Toluene	mg/L			0.0050	<0.0010		0.0076	<0.0010											
Xylenes	mg/L			<0.0020	<0.0020		<0.0020	<0.0020											
Nutrients																			
	-	•	•	•	•	•	•	*	•	*	*					•			•

		MW10-08	MW10-08	MW15-01	MW95-02														
		04-Nov-14	25-May-15	09-Nov-15	02-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17	03-Jun-02	26-Aug-02	06-Nov-02	07-Mar-03	12-May-03	03-Nov-03	17-May-04	08-Nov-04	25-Apr-05
		4110161-05	5051773-05	5110701-01	6050110-01	6081657-01	6111045-01	7040391-01	7082760-01	7112039-01									
	,	Normal	Normal	Normal		Normal	Normal	Normal	Normal	Normal									
Analyte	Unit																		
Ammonia (total, as N)	mg/L	0.030	<0.020															0.19	0.04
Nitrate (as N)	mg/L	0.723	0.695	1.19	1.19	1.05	0.803	0.807	1.18	1.15					27.8	16.3	34.5	32.5	65
Nitrate + Nitrite (as N)	mg/L																		
Nitrate + Nitrite (as N) (calculated)	mg/L	0.723	0.695	1.19	1.19	1.05	0.803	0.807	1.18	1.15									
Nitrite (as N)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010					<0.01	0.16	<0.01	0.04	<0.01
Total kjeldahl nitrogen	mg/L														2.92	13	3.7	4.7	5.12
Orthophosphate (dissolved, as P)	mg/L		<0.01			<0.01	<0.01	<0.010	<0.010	<0.010									
Phosphorus (dissolved, by ICPMS/ICPOES)	mg/L	<0.02	<0.02	<0.02	<0.02		<0.02	<0.05							<0.3	<0.3	<0.3		<0.6
Phosphorus (total, by ICPMS/ICPOES)	mg/L			<0.02	<0.02		0.04	<0.05											
Phosphorus (total, APHA 4500-P)	mg/L			0.017	0.007														
Potassium (dissolved)	mg/L	6.66	6.34	2.42	2.33		2.35	2.32							54	53	50		50
Potassium (total)	mg/L			2.67	2.23		2.31	2.31											

		MM/05 00	MANOE OO	MM/05 00	MAYOT 00	MM/05 04	T \M-II #4	T \\\ - #4	T \\\-! #4	Town Well #4	T \M-11 #4	T \\\-! #4	Town Well #4	Town Well #4	T \\\-! #4	T \A/-!! #4	T \A/-!! #4	Town Well #4	Town Well #4
		MW95-02	MW95-02	MW95-02	MW95-02	MW95-04	Town Well #4	Town Well #4	Town Well #4			Town Well #4			Town Well #4	Town Well #4			
		02-Nov-05	17-Apr-06	05-Nov-06	22-May-07	17-May-04	03-Jun-02	12-May-03	17-May-04	22-May-07	05-Nov-07	28-Apr-08	14-Oct-08	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	16-Nov-10	09-May-11
					K705752-01					K705752-02	K7K0165-01	K8E0035-01	K8J0452-01	K9E0816-01	K9K0184-03	K0B0397-03	K0F0788-02	K0K0729-03	K1E0403-02
	T																		
Analyte	Unit																		
Field Populto																			
Field Results														000	900	070	070	900	
Conductivity	μS/cm	0000	04.40	0000	04.07	00.0								900	890	870	970	890	
Depth to Water	m	9999	21.18	9999	21.27	26.6	8							0.04	0.7				
Dissolved oxygen	mg/L													2.01	3.7				
Dissolved oxygen (percent)	%																		
Field measured depth to bottom	m																		
Flow rate - container	L/s	0.15			0.15			700											
Ground Elevation	m	915	915	915	915		790	790	790	790	790	790	790	790	790	790	790	790	790
Oxidation reduction potential	mV																49.0	159	
pH 					40.0									6.85	7.48	7.2	7.41	7.49	
Temperature	°C		10.3		10.0	13		10	12	7.5	5.0			8.4	8.4	7.4	12.2	8.2	
Leb Beautie																			
Lab Results														1		1	-	-	
Chlorinated Hydrocarbons														1		1	-	-	
1,2-Dichlorobenzene	mg/L																		
1,3-Dichlorobenzene	mg/L																		
1,4-Dichlorobenzene	mg/L																		
1,1-Dichloroethane	mg/L																		
1,2-Dichloroethane	mg/L																		
1,1-Dichloroethylene	mg/L																		
cis-1,2-Dichloroethylene	mg/L																		
trans-1,2-Dichloroethylene	mg/L																		
Monochlorobenzene	mg/L																		
1,1,2,2-Tetrachloroethane	mg/L																		
Tetrachloroethylene	mg/L																		
1,1,1-Trichloroethane	mg/L																		
1,1,2-Trichloroethane	mg/L																		
Trichloroethylene	mg/L																		
General																			
Alkalinity (bicarbonate, as CaCO3)	mg/L																		
Alkalinity (carbonate, as CaCO3)	mg/L																		
Alkalinity (hydroxide, as CaCO3)	mg/L																		
Alkalinity (phenolphthalein, as CaCO3)	mg/L																		
Alkalinity (total, as CaCO3)	mg/L		3500		3000	900	287	290	324	310	340	333	345	337	330	325	328	313	331
Bicarbonate Alkalinity (as HCO3)	mg/L																		
Carbonate Alkalinity (as CO3)	mg/L																		
Hydroxide Alkalinity (as OH)	mg/L																		
Bromide	mg/L																		
Chemical Oxygen Demand	mg/L		129		39	89	<5	5	10	<5	<5								
Chloride	mg/L		159		90.5	298	62.5	73.8	65	60.2	76.7	69.4	86.9	74	57.6	91.1	76.7	75.7	79.2
Conductivity	μS/cm		2200		1910	2810	845	866	791	822	881	842	884	899	902	905	874	854	869
Fluoride	mg/L																		
Hardness, Total (dissolved as CaCO3)	mg/L		930		914					369	390	394	377	353	364	382	342	370	388
Hardness, Total (total as CaCO3)	mg/L																		
рН			7		6.8	7	7.1	7.2	7.3	7.1	7.4	7.4	6.9	7.7	7.76	7.81	7.93	7.79	7.85
Sulphate	mg/L		150		254	640	44.5	43	40	37.5	38.0	38.6	40.6	38.8	39.8	42.9	41.2	36.1	37.6
Total organic carbon	mg/L																		
Total suspended solids	mg/L											<1	<1	<1	<1	4	<1	<1	<1
Turbidity	NTU		>4000			680	0.4	2.5	0.6			0.2	0.1	<0.1	0.3	0.2	<0.1	0.1	<0.1
Halogenated Methanes																			
Bromodichloromethane	mg/L																		
Bromoform	mg/L																		

		MW95-02	MW95-02	MW95-02	MW95-02	MW95-04	Town Well #4												
		02-Nov-05	17-Apr-06	05-Nov-06	22-May-07	17-May-04	03-Jun-02	12-May-03	17-May-04		05-Nov-07	28-Apr-08	14-Oct-08	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	16-Nov-10	09-May-11
		02-1100-05	17-Api-06	03-1100-06	-	17-Way-04	03-3011-02	12-iviay-03	17-May-04	22-May-07		·		-					1
					K705752-01					K705752-02	K7K0165-01	K8E0035-01	K8J0452-01	K9E0816-01	K9K0184-03	K0B0397-03	K0F0788-02	K0K0729-03	K1E0403-02
		_																	
Analyte	Unit																		
Carbon tetrachloride	mg/L																		
Chloroform	mg/L																		
Dibromochloromethane	mg/L																		
Dibromomethane	mg/L																		
Dichloromethane	mg/L																		
Total Trihalomethanes (calculated)	mg/L																		
Trichlorofluoromethane	mg/L																		
Metals																			
Aluminum (dissolved)	mg/L		<0.02		<0.050	<0.2	<0.2	<0.2	<0.2	<0.050		<0.050	<0.010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aluminum (total)	mg/L				<0.10					<0.10									
Antimony (dissolved)	mg/L		<0.02		<0.0050	<0.2	<0.2	<0.2	<0.2	<0.0050		<0.0030	<0.0006	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0004
Antimony (total)	mg/L				<0.006					<0.006									1
Arsenic (dissolved)	mg/L		<0.02		<0.0050	<0.2	<0.2	<0.2	<0.2	<0.0050		<0.0050	<0.0010	<0.0005	<0.0005	<0.0005	<0.0005	0.0006	<0.0005
Arsenic (total)	mg/L				<0.010					<0.010			-					1	
Barium (dissolved)	mg/L		0.15		0.124	0.12	0.2	0.2	0.21	0.191		0.191	0.211	0.227	0.173	0.244	0.216	0.217	0.189
Barium (total)	mg/L				0.114					0.190									
Beryllium (dissolved)	mg/L				<0.0010					<0.0010		<0.0020	<0.0004	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Beryllium (total)	mg/L				<0.005					<0.005									
Bismuth (dissolved)	mg/L				<0.0010					<0.0010		<0.0005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth (total)	mg/L				<0.001					<0.001									
Boron (dissolved)	mg/L		0.6		0.632	0.65	<0.1	<0.1	<0.1	<0.020		<0.020	0.013	0.015	0.02	0.02	0.015	0.042	0.016
Boron (total)	mg/L				0.608					<0.020									
Cadmium (dissolved)	mg/L		<0.01		<0.00010	<0.01	<0.01	<0.01	<0.01	<0.00010		<0.00010	<0.00002	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00005
Cadmium (total)	mg/L				<0.00010					<0.00010									
Calcium (dissolved)	mg/L		210		215	165	90	104	88	84.6	88.4	91.2	87	83.8	80	87.4	79.1	81.3	90.0
Calcium (total)	mg/L				206					85.1									
Chromium (dissolved)	mg/L		<0.01		0.0054	<0.01	<0.01	<0.01	<0.01	<0.0050		0.006	0.006	0.0033	0.0028	0.0116	0.0022	0.0007	<0.0005
Chromium (total)	mg/L				<0.010					<0.010									
Cobalt (dissolved)	mg/L				0.0037					<0.0010		<0.0005	<0.0001	0.00009	0.00006	0.00007	0.00010	0.00013	<0.00005
Cobalt (total)	mg/L				0.0034					<0.0010									
Copper (dissolved)	mg/L		<0.01		0.0057	<0.01	<0.01	<0.01	<0.01	<0.0050		<0.0030	0.0046	0.0038	0.0016	0.0045	0.0025	0.0025	0.0008
Copper (total)	mg/L				<0.010					<0.010									
Iron (dissolved)	mg/L		<0.06		0.655	<0.03	<0.03	<0.03	<0.03	0.267		0.386	0.079	0.082	0.07	0.063	0.147	0.166	<0.010
Iron (total)	mg/L				0.70					<0.30									
Lead (dissolved)	mg/L		<0.05		<0.0020	<0.05	<0.01	<0.05	<0.05	<0.0020		<0.0010	0.0002	0.0001	<0.0001	0.0002	0.0002	0.0002	0.0001
Lead (total)	mg/L				<0.0020					<0.0020									
Lithium (dissolved)	mg/L				0.0185					0.0018		0.0020	0.0015	0.0021	0.0013	0.0017	0.0021	0.0040	0.0020
Lithium (total)	mg/L				0.0179					<0.0050									
Magnesium (dissolved)	mg/L		97		103	233	37	43.7	38.1	38.4	41.1	40.2	38.9	34.9	39.8	39.7	35.0	40.5	39.7
Magnesium (total)	mg/L				97.2					37.9									
Manganese (dissolved)	mg/L		0.007		0.107	0.009	<0.005	<0.005	<0.005	<0.0100		<0.0050	<0.0010	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0006
Manganese (total)	mg/L				0.107					<0.010									
Mercury (dissolved)	mg/L				<0.00050					<0.00050		<0.00030	<0.00006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00002
Mercury (total)	mg/L				<0.00050					<0.00050									
Molybdenum (dissolved)	mg/L		<0.03		<0.0020	< 0.03	<0.03	<0.03	<0.03	<0.0020		<0.0010	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0002
Molybdenum (total)	mg/L				<0.0050					<0.0050									
Nickel (dissolved)	mg/L		<0.05		0.037	<0.05	<0.05	<0.05	<0.05	<0.010		<0.005	0.001	0.0014	0.001	0.0012	0.0016	0.0037	0.0002
Nickel (total)	mg/L				<0.020					<0.020									
Selenium (dissolved)	mg/L		<0.2		<0.0100	<0.2	<0.2	<0.2	<0.2	<0.0100		<0.0050	<0.0010	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0005
Selenium (total)	mg/L				<0.010					<0.010									
Silicon (dissolved, as Si)	mg/L				9.58					3.88		5.01	5.35	4.1	3.53	7.83	4.00	2.33	4.89
Silicon (total, as Si)	mg/L				7.5					2.6									
Silver (dissolved)	mg/L				<0.0004					<0.0004		<0.00040	<0.00008	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
(alooolivaa)	iiig/∟	1			-0.0007					-0.0007	l	-5.00070	-5.55500	-5.55555	-5.00000	-5.55555	-3.00000	-5.55500	-3.00000

	İ	MANOT 00	MM/05 00	MM/05 00	MM/05 00	MM/05 04	T \\\-! #4	T \\\ - #4	T \\\-! #4	T \A/-! #4	T \\\ - #4	T \\\ - #4	T \\\ - #4	T \A/-!! #4	T \\\-! #4	T \\\-! #4	T \\\-! #4	T \\\-! #4	T \A/-! #4
		MW95-02	MW95-02	MW95-02	MW95-02	MW95-04	Town Well #4	Town Well #4	Town Well #4	Town Well #4		Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	
		02-Nov-05	17-Apr-06	05-Nov-06	22-May-07	17-May-04	03-Jun-02	12-May-03	17-May-04	22-May-07	05-Nov-07	28-Apr-08	14-Oct-08	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	16-Nov-10	09-May-11
					K705752-01					K705752-02	K7K0165-01	K8E0035-01	K8J0452-01	K9E0816-01	K9K0184-03	K0B0397-03	K0F0788-02	K0K0729-03	K1E0403-02
Analysis	1114																		
Analyte	Unit																		
Silver (total)	mg/L				<0.00050					<0.00050									
Sodium (dissolved)	mg/L		130		107	234	34	37	37	36.8		43.1	42.1	36.7	44.4	45.6	37.8	37.8	44.0
Sodium (total)	mg/L		100		98.0	201	01	0,	01	34.8		10.1	12.1	00.7		10.0	07.0	07.0	11.0
Strontium (dissolved)	mg/L				1.12					0.414		0.434	0.442	0.481	0.409	0.409	0.451	0.628	0.423
												0.434	0.442	0.461	0.409	0.409	0.451	0.020	0.423
Strontium (total)	mg/L				1.10					0.405									
Sulphur (dissolved)	mg/L																		
Sulphur (total)	mg/L																		
Tellurium (dissolved)	mg/L				<0.0050					<0.0050		<0.0030	<0.0006	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tellurium (total)	mg/L				<0.005					<0.005									
Thallium (dissolved)	mg/L				<0.0010					<0.0010		<0.0005	<0.0001	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Thallium (total)	mg/L				<0.0010					<0.0010									
Thorium (dissolved)	mg/L				<0.0050					<0.0050		<0.0030	<0.0006		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thorium (total)	mg/L				<0.005					<0.005									
Tin (dissolved)	mg/L				<0.0020					<0.0020		<0.0020	<0.0004	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tin (total)	mg/L				<0.001					<0.001									
Titanium (dissolved)	mg/L				<0.0200					<0.0200		<0.100	<0.020	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005
Titanium (total)	mg/L				<0.050					<0.050									
Tungsten (dissolved)	mg/L																		
Tungsten (total)	mg/L																		
Uranium (dissolved)	mg/L				0.0025					0.0011		0.0012	0.0014	0.00124	0.00114	0.00102	0.00115	0.00127	0.00113
Uranium (total)	mg/L				0.0028					0.0011		0.0012	0.0014	0.00124	0.00114	0.00102	0.00110	0.00127	0.00110
Vanadium (dissolved)					<0.0050					<0.0012		<0.010	<0.002	<0.0010	<0.0010	0.0046	0.0018	<0.0010	<0.001
	mg/L											<0.010	<0.002	<0.0010	<0.0010	0.0046	0.0016	<0.0010	<0.001
Vanadium (total)	mg/L		2 222		<0.010	0.00	0.04	0.004	0.000	<0.010		0.000	2 222	2 2222	0.0004	0.0054	0.0050	0.0000	0.0040
Zinc (dissolved)	mg/L		0.028		<0.040	0.02	0.01	0.021	0.039	<0.040		<0.030	0.008	0.0088	0.0021	0.0051	0.0058	0.0032	<0.0040
Zinc (total)	mg/L				<0.050					<0.050									
Zirconium (dissolved)	mg/L				<0.010					<0.010		<0.005	<0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Zirconium (total)	mg/L				<0.010					<0.010									
Microbiological																			
E. coli (counts)	CFU/100 mL																		
E. coli (MPN)	MPN/100 mL																		
Fecal coliforms (counts)	CFU/100 mL																		
Fecal coliforms (MPN)	MPN/100 mL																		
Total coliforms (counts)	CFU/100 mL																		
Total coliforms (MPN)	MPN/100 mL																		
Miscellaneous Organic Substances																			
Chloroethane	mg/L																		
1,2-Dibromoethane	mg/L																		
1,2-Dichloropropane	mg/L																		
1,3-Dichloropropene	mg/L																1		
Methyl tert-butyl ether (MTBE)	mg/L																		
VHw6-10	mg/L																		
Vinyl chloride	mg/L			 													 		+
VPHw	mg/L																+		
V 1 1 1 1 V V	mg/L																		
Monocyclic Aromatic Hydrocarbons (MAHs)																			
	pp or /1																		
Benzene	mg/L																		
Ethylbenzene	mg/L																		
Styrene	mg/L																		
Toluene	mg/L																		
Xylenes	mg/L																		
Nutrients																			

		MW95-02	MW95-02	MW95-02	MW95-02	MW95-04	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4
		02-Nov-05	17-Apr-06	05-Nov-06	22-May-07	17-May-04	03-Jun-02	12-May-03	17-May-04	22-May-07	05-Nov-07	28-Apr-08	14-Oct-08	25-May-09	04-Nov-09	09-Feb-10	15-Jun-10	16-Nov-10	09-May-11
					K705752-01	-			·	K705752-02	K7K0165-01	K8E0035-01	K8J0452-01	K9E0816-01	K9K0184-03	K0B0397-03	K0F0788-02	K0K0729-03	K1E0403-02
Analyte	Unit	_																	
Ammonia (total, as N)	mg/L		0.08		0.31					<0.02	<0.02	0.04	0.06	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Nitrate (as N)	mg/L		77		12.5	55.5	1.4	1.35	1.63	1.35	1.09	0.982	1.17	1.12	1.21	1.3	1.17	1.14	0.895
Nitrate + Nitrite (as N)	mg/L				14.0					1.35	1.09								
Nitrate + Nitrite (as N) (calculated)	mg/L				13.9					1.35	1.09	0.982	1.17	1.12	1.21	1.3	1.17	1.14	0.895
Nitrite (as N)	mg/L		<0.01		1.44	0.01	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Total kjeldahl nitrogen	mg/L		5.1		7.12	0.84	0.05	<0.05	0.08	0.10	0.06								
Orthophosphate (dissolved, as P)	mg/L																		
Phosphorus (dissolved, by ICPMS/ICPOES)	mg/L		<0.3		<0.500	<0.3	<0.3	<0.3	<0.3	<0.500		<0.200	<0.040	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Phosphorus (total, by ICPMS/ICPOES)	mg/L				<0.50					<0.50									
Phosphorus (total, APHA 4500-P)	mg/L																		
Potassium (dissolved)	mg/L		57		59.5	52	<2	<2	<2	1.66		2.17	1.82	2.08	1.48	1.93	2.33	1.95	1.74
Potassium (total)	mg/L				56.4					1.53									

		T \\\ - #4	T \\\/-11.#4	T \\\/-! #4	T \\\/-11 #/4	T \\\/-11 #/4	T \\\ - #4	T \\\ - #4	T \\\/-11 #/4	T \\\/-11 #4	T \\\-!\ #4	T \\\-! #4	T \A/-! #4	T \A/-! #4	T \A/-! #4	T \\\ - #4	T \A/-! #4	T \M-II #C	T \\\ - #0
		Town Well #4		Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4		Town Well #6	
		10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	20-Nov-17	20-Aug-13	02-Jun-14
		K1H0536-04	K1J0685-04	2051369-02	2081484-04	2111131-04	3051354-04	3110772-02	4060249-02	4081094-01	4110161-01	5051773-02	6050336-05	6081698-04	6111141-02	7040434-04	7111886-03	3081378-02	4060249-01
		4		Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit																		
Field Results																			
Conductivity	μS/cm	690	930	740	860	800	640	710	799	805	756	813	1013	986	932	63	1050	650	577
Depth to Water	m																		
Dissolved oxygen	mg/L								4.5	3.93	4.38	4.85	4.24	4.67					8.14
Dissolved oxygen (percent)	%								38.2	33.8	37.6	43		39.8					68.1
Field measured depth to bottom	m																		
Flow rate - container	L/s																		
Ground Elevation	m	790	790	790	790	790	790	790	790	790	790	790	790	790	790	790	790		
Oxidation reduction potential	mV	62	119	111	221	188	258	74	165	201	47	68	156	240	293	261		246	183
pH		7.35	7.39	7.43	7.59	7.6	7.36	7.20	7.5	7.5	7.2	7.2	7.4	7.3	7.5	7.5	7.2	7.15	7.3
Temperature	°C	9.4	7.6	8.2	8.8	8.1	8.4	8.1	7.9	8.5	8.4	12.9	8.31	8.6	8.3	8	8.2	7.9	7.7
Lab Results																			
Chlorinated Hydrocarbons																			
1,2-Dichlorobenzene	mg/L															<0.0005			
1,3-Dichlorobenzene	mg/L															<0.0010			
1,4-Dichlorobenzene	mg/L															<0.0010			
1,1-Dichloroethane	mg/L															<0.0010			
1,2-Dichloroethane	mg/L															<0.0010			
1,1-Dichloroethylene	mg/L															<0.0010			
cis-1,2-Dichloroethylene	mg/L															<0.0010			
trans-1,2-Dichloroethylene	mg/L															<0.0010			
Monochlorobenzene	mg/L															<0.0010			
1,1,2,2-Tetrachloroethane	mg/L															<0.0005			
Tetrachloroethylene	mg/L															<0.0010			
1,1,1-Trichloroethane	mg/L															<0.0010			
1,1,2-Trichloroethane	mg/L															<0.0010			
Trichloroethylene	mg/L															<0.0010			
0																			
General													200	000	200	0.40	004		
Alkalinity (bicarbonate, as CaCO3)	mg/L												336	338	336	343	361		
Alkalinity (carbonate, as CaCO3)	mg/L												<1	<1	<1	<1.0	<1.0		
Alkalinity (hydroxide, as CaCO3)	mg/L												<1	<1	<1	<1.0	<1.0		
Alkalinity (phenolphthalein, as CaCO3)	mg/L	222	207	204	242	222	226	24.4	240	220	240	328	<1	<1	<1	<1.0	<1.0	268	276
Alkalinity (total, as CaCO3)	mg/L	332	327	304	313	332	326	314	319	320	319	328	336	338 412	336 410	343 418	361	268	276
Bicarbonate Alkalinity (as HCO3)	mg/L												410				441		
Carbonate Alkalinity (as CO3) Hydroxide Alkalinity (as OH)	mg/L												<1 <1	<0.6 <0.3	<0.6 <0.3	<0.600 <0.340	<0.600 <0.340		
Bromide	mg/L mg/L	+		 							 	<0.10	<0.10	<0.3	<0.3	<0.340	<0.340	 	1
Chemical Oxygen Demand		1		1							1	<0.10	<0.10	VU.10	<u> </u>	VO. 10	<u> </u>	1	
Chloride	mg/L mg/L	72.9	77.2	63.0	67.2	65.6	69.1	68.5	67.0	69.7	70.2	81.2	97.3	88.5	88.6	90.4	105	22.9	23.7
Conductivity	μS/cm	835	873	825	836	838	833	859	857	880	900	911	966	948	966	959	1050	620	621
Fluoride	mg/L	000	073	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Hardness, Total (dissolved as CaCO3)	mg/L	360	360	347	357	356	366	383	397	392	378	~0.10	436	453	386	398	30.10	319	324
Hardness, Total (total as CaCO3)	mg/L	- 555	333		557			000			0.0	393	100	100	555		389	0.0	<u> </u>
pH	mg/L	7.81	7.82	7.87	7.80	6.94	7.86	7.82	7.92	7.65	7.85	7.83	7.53	7.77	7.97	7.85	7.91	7.94	7.87
Sulphate	mg/L	35.8	40.0	37.2	36.6	40.4	36.6	38.8	37.6	39.7	40.7	40.0	40.3	41.5	40.2	42.8	43.8	20.4	23.5
Total organic carbon	mg/L	55.5	.5.5	J	55.5		33.3	55.5	5							.2.3	.0.5	20.1	25.5
Total suspended solids	mg/L	<1	<1	<1	6	2	<1	2	<1	<1	<1	<2	<2	<2	<2	<2	<2.0	<1	<1
Turbidity	NTU	0.11	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.10	0.26	0.6	<0.1
Halogenated Methanes																			
Bromodichloromethane	mg/L	1		1							1				1	<0.0010	1	1	
Bromoform	mg/L			1							1				1	<0.0010	1	1	

		Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #6	Town Well #6					
		10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	20-Nov-17	20-Aug-13	02-Jun-14
		K1H0536-04	K1J0685-04	2051369-02	2081484-04	2111131-04	3051354-04	3110772-02	4060249-02	4081094-01	4110161-01	5051773-02	6050336-05	6081698-04	6111141-02	7040434-04	7111886-03	3081378-02	4060249-01
		+		Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit																		
Carbon tetrachloride	mg/L															<0.0005			
Chloroform	mg/L															<0.0010			
Dibromochloromethane	mg/L															<0.0010			
Dibromomethane	mg/L															<0.0010			
Dichloromethane	mg/L															<0.0030			
Total Trihalomethanes (calculated)	mg/L															<0.0020			
Trichlorofluoromethane	mg/L															<0.0010			
Markete																			
Metals		-0.005	<0.005	<0.005	0.014	<0.005	-0.005	-0.005	<0.005	0.004	-0.005			<0.005	<0.005			<0.005	-0.005
Aluminum (dissolved)	mg/L	<0.005	<0.005	<0.005	0.014	<0.005	<0.005	<0.005	<0.005	0.021	<0.005	-0.005	-0.005	<0.005	<0.005	-0.005	-0.0050	<0.005	<0.005
Aluminum (total)	mg/L	0.0004	-0.0020	-0.0004	0.0007	0.0003	0.0003	0.0007	0.0004	0.0005	0.0002	<0.005	<0.005	<0.0001	<0.0001	<0.005	<0.0050	0.0005	0.0005
Antimony (dissolved)	mg/L	0.0001	<0.0020	<0.0001	0.0007	0.0003	0.0003	0.0007	0.0004	0.0005	0.0002	<0.0001	-0.0001	<0.0001	<0.0001	-0.0001	<0.00020	0.0005	0.0005
Antimony (total) Arsenic (dissolved)	mg/L mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.000 I	<0.0001	<0.0005	<0.0005	<0.0001	<0.00020	<0.0005	<0.0005
Arsenic (dissolved) Arsenic (total)	mg/L	<0.000	\U.UUU	\U.UUU	\U.UUU	\U.UUU	\0.000 3	\U.UUU3	\U.UUU	\U.UUU	\U.UUU	<0.0005	<0.0005	\0.0005	\U.UUU	<0.0005	<0.00050	\0.0005	\U.UUU3
Barium (dissolved)	mg/L	0.195	0.184	0.189	0.193	0.191	0.195	0.200	0.192	0.195	0.210	\0.0003	\0.0003	0.247	0.219	\0.0003	~0.00030	0.133	0.126
Barium (total)	mg/L	0.193	0.104	0.109	0.193	0.191	0.195	0.200	0.192	0.193	0.210	0.193	0.227	0.247	0.219	0.214	0.228	0.133	0.120
Beryllium (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.193	0.221	<0.0001	<0.0001	0.214	0.220	<0.0001	<0.0001
Beryllium (total)	mg/L	40.0001	40.0001	40.0001	40.0001	40.0001	40.0001	40.0001	40.0001	40.0001	40.0001	<0.0001	<0.0001	40.0001	40.0001	<0.0001	<0.00010	40.0001	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Bismuth (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	40.0001	40.0001	<0.0001	<0.0001	V0.0001	40.00010	<0.0001	<0.0001
Bismuth (total)	mg/L	40.0001	40.0001	40.0001	40.0001	40.0001	40.0001	10.0001	10.0001	10.0001	40.0001	<0.0001	<0.0001	40.0001	10.0001	<0.0001	<0.00010	40.0001	40.0001
Boron (dissolved)	mg/L	0.018	0.017	0.018	0.012	0.018	0.018	0.032	0.021	0.024	0.014	10.000.	10.000	0.031	0.014	10.000.	10.000.0	0.050	0.015
Boron (total)	mg/L	0.0.0	0.0	0.0.0	0.0.2	0.0.0	0.0.0	0.002	0.02.	0.02 .	0.011	0.015	0.021	0.001	0.011	0.025	0.0140	0.000	0.0.0
Cadmium (dissolved)	mg/L	0.00009	<0.00001	0.00001	<0.00001	<0.00001	0.00001	<0.00001	<0.0001	0.00003	0.00002	0.0.0	0.02.	0.00002	<0.00001	0.020	0.01.0	0.00002	<0.00001
Cadmium (total)	mg/L											<0.00001	<0.00001	0.0000		<0.00001	<0.000010		
Calcium (dissolved)	mg/L	83.8	84.7	74.7	80.7	82.0	82.5	88.6	90.2	92.1	88.7			100	86.1			81.5	82.8
Calcium (total)	mg/L											91.7	99.5			93.7	91.1		
Chromium (dissolved)	mg/L	0.0007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005			<0.0005	<0.0005
Chromium (total)	mg/L											< 0.0005	<0.0005			0.0005	0.00052		
Cobalt (dissolved)	mg/L	0.00018	<0.00005	<0.00005	<0.00005	<0.0005	<0.00005	<0.00005	<0.00005	0.00007	0.00006			0.00006	<0.0005			<0.00005	<0.00005
Cobalt (total)	mg/L											<0.00005	<0.00005			<0.00005	<0.00010		
Copper (dissolved)	mg/L	0.0038	0.0016	0.0007	0.0013	0.0010	0.0008	0.0006	0.0009	0.0014	0.0014			0.0016	0.0012			0.0008	0.0013
Copper (total)	mg/L											0.0039	0.0009			0.0015	0.00073		
Iron (dissolved)	mg/L	0.02	<0.01	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	0.031	<0.010			<0.010	<0.010			<0.010	<0.010
Iron (total)	mg/L											<0.01	<0.01			<0.01	<0.010		
Lead (dissolved)	mg/L	0.0005	0.0001	<0.0001	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	0.0001			<0.0001	0.0001			<0.0001	<0.0001
Lead (total)	mg/L											0.0001	0.0004			0.0001	<0.00020		
Lithium (dissolved)	mg/L	0.0017	0.0018	0.0017	0.0016	0.0018	0.0018	0.0018	0.0020	0.0022	0.0020			0.0019	0.0019			0.0013	0.0013
Lithium (total)	mg/L											0.0020	0.0022			0.0020	0.00199		
Magnesium (dissolved)	mg/L	37.3	34.9	39.1	37.7	36.8	38.9	39.3	41.8	39.4	38.0			49.3	41.5			28.1	28.5
Magnesium (total)	mg/L											39.8	45.4			39.6	39.2		
Manganese (dissolved)	mg/L	0.0008	<0.0002	0.0007	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0068	0.0012			0.0003	<0.0002			0.0009	0.0013
Manganese (total)	mg/L											<0.0002	<0.0002			<0.0002	<0.00020		
Mercury (dissolved)	mg/L	<0.00002	<0.00002	<0.00002	0.00005	0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002			<0.00002	<0.00002			<0.00002	<0.00002
Mercury (total)	mg/L											<0.00002	<0.00002			<0.00002	<0.000010		
Molybdenum (dissolved)	mg/L	0.0003	0.0012	0.0003	0.0005	0.0003	0.0002	0.0003	0.0003	0.0003	0.0002			0.0002	0.0002			0.0003	0.0004
Molybdenum (total)	mg/L											0.0003	0.0003			0.0002	0.00019		
Nickel (dissolved)	mg/L	0.0011	<0.0002	<0.0002	0.0003	<0.0002	<0.0002	0.0002	<0.0002	0.0015	0.0004			<0.0002	<0.0002			0.0003	<0.0002
Nickel (total)	mg/L	1										<0.0002	0.0002			<0.0002	<0.00040		
Selenium (dissolved)	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005			<0.0005	<0.0005
Selenium (total)	mg/L											<0.0005	<0.0005			<0.0005	<0.00050		-
Silicon (dissolved, as Si)	mg/L	4.8	4.4	4.8	4.6	4.9	4.6	4.2	4.5	4.6	4.9			4.5	4.9			4.1	4.0
Silicon (total, as Si)	mg/L										_	4.8	5.3			4.7	4.4		
Silver (dissolved)	mg/L	0.00007	<0.00005	<0.00005	<0.00005	0.00006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005			<0.00005	<0.00005			<0.00005	<0.00005

		T \\\-! #4	T \\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\	T M-11 #4	T \\\-! #4	T \A/-!! #4	T \A/-11 #4	T \A/-!! #4	T \\\ - #4	T \\\ - #4	T 10/-11 #4	T \A/-11 #4	T \\\-! #4	T \\\ - #4	T \A/-! #4	T \A/-! #4	T \A/-! #4	T \\\-! #C	T \M/-! #C
		Town Well #4		Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4		Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #6	
		10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	20-Nov-17	20-Aug-13	02-Jun-14
		K1H0536-04	K1J0685-04	2051369-02	2081484-04	2111131-04	3051354-04	3110772-02	4060249-02	4081094-01	4110161-01	5051773-02	6050336-05	6081698-04	6111141-02	7040434-04	7111886-03	3081378-02	4060249-01
	T			Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit																		
Silver (total)	mg/L											<0.00005	<0.00005			<0.00005	<0.000050		
Sodium (dissolved)	mg/L	39.9	38.2	40.8	39.4	38.7	41.7	42.4	42.5	44.5	48.5			58.2	50.0			15.2	13.9
Sodium (total)	mg/L											46.9	56.5			52.7	52.1		
Strontium (dissolved)	mg/L	0.436	0.370	0.441	0.405	0.399	0.432	0.400	0.421	0.457	0.438			0.527	0.462			0.282	0.269
Strontium (total)	mg/L											0.425	0.490			0.446	0.486		
Sulphur (dissolved)	mg/L			16	17	15	13	9	16	12	13			18	15			8	10
Sulphur (total)	mg/L											14	16			12	14.0		
Tellurium (dissolved)	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002			<0.0002	<0.0002			<0.0002	<0.0002
Tellurium (total)	mg/L											<0.0002	<0.0002			<0.0002	<0.00050		
Thallium (dissolved)	mg/L	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002			<0.00002	<0.00002			<0.00002	<0.00002
Thallium (total)	mg/L											<0.00002	<0.00002			<0.00002	<0.000020		
Thorium (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001			<0.0001	<0.0001			<0.0001	<0.0001
Thorium (total)	mg/L	1	1									<0.0001	<0.0001			<0.0001	<0.00010		
Tin (dissolved)	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002			<0.0002	<0.0002			<0.0002	<0.0002
Tin (total)	mg/L	1	1									<0.0002	<0.0002			<0.0002	<0.00020		
Titanium (dissolved)	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005			<0.005	<0.005
Titanium (total)	mg/L											<0.005	<0.005			<0.005	<0.0050		
Tungsten (dissolved)	mg/L																		
Tungsten (total)	mg/L																<0.0010		
Uranium (dissolved)	mg/L	0.00107	0.00104	0.00103	0.00109	0.00103	0.00112	0.00105	0.00114	0.00143	0.00123			0.00130	0.00115			0.00105	0.00103
Uranium (total)	mg/L											0.00115	0.00134			0.00124	0.00127		
Vanadium (dissolved)	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			<0.001	<0.001			<0.001	<0.001
Vanadium (total)	mg/L											<0.001	<0.001			<0.001	<0.0010		
Zinc (dissolved)	mg/L	0.016	<0.004	<0.004	0.006	<0.004	<0.004	<0.004	<0.004	<0.004	0.005			<0.004	<0.004			<0.004	<0.004
Zinc (total)	mg/L											<0.004	<0.004			<0.004	<0.0040		
Zirconium (dissolved)	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001			<0.0001	<0.0001			<0.0001	<0.0001
Zirconium (total)	mg/L											<0.0001	0.0002			<0.0001	<0.00010		
Microbiological																			
E. coli (counts)	CFU/100 mL																		
E. coli (MPN)	MPN/100 mL																		
Fecal coliforms (counts)	CFU/100 mL																		
Fecal coliforms (MPN)	MPN/100 mL																		
Total coliforms (counts)	CFU/100 mL																		
Total coliforms (MPN)	MPN/100 mL																		
		1																	1
Miscellaneous Organic Substances																			
Chloroethane	mg/L															<0.0020			
1,2-Dibromoethane	mg/L															<0.0002			
1,2-Dichloropropane	mg/L															<0.0010			
1,3-Dichloropropene	mg/L															<0.0010			
Methyl tert-butyl ether (MTBE)	mg/L	1	1	1							1					<0.0010			
VHw6-10	mg/L	1	1													0.0015			
Vinyl chloride	mg/L															<0.0010			
VPHw	mg/L																		
Manager Hands Annual Control of Control		1	1																
Monocyclic Aromatic Hydrocarbons (MAHs)	, n	1	1													0.000=			
Benzene	mg/L	1	1													<0.0005			
Ethylbenzene	mg/L															<0.0010			
Styrene	mg/L															<0.0010			
Toluene	mg/L	1	1													<0.0010			
Xylenes	mg/L	1	1													<0.0020			
N. C. C.		1	1																
Nutrients		<u> </u>	<u> </u>																

		Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #6	Town Well #6
		10-Aug-11	18-Oct-11	24-May-12	22-Aug-12	20-Nov-12	21-May-13	12-Nov-13	02-Jun-14	18-Aug-14	04-Nov-14	25-May-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	20-Nov-17	20-Aug-13	02-Jun-14
		K1H0536-04	K1J0685-04	2051369-02	2081484-04	2111131-04	3051354-04	3110772-02	4060249-02	4081094-01	4110161-01	5051773-02	6050336-05	6081698-04	6111141-02	7040434-04	7111886-03	3081378-02	4060249-01
				Normal															
Analyte	Unit																		
Ammonia (total, as N)	mg/L	0.03	0.02	<0.020	0.030	0.025	0.024	0.029	<0.020	<0.020	<0.020	0.038	<0.020	0.031	<0.020	0.026	0.024	<0.020	0.024
Nitrate (as N)	mg/L	1.26	1.21	1.19	1.20	0.755	1.36	1.33	1.26	1.55	1.57	1.53	1.72	1.48	1.19	1.39	1.61	0.781	0.839
Nitrate + Nitrite (as N)	mg/L																		
Nitrate + Nitrite (as N) (calculated)	mg/L	1.26	1.21	1.19	1.20	0.755	1.36	1.33	1.26	1.55	1.57	1.53	1.72	1.48	1.19	1.39	1.61	0.781	0.839
Nitrite (as N)	mg/L	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Total kjeldahl nitrogen	mg/L																		
Orthophosphate (dissolved, as P)	mg/L											<0.01	0.04	<0.01	<0.01	<0.010	<0.010		
Phosphorus (dissolved, by ICPMS/ICPOES)	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.11	<0.02			<0.02	<0.02			<0.02	<0.02
Phosphorus (total, by ICPMS/ICPOES)	mg/L											<0.020	<0.02			<0.05	<0.050		
Phosphorus (total, APHA 4500-P)	mg/L																		
Potassium (dissolved)	mg/L	1.75	1.50	2.04	1.62	1.61	1.69	1.67	1.70	1.84	1.90			2.20	1.93			1.00	0.89
Potassium (total)	mg/L											1.86	2.05			1.85	1.89		

		Town Well #6 18-Aug-14 4081094-02 Normal	Town Well #6 04-Nov-14 4110161-02 Normal	Town Well #6 25-May-15 5051773-01 Normal	Town Well #6 25-Aug-15 5081710-01 Normal	Town Well #6 09-Nov-15 5110693-04 Normal	Town Well #6 03-May-16 6050336-04 Normal	Town Well #6 22-Aug-16 6081698-05 Normal	Town Well #6 14-Nov-16 6111141-01 Normal	Town Well #6 05-Apr-17 7040434-05 Normal	Town Well #6 29-Aug-17 7090074-02 Normal	Town Well # 20-Nov-17 7111886-02 Normal
Analyte	Unit											
Field Results												
Conductivity	μS/cm	577	677	587	401	670	693	695	723	635	680	726
Depth to Water	m								1 - 2			1
Dissolved oxygen	mg/L	7.68	7.38	6.40	7.04	6.51	5.61	6.13	5.71		9.27	9.21
Dissolved oxygen (percent)	%	65.3	64.0	57	63.6			52.5	49.8		83.1	78.7
Field measured depth to bottom	m								10.0			
Flow rate - container	L/s											
Ground Elevation	m											
Oxidation reduction potential	mV	172	66	211	46	74	122	234	163	265	31	
рН	1117	7.9	7.4	7.4	7.4	6.6	7.3	7.2	7.3	7.3	0.	7.5
Temperature	°C	8.1	8.1	7.8	10.2	8.2	8.2	8.4	8.0	7.9	9.5	7.9
Lab Results												
Chlorinated Hydrocarbons												
1,2-Dichlorobenzene	mg/L	1								<0.0005	1	
1,3-Dichlorobenzene	mg/L	1								<0.0010	1	
1,4-Dichlorobenzene	mg/L									<0.0010		
1,1-Dichloroethane	mg/L	1								<0.0010	1	
1,2-Dichloroethane	mg/L									<0.0010		
1,1-Dichloroethylene	mg/L									<0.0010		
cis-1,2-Dichloroethylene	mg/L									<0.0010		
trans-1,2-Dichloroethylene	mg/L									<0.0010		
Monochlorobenzene	mg/L									<0.0010		
1,1,2,2-Tetrachloroethane	mg/L									<0.0005		
Tetrachloroethylene	mg/L									<0.0010		
1,1,1-Trichloroethane	mg/L									<0.0010		
1,1,2-Trichloroethane	mg/L									<0.0010		
Trichloroethylene	mg/L									<0.0010		
General												
Alkalinity (bicarbonate, as CaCO3)	mg/L						292	296	308	314	288	304
Alkalinity (carbonate, as CaCO3)	mg/L						<1	<1	<1	<1.0	<1.0	<1.0
Alkalinity (hydroxide, as CaCO3)	mg/L						<1	<1	<1	<1.0	<1.0	<1.0
Alkalinity (phenolphthalein, as CaCO3)	mg/L						<1	<1	<1	<1.0	<1.0	<1.0
Alkalinity (total, as CaCO3)	mg/L	277	291	303	288	295	292	296	308	314	288	304
Bicarbonate Alkalinity (as HCO3)	mg/L						356	361	375	383	352	371
Carbonate Alkalinity (as CO3)	mg/L						<1	<0.6	<0.6	<0.600	<0.600	<0.600
Hydroxide Alkalinity (as OH)	mg/L						<1	<0.3	<0.3	<0.340	<0.340	<0.340
Bromide	mg/L			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chemical Oxygen Demand	mg/L			_	-	-	_	-	-			
Chloride	mg/L	26.2	34.5	28.7	24.8	28.6	24.4	29.2	30.5	31.0	34.4	36.2
Conductivity	μS/cm	634	679	672	618	661	658	666	712	692	655	704
Fluoride	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.11	0.18
Hardness, Total (dissolved as CaCO3)	mg/L	325	322				398	380	333	334	327	
Hardness, Total (total as CaCO3)	mg/L			346	332	328					1	308
pH		7.70	7.86	7.81	7.79	7.72	7.74	7.76	7.89	7.89	8.03	8.00
Sulphate	mg/L	24.1	24.3	24.3	23.8	24.8	25.2	27.1	24.9	27.6	24.4	23.0
Total organic carbon	mg/L	1									1	
Total suspended solids	mg/L	<1	<1	<2	<2	<3	<2	<2	<2	<2	<2.0	8.6
Turbidity	NTU	<0.1	0.1	<0.1	0.2	0.1	<0.1	0.11	0.13	0.16	0.12	0.10
Halogenated Methanes												
Bromodichloromethane	mg/L									<0.0010		
Bromoform	mg/L	 								<0.0010	 	

		Town Well #6 18-Aug-14 4081094-02 Normal	Town Well #6 04-Nov-14 4110161-02 Normal	Town Well #6 25-May-15 5051773-01 Normal	Town Well #6 25-Aug-15 5081710-01 Normal	Town Well #6 09-Nov-15 5110693-04 Normal	Town Well #6 03-May-16 6050336-04 Normal	Town Well #6 22-Aug-16 6081698-05 Normal	Town Well #6 14-Nov-16 6111141-01 Normal	Town Well #6 05-Apr-17 7040434-05 Normal	Town Well #6 29-Aug-17 7090074-02 Normal	Town Well #6 20-Nov-17 7111886-02 Normal
Analyte	Unit											
Carbon tetrachloride	mg/L									<0.0005		
Chloroform	mg/L									<0.0010		
Dibromochloromethane	mg/L									<0.0010		
Dibromomethane	mg/L									<0.0010		
Dichloromethane	mg/L									<0.0030		
Total Trihalomethanes (calculated)	mg/L									<0.0020		
Trichlorofluoromethane	mg/L									<0.0010		
	g/_									10.00.0		
Metals												
Aluminum (dissolved)	mg/L	0.011	<0.005					<0.005	<0.005		<0.0050	
Aluminum (total)	mg/L	0.011	VO.000	<0.005	<0.005	<0.05	<0.005	V0.000	V0.000	<0.005	40.0000	<0.0050
Antimony (dissolved)	mg/L	0.0003	0.0002	VO.000	V0.000	VO.00	V0.000	<0.0001	<0.0001	V0.000	<0.00020	VO.0000
Antimony (dissolved) Antimony (total)	mg/L	0.0003	0.0002	0.0001	<0.0001	<0.001	<0.0001	\0.0001	\0.0001	<0.0001	\J.00020	<0.00020
Artimony (total) Arsenic (dissolved)	mg/L	<0.0005	<0.0005	0.0001	\0.0001	Q0.001	Q0.0001	<0.0005	<0.0005	Q0.000 I	<0.00050	\0.00020
Arsenic (dissolved)	mg/L	<0.0003	<0.0003	<0.0005	<0.0005	<0.005	<0.0005	<0.0003	<0.0003	<0.0005	<0.00030	<0.00050
		0.426	0.146	<0.0005	<0.0005	<0.005	<0.0005	0.460	0.455	<0.0005	0.422	<0.00050
Barium (dissolved)	mg/L	0.136	0.146	0.142	0.146	0.14	0.162	0.169	0.155	0.150	0.133	0.146
Barium (total)	mg/L	-0.0001	-0.0004	0.142	0.146	0.14	0.162	-0.0004	-0.0004	0.150	-0.00010	0.146
Beryllium (dissolved)	mg/L	<0.0001	<0.0001	0.0004	0.0004	0.004	0.0004	<0.0001	<0.0001	0.0004	<0.00010	0.00040
Beryllium (total)	mg/L	0.0004	0.0004	<0.0001	<0.0001	<0.001	<0.0001	0.0004	0.0004	<0.0001	0.00040	<0.00010
Bismuth (dissolved)	mg/L	<0.0001	<0.0001	0.0004	0.0004	0.004	0.0004	<0.0001	<0.0001	0.0004	<0.00010	0.00040
Bismuth (total)	mg/L	0.040	0.000	<0.0001	<0.0001	<0.001	<0.0001	0.044	0.007	<0.0001	0.440	<0.00010
Boron (dissolved)	mg/L	0.012	0.006	0.000	0.007	0.04	0.040	0.014	0.007	0.040	0.143	0.0000
Boron (total)	mg/L	0.00000	0.00004	0.006	0.007	<0.04	0.012	0.00000	0.00004	0.016	0.000040	0.0068
Cadmium (dissolved)	mg/L	0.00002	<0.00001	0.00004	0.00004	0.0004	0.00004	0.00002	<0.00001	0.00004	<0.000010	0.000040
Cadmium (total)	mg/L			<0.00001	<0.00001	<0.0001	<0.00001			<0.00001		<0.000010
Calcium (dissolved)	mg/L	82.7	84.3					96.8	85.7		84.4	
Calcium (total)	mg/L			90.4	87.9	87.0	105			89.6		83.6
Chromium (dissolved)	mg/L	<0.0005	<0.0005					<0.0005	<0.0005		<0.00050	
Chromium (total)	mg/L			<0.0005	<0.0005	<0.005	<0.0005			0.0006		0.00062
Cobalt (dissolved)	mg/L	0.00007	0.00006					0.00007	<0.00005		<0.00010	
Cobalt (total)	mg/L			<0.00005	<0.00005	<0.0005	<0.00005			<0.00005		<0.00010
Copper (dissolved)	mg/L	0.0028	0.0024					0.0014	0.0008		0.00143	
Copper (total)	mg/L			0.0010	0.0016	<0.002	0.0008			0.0013		0.00153
Iron (dissolved)	mg/L	0.033	0.013					0.012	<0.010		0.019	
Iron (total)	mg/L			0.01	0.01	<0.10	<0.01			<0.01		<0.010
Lead (dissolved)	mg/L	0.0002	<0.0001					<0.0001	<0.0001		<0.00020	
Lead (total)	mg/L			0.0001	0.0001	<0.001	0.0001			<0.0001		<0.00020
Lithium (dissolved)	mg/L	0.0014	0.0013					0.0012	0.0012		0.00140	
Lithium (total)	mg/L			0.0014	0.0012	0.001	0.0017			0.0013		0.00115
Magnesium (dissolved)	mg/L	28.7	27.1					33.6	28.8		28.2	
Magnesium (total)	mg/L			29.2	27.1	26.8	33.0			26.8		24.0
Manganese (dissolved)	mg/L	0.0082	0.0014					0.0011	0.0008		0.00294	
Manganese (total)	mg/L			0.0011	0.0010	<0.002	0.0007			0.0007		0.00077
Mercury (dissolved)	mg/L	<0.00002	<0.00002					<0.00002	<0.00002		<0.000010	
Mercury (total)	mg/L			<0.00002		<0.00002	<0.00002			<0.00002		<0.000010
Molybdenum (dissolved)	mg/L	0.0004	0.0004					0.0003	0.0002		0.00030	
Molybdenum (total)	mg/L			0.0005	0.0003	<0.001	0.0003			0.0003		0.00026
Nickel (dissolved)	mg/L	0.0012	0.0004					0.0002	0.0003		<0.00040	
Nickel (total)	mg/L			<0.0002	0.0006	<0.002	0.0002			0.0002		<0.00040
Selenium (dissolved)	mg/L	<0.0005	<0.0005					<0.0005	<0.0005		<0.00050	
Selenium (total)	mg/L			<0.0005	<0.0005	<0.005	<0.0005			<0.0005		<0.00050
Silicon (dissolved, as Si)	mg/L	4.4	4.5					4.2	4.5		4.0	
Silicon (total, as Si)	mg/L			4.7	4.3	<5	5.2			4.3		3.7
Silver (dissolved)	mg/L	<0.00005	<0.00005					<0.00005	<0.00005		<0.000050	

40811 No	-Aug-14 i1094-02 lormal 15.4 0.301 8 0.0002 0.00002 0.00002 0.0001 0.0005	04-Nov-14 4110161-02 Normal 17.9 0.290 7 <0.0002 <0.00002 <0.0005 0.00114 <0.001	25-May-15 5051773-01 Normal <0.00005 18.9 0.296 9 <0.0002 <0.0002 <0.0001 <0.0005 0.00112 <0.001	25-Aug-15 5081710-01 Normal 0.00154 15.1 0.298 8 <0.0002 <0.00002 <0.00001 <0.0005 0.00111 <0.001	09-Nov-15 5110693-04 Normal <0.0005 15.9 0.27 <10 <0.002 <0.0002 <0.001 <0.001 <0.001	03-May-16 6050336-04 Normal <0.00005 17.9 0.325 11 <0.0002 <0.00002 <0.0001 <0.0005	22-Aug-16 6081698-05 Normal 17.9 0.344 13 <0.0002 <0.0001 <0.0005 0.00117 <0.001	14-Nov-16 6111141-01 Normal 16.7 0.312 9 <0.0002 <0.00002 <0.0001 <0.0005	05-Apr-17 7040434-05 Normal <0.00005 17.1 0.294 6 <0.0002 <0.0001 <0.0002 <0.0005	29-Aug-17 7090074-02 Normal 17.0 0.258 7.8 <0.00050 <0.00010 <0.00020 <0.00050	20-Nov-1 7111886-0 Normal <0.00005 15.7 0.285 7.9 <0.00002 <0.000002 <0.00010 0.00100
40811 No	81094-02 Ilormal	4110161-02 Normal 17.9 0.290 7 <0.0002 <0.00002 <0.0001 <0.0005 0.00114 <0.001	5051773-01 Normal <0.00005 18.9 0.296 9 <0.0002 <0.0002 <0.0001 <0.0002 0.0005	5081710-01 Normal 0.00154 15.1 0.298 8 <0.0002 <0.00002 <0.0001 <0.0005	\$110693-04 Normal <0.0005 15.9 0.27 <10 <0.002 <0.0002 <0.001 <0.002	6050336-04 Normal <0.00005 17.9 0.325 11 <0.0002 <0.00002 <0.0001 <0.0002	17.9 17.9 0.344 13 <0.0002 <0.0001 <0.0005 0.00117	6111141-01 Normal 16.7 0.312 9 <0.0002 <0.00002 <0.00001 <0.0002 0.0005	7040434-05 Normal <0.00005 17.1 0.294 6 <0.0002 <0.0001 <0.0002 <0.0005	7090074-02 Normal 17.0 0.258 7.8 <0.00050 <0.00010 <0.00020 <0.00050	Normal <0.00005 15.7 0.285 7.9 <0.00050 <0.00010 <0.00020 <0.0050
No No No No No No No No	15.4 0.301 8 0.0002 0.0002 0.00002 0.00002 0.0005 0.0014	17.9 0.290 7 <0.0002 <0.0002 <0.0005 0.00114 <0.001	Normal <0.00005 18.9 0.296 9 <0.0002 <0.00002 <0.00001 <0.0005 0.00112	Normal 0.00154 15.1 0.298 8 <0.0002 <0.00002 <0.00001 <0.0005 0.00111	Normal <0.0005 15.9 0.27 <10 <0.002 <0.0002 <0.001 <0.005 0.0011	\text{Normal} \text{Normal} \text{Normal} \text{Normal} \text{Volume 1.00005} \text{17.9} \text{0.325} \text{11} \text{<0.0002} \text{<0.00002} \text{<0.00001} \text{<0.00002} \text{<0.0005}	17.9 0.344 13 <0.0002 <0.0001 <0.0005 0.00117	Normal 16.7 0.312 9 <0.0002 <0.0001 <0.0005 0.00106	\text{Normal} \text{Normal} \text{Normal} \text{Normal} \text{Volume 1.00005} \text{17.1} \text{0.294} \text{6} \text{<0.0002} \text{<0.00002} \text{<0.00001} \text{<0.0002} \text{<0.0005}	17.0 0.258 7.8 <0.00050 <0.00010 <0.00020 <0.00050	 Normal <0.00008 15.7 0.285 7.9 <0.0005 <0.0002 <0.0002 <0.0050 <0.0010
L 1: L 0.: L 0.: L <0.:	0.301 8 0.0002 0.00002 0.00001 0.0002 0.0005 0.00114	0.290 7 <0.0002 <0.00002 <0.0001 <0.0005 0.00114 <0.001	18.9 0.296 9 <0.0002 <0.0001 <0.0002 <0.0005	15.1 0.298 8 <0.0002 <0.00002 <0.00002 <0.0005 0.00111	15.9 0.27 <10 <0.002 <0.0002 <0.001 <0.005 0.0011	17.9 0.325 11 <0.0002 <0.00002 <0.00001 <0.0002	0.344 13 <0.0002 <0.00002 <0.0001 <0.0005 0.00117	0.312 9 <0.0002 <0.0001 <0.0005 0.00106	17.1 0.294 6 <0.0002 <0.00001 <0.0002 <0.0005	0.258 7.8 <0.00050 <0.000020 <0.00010 <0.00050	15.7 0.285 7.9 <0.0005 <0.00001 <0.0001 <0.0001
L	0.301 8 0.0002 0.00002 0.00001 0.0002 0.0005 0.00114	0.290 7 <0.0002 <0.00002 <0.0001 <0.0005 0.00114 <0.001	18.9 0.296 9 <0.0002 <0.0001 <0.0002 <0.0005	15.1 0.298 8 <0.0002 <0.00002 <0.00002 <0.0005 0.00111	15.9 0.27 <10 <0.002 <0.0002 <0.001 <0.005 0.0011	17.9 0.325 11 <0.0002 <0.00002 <0.00001 <0.0002	0.344 13 <0.0002 <0.00002 <0.0001 <0.0005 0.00117	0.312 9 <0.0002 <0.00002 <0.0001 <0.0005	17.1 0.294 6 <0.0002 <0.00001 <0.0002 <0.0005	0.258 7.8 <0.00050 <0.000020 <0.00010 <0.00050	15.7 0.285 7.9 <0.0006 <0.0000 <0.0001 <0.0005 <0.0001
L	0.301 8 0.0002 0.00002 0.00001 0.0002 0.0005 0.00114	0.290 7 <0.0002 <0.00002 <0.0001 <0.0005 0.00114 <0.001	0.296 9 <0.0002 <0.00002 <0.00001 <0.0002 0.0005	0.298 8 <0.0002 <0.00002 <0.0001 <0.0005 0.00111	0.27 <10 <0.002 <0.0002 <0.001 <0.005 0.0011	0.325 11 <0.0002 <0.00002 <0.0001 <0.0002	0.344 13 <0.0002 <0.00002 <0.0001 <0.0005 0.00117	0.312 9 <0.0002 <0.00002 <0.0001 <0.0005	0.294 6 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	0.258 7.8 <0.00050 <0.000020 <0.00010 <0.00050	0.285 7.9 <0.0000 <0.0000 <0.0000 <0.0005 <0.0001
L 0.0 L 0.0	0.301 8 0.0002 0.00002 0.00001 0.0002 0.0005 0.00114	0.290 7 <0.0002 <0.00002 <0.0001 <0.0005 0.00114 <0.001	0.296 9 <0.0002 <0.00002 <0.00001 <0.0002 0.0005	0.298 8 <0.0002 <0.00002 <0.0001 <0.0005 0.00111	0.27 <10 <0.002 <0.0002 <0.001 <0.005 0.0011	0.325 11 <0.0002 <0.00002 <0.0001 <0.0002	0.344 13 <0.0002 <0.00002 <0.0001 <0.0005 0.00117	0.312 9 <0.0002 <0.00002 <0.0001 <0.0005	0.294 6 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	0.258 7.8 <0.00050 <0.000020 <0.00010 <0.00050	0.285 7.9 <0.0000 <0.0000 <0.0000 <0.0005 <0.001
L 0.0 L <0.0 L <	8 0.0002 0.00002 0.0001 0.0002 0.0005 0.00114	7 <0.0002 <0.00002 <0.0001 <0.0005 0.00114 <0.001	0.296 9 <0.0002 <0.00002 <0.00001 <0.0002 0.0005	0.298 8 <0.0002 <0.00002 <0.0001 <0.0005 0.00111	0.27 <10 <0.002 <0.0002 <0.001 <0.005 0.0011	0.325 11 <0.0002 <0.00002 <0.0001 <0.0002	13 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	9 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	0.294 6 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	7.8 <0.00050 <0.000020 <0.00010 <0.00020 <0.0050	0.285 7.9 <0.0000 <0.0000 <0.0000 <0.0005 <0.0001
L	8 0.0002 0.00002 0.0001 0.0002 0.0005 0.00114	7 <0.0002 <0.00002 <0.0001 <0.0005 0.00114 <0.001	9 < 0.0002 < 0.00002 < 0.0001 < 0.0002 < 0.0005 < 0.0012	8	<0.002 <0.0002 <0.0001 <0.002 <0.005	11 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	13 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	9 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	6 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	7.8 <0.00050 <0.000020 <0.00010 <0.00020 <0.0050	<0.0000 <0.0000 <0.0000 <0.0000 <0.0005
L	0.0002 0.00002 0.00001 0.0002 0.0005 0.00114	<0.0002 <0.00002 <0.0001 <0.0002 <0.005 0.00114	9 < 0.0002 < 0.00002 < 0.0001 < 0.0002 < 0.0005 < 0.0012	8	<0.002 <0.0002 <0.0001 <0.002 <0.005	11 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	<0.0002 <0.00002 <0.0001 <0.0002 <0.005	<0.0002 <0.00002 <0.0001 <0.0002 <0.005	6 <0.0002 <0.00002 <0.0001 <0.0002 <0.0005	<0.00050 <0.000020 <0.00010 <0.00020 <0.0050	7.9 <0.000 <0.000 <0.000 <0.000 <0.000
L	0.0002 0.00002 0.00001 0.0002 0.0005 0.00114	<0.0002 <0.00002 <0.0001 <0.0002 <0.005 0.00114	<0.0002 <0.00002 <0.0001 <0.0002 <0.0005	<0.0002 <0.00002 <0.0001 <0.0002 <0.005	<0.002 <0.0002 <0.001 <0.002 <0.005	<0.0002 <0.00002 <0.0001 <0.0002 <0.005	<0.0002 <0.00002 <0.0001 <0.0002 <0.005	<0.0002 <0.00002 <0.0001 <0.0002 <0.005	<0.0002 <0.00002 <0.0001 <0.0002 <0.005	<0.00050 <0.000020 <0.00010 <0.00020 <0.0050	<0.000 <0.000 <0.000 <0.000 <0.005
L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L	0.00002 0.00001 0.0002 0.0005 0.00114	<0.00002 <0.0001 <0.0002 <0.005 0.00114 <0.001	<0.0002 <0.00002 <0.0001 <0.0002 <0.0005	<0.0002 <0.00002 <0.0001 <0.0002 <0.005	<0.002 <0.0002 <0.001 <0.002 <0.005	<0.0002 <0.00002 <0.0001 <0.0002 <0.005	<0.00002 <0.0001 <0.0002 <0.005	<0.0002 <0.0001 <0.0002 <0.005	<0.0002 <0.00002 <0.0001 <0.0002 <0.005	<0.00020 <0.00010 <0.00020 <0.0050	<0.000 <0.000 <0.000 <0.000
L	0.00002 0.00001 0.0002 0.0005 0.00114	<0.00002 <0.0001 <0.0002 <0.005 0.00114 <0.001	<0.00002 <0.0001 <0.0002 <0.005	<0.00002 <0.0001 <0.0002 <0.005	<0.0002 <0.001 <0.002 <0.05	<0.0002 <0.0001 <0.0002 <0.005	<0.00002 <0.0001 <0.0002 <0.005	<0.00002 <0.0001 <0.0002 <0.005	<0.0002 <0.0001 <0.0002 <0.005	<0.00020 <0.00010 <0.00020 <0.0050	<0.000 <0.000 <0.000 <0.000
L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L	0.0001	<0.0001 <0.0002 <0.005 0.00114 <0.001	<0.00002 <0.0001 <0.0002 <0.005	<0.00002 <0.0001 <0.0002 <0.005	<0.0002 <0.001 <0.002 <0.05	<0.0002 <0.0001 <0.0002 <0.005	<0.0001 <0.0002 <0.005	<0.0001 <0.0002 <0.005	<0.0002 <0.0001 <0.0002 <0.005	<0.00010 <0.00020 <0.0050	<0.0000 <0.000 <0.000 <0.005
L	0.0001	<0.0001 <0.0002 <0.005 0.00114 <0.001	<0.0001 <0.0002 <0.005	<0.0001 <0.0002 <0.005	<0.001 <0.002 <0.05	<0.0001 <0.0002 <0.005	<0.0001 <0.0002 <0.005	<0.0001 <0.0002 <0.005	<0.0001 <0.0002 <0.005	<0.00010 <0.00020 <0.0050	<0.000 <0.000 <0.005
L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L <0.0 L	0.0002	<0.0002 <0.005 0.00114 <0.001	<0.0001 <0.0002 <0.005	<0.0001 <0.0002 <0.005	<0.001 <0.002 <0.05	<0.0001 <0.0002 <0.005	<0.0002 <0.005	<0.0002 <0.005	<0.0001 <0.0002 <0.005	<0.00020 <0.0050	<0.000 <0.000 <0.000
L	0.0002	<0.0002 <0.005 0.00114 <0.001	<0.0002 <0.005	<0.0002 <0.005	<0.002 <0.05	<0.0002	<0.0002 <0.005	<0.0002 <0.005	<0.0002	<0.00020 <0.0050	<0.000 <0.005 <0.001
L <0.0 L <0.0 L <0.0 L	.00114	<0.005 0.00114 <0.001	<0.0002 <0.005	<0.0002 <0.005	<0.002 <0.05	<0.0002	<0.005	<0.005	<0.0002	<0.0050	<0.000 <0.005 <0.007
L <0 L <0 L L 0.00 L L 0.00 L 0.0	.00114	<0.005 0.00114 <0.001	<0.005 0.00112	<0.005 0.00111	<0.05 0.0011	<0.005	<0.005	<0.005	<0.005	<0.0050	<0.005
L <0 L L L L L L L C L L C L C L C C C C C	.00114	0.00114	<0.005 0.00112	<0.005 0.00111	<0.05 0.0011	<0.005	0.00117	0.00106	<0.005		<0.005
L	.00114	0.00114	0.00112	0.00111	0.0011		0.00117	0.00106			<0.00
L 0.0) L < 0.0) L < 0.1 L < 0.1 L < 0.1	:0.001	<0.001	0.00112	0.00111	0.0011					0.00109	<0.001
L 0.00 L <00 L <00 L 0.01	:0.001	<0.001				0.00133			0.00109	0.00109	
L 0.0) L <0 L <0 L 0.1	:0.001	<0.001				0.00133			0.00109	0.00109	
L <0 L <0 L 0.0 L 0.0	:0.001	<0.001				0.00133			0.00109	0.00109	0.0010
L <0 L 0.1 L 0.1						0.00133	<0.001	0.004	0.00109		0.0010
L 0.1			<0.001	<0.001	<0.01		< 0.001	0.001			
L 0.	0.010	0.005	<0.001	<0.001	<0.01			<0.001		<0.0010	
L	0.010	0.005			\0.01	<0.001			<0.001		<0.00
							< 0.004	<0.004		0.0100	ĺ
n -			<0.004	0.016	<0.04	<0.004			0.004		<0.004
L <0.	0.0001	<0.0001					<0.0001	<0.0001		<0.00010	1
L L			<0.0001	<0.0001	<0.001	<0.0001			<0.0001		<0.000
											<u> </u>
0 mL											
00 mL											
0 mL											
00 mL											
0 mL											
00 mL											
JO IIIL											
L									<0.0020		 L
L								-	<0.0002	-	
L								-	<0.0010	-	
									<0.0010		
									<0.0010		
									<0.0010		
_			1						< 0.0005		
			 				1				
			 								
7 I											
			+						<∪.∪∪∠∪		
										Country Coun	Country Coun

		Town Well #6	Town Well #6	Town Well #6	Town Well #6	Town Well #6	Town Well #6	Town Well #6	Town Well #6	Town Well #6	Town Well #6	Town Well #6
		18-Aug-14	04-Nov-14	25-May-15	25-Aug-15	09-Nov-15	03-May-16	22-Aug-16	14-Nov-16	05-Apr-17	29-Aug-17	20-Nov-17
		4081094-02	4110161-02	5051773-01	5081710-01	5110693-04	6050336-04	6081698-05	6111141-01	7040434-05	7090074-02	7111886-02
		Normal										
Analyte	Unit											
Ammonia (total, as N)	mg/L	<0.020	<0.020	<0.020	<0.020	0.020	<0.020	0.020	0.037	0.030	0.021	0.028
Nitrate (as N)	mg/L	0.993	1.23	0.890	1.01	0.925	0.978	1.03	0.976	1.09	1.11	1.30
Nitrate + Nitrite (as N)	mg/L											
Nitrate + Nitrite (as N) (calculated)	mg/L	0.993	1.23	0.890	1.01	0.925	0.978	1.03	0.976	1.09	1.11	1.30
Nitrite (as N)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Total kjeldahl nitrogen	mg/L											
Orthophosphate (dissolved, as P)	mg/L			<0.01	<0.01							
Phosphorus (dissolved, by ICPMS/ICPOES)	mg/L	0.07	<0.02					<0.02	<0.02		<0.050	
Phosphorus (total, by ICPMS/ICPOES)	mg/L			<0.020	0.03	<0.2	<0.02			<0.05		<0.050
Phosphorus (total, APHA 4500-P)	mg/L											
Potassium (dissolved)	mg/L	0.95	0.94					1.10	0.99		0.89	
Potassium (total)	mg/L			1.03	0.99	0.8	1.06			0.93		0.91

Water Quality Results

Guideline Notes for Reports for CSRD Refuse Disposal Sites Water Quality Results

1. Notes for Guidelines for Canadian Drinking Water Quality - Maximum Acceptable Concentrations (GCDWQ MAC) Note 1.1 for Turbidity:

Waterworks systems that use a surface water source or a groundwater source under the direct influence of surface water should filter the source water to meet health-based turbidity limits, as defined for specific treatment technologies. Where possible, filtration systems should be designed and operated to reduce turbidity levels as low as possible, with a treated water turbidity target of less than 0.1 NTU at all times. Where this is not achievable, the treated water turbidity levels from individual filters should meet the requirements described in GCDWQ.

For systems that use groundwater that is not under the direct influence of surface water, which are considered less vulnerable to faecal contamination, turbidity should generally be below 1.0 NTU.

For effective operation of the distribution system, it is good practice to ensure that water entering the distribution system has turbidity levels below 1.0 NTU.

Note 1.2 for Bromodichloromethane:

The maximum acceptable concentration (MAC) for trihalomethanes (THMs) in drinking water is 0.100 mg/L (100 µg/L) based on a locational running annual average of a minimum of quarterly samples taken at the point in the distribution system with the highest potential THM levels. Trihalomethanes refers to the total of chloroform, bromodichloromethane, dibromochloromethane and bromoform compounds.

Note 1.3 for Bromoform:

The maximum acceptable concentration (MAC) for trihalomethanes (THMs) in drinking water is 0.100 mg/L (100 µg/L) based on a locational running annual average of a minimum of quarterly samples taken at the point in the distribution system with the highest potential THM levels. Trihalomethanes refers to the total of chloroform, bromodichloromethane, dibromochloromethane and bromoform compounds.

Note 1.4 for Chloroform:

The maximum acceptable concentration (MAC) for trihalomethanes (THMs) in drinking water is 0.100 mg/L (100 µg/L) based on a locational running annual average of a minimum of quarterly samples taken at the point in the distribution system with the highest potential THM levels. Trihalomethanes refers to the total of chloroform, bromodichloromethane, dibromochloromethane and bromoform compounds.

Note 1.5 for Dibromochloromethane:

The maximum acceptable concentration (MAC) for trihalomethanes (THMs) in drinking water is 0.100 mg/L (100 µg/L) based on a locational running annual average of a minimum of quarterly samples taken at the point in the distribution system with the highest potential THM levels. Trihalomethanes refers to the total of chloroform, bromodichloromethane, dibromochloromethane and bromoform compounds.

Note 1.6 for Total Trihalomethanes (calculated):

Trihalomethanes refers to the total of chloroform, bromodichloromethane, dibromochloromethane and bromoform compounds. The maximum acceptable concentration (MAC) for trihalomethanes (THMs) in drinking water is 0.100 mg/L (100 µg/L) based on a locational running annual average of a minimum of quarterly samples taken at the point in the distribution system with the highest potential THM levels. Utilities should make every effort to maintain concentrations as low as reasonably achievable without compromising the effectiveness of disinfection.

Note 1.7 for Arsenic (dissolved):

Every effort should be made to maintain arsenic levels in drinking water as low as reasonably achievable.

Note 1.8 for Arsenic (total):

Every effort should be made to maintain arsenic levels in drinking water as low as reasonably achievable.

Note 1.9 for E. coli (counts):

MAC is none detectable per 100 mL

Note 1.10 for E. coli (MPN):

MAC is none detectable per 100 mL

Note 1.11 for Fecal coliforms (counts):

The GCDWQ does not have a guideline for fecal coliforms. The GCDWQ were revised in 2006 when the guideline for fecal coliforms was deleted, and a guideline for E. coli was added. However the GCDWQ has a guideline for total coliforms that includes the following statement: "The MAC of total coliforms in water leaving a treatment plant in a public system and throughout semi-public and private supply systems is none detectable per 100 mL." Therefore a guideline of none detectable per 100 mL was used for fecal coliforms for this report.

Note that the Drinking Water Protection Regulation (2003), under the BC Drinking Water Protection Act, has a water quality standard for potable water for fecal coliforms of "No detectable fecal coliform bacteria per 100 ml".

Note 1.12 for Fecal coliforms (MPN):

The GCDWQ does not have a guideline for fecal coliforms. The GCDWQ were revised in 2006 when the guideline for fecal coliforms was deleted, and a guideline for E. coli was added. However the GCDWQ has a guideline for total coliforms that includes the following statement: "The MAC of total coliforms in water leaving a treatment plant in a public system and throughout semi-public and private supply systems is none detectable per 100 mL." Therefore a guideline of none detectable per 100 mL was used for fecal coliforms for this report.

Note that the Drinking Water Protection Regulation (2003), under the BC Drinking Water Protection Act, has a water quality standard for potable water for fecal coliforms of "No detectable fecal coliform bacteria per 100 ml".

Note 1.13 for Total coliforms (counts):

The maximum acceptable concentration (MAC) of total coliforms in water leaving a treatment plant and in non-disinfected groundwater leaving the well is none detectable per 100 mL.

Total coliforms should be monitored in the distribution system because they are used to indicate changes in water quality. Detection of total coliforms from consecutive samples from the same site or from more than 10% of the samples collected in a given sampling period should be investigated.

Note 1.14 for Total coliforms (MPN):

Water Quality Results

The maximum acceptable concentration (MAC) of total coliforms in water leaving a treatment plant and in non-disinfected groundwater leaving the well is none detectable per 100 mL.

Total coliforms should be monitored in the distribution system because they are used to indicate changes in water quality. Detection of total coliforms from consecutive samples from the same site or from more than 10% of the samples collected in a given sampling period should be investigated.

Note 1.15 for Vinyl chloride:

Every effort should be made to maintain vinyl chloride levels in drinking water as low as reasonably achievable.

Note 1.16 for Nitrate + Nitrite (as N):

The MAC for Nitrate (as N) is 10 mg/L

Note 1.17 for Nitrate + Nitrite (as N) (calculated):

The MAC for Nitrate (as N) is 10 mg/L

2. Notes for Guidelines for Canadian Drinking Water Quality - Aesthetic Objectives (GCDWQ AO)

Note 2.1 for pH:

The operational guideline for pH is a range of 7.0 to 10.5 in finished drinking water.

Note 2.2 for pH:

The operational guideline for pH is a range of 7.0 to 10.5 in finished drinking water.

Note 2.3 for Sulphate:

There may be a laxative effect in some individuals when sulphate levels exceed 500 mg/L. Health authorities should be notified of drinking water sources containing above 500 mg/L.

Note 2.4 for Aluminum (dissolved):

This is an operational guidance value, designed to apply only to drinking water treatment plants using aluminum-based coagulants. The operational guidance value of 0.1 mg/L applies to conventional treatment plants, and 0.2 mg/L applies to other types of treatment systems.

Note 2.5 for Aluminum (total):

This is an operational guidance value, designed to apply only to drinking water treatment plants using aluminum-based coagulants. The operational guidance value of 0.1 mg/L applies to conventional treatment plants, and 0.2 mg/L applies to other types of treatment systems.

3. Notes for BC CSR, Schedule 3.2, Generic Numerical Water Standards for Freshwater Aquatic Life (2017 and updates) (BC CSR AW(F))

General Notes:

Aquatic life standards assume minimum 1:10 dilution available, and are to protect freshwater life.

Standards for all organic substances are for total substance concentrations. Any water sample to be analyzed for organic substances should not be filtered.

Standards for surface water samples to be analyzed for heavy metals, metalloids and inorganic ions are total substance concentrations. In addition, it is recommended that surface water samples being analyzed for heavy metals, metalloids and inorganic ions should also be analyzed for dissolved substance concentrations.

Standards for groundwater samples for heavy metals, metalloids and inorganic ions are for dissolved substance concentrations. In addition, it is recommended that groundwater samples being analyzed for heavy metals, metalloids and inorganic ions should also be analyzed for total substance concentrations.

Note 3.1 for Fluoride:

The standard for fluoride is:

2000 μg/L @ H < 50

3000 µg/L @ H ≥ 50

Where H means water hardness in mg/L as CaCO3.

Note 3.2 for Sulphate:

The standard for sulfate is:

1280 mg/L @ H ≤ 30

2180 mg/L @ H 31 - 75

3090 mg/L @ H 76 - 180

4290 mg/L @ H > 180

Where H means water hardness in mg/L as CaCO3.

Note 3.3 for Cadmium (dissolved):

The standard for cadmium is as follows:

 $0.5 \mu g/L @ H < 30$

1.5 μg/L @ H 30 - < 90

2.5 μg/L @ H 90 - < 150

3.5 µg/L @ H 150 - < 210

4 μg/L @ H ≥ 210

Where H means water hardness in mg/L as CaCO3.

Note 3.4 for Cadmium (total):

The standard for cadmium is as follows:

 $0.5 \mu g/L @ H < 30$

1.5 μg/L @ H 30 - < 90

2.5 μg/L @ H 90 - < 150

3.5 µg/L @ H 150 - < 210

4 µg/L @ H ≥ 210

Where H means water hardness in mg/L as CaCO3.

Note 3.5 for Chromium (dissolved):

Water Quality Results

Analytical results for chromium (all species) in water may be used to demonstrate compliance with the standards. Where the standards cannot be met based on analytical results for chromium (all species), chromium speciation may be necessary. Standard is 10 µg/L for chromium, hexavalent. Standard is 90 µg/L for chromium, trivalent. The standard of 10 µg/L was used to identify exceedances for dissolved chromium in order to demonstrate compliance with the standards.

Note 3.6 for Chromium (total):

Analytical results for chromium (all species) in water may be used to demonstrate compliance with the standards. Where the standards cannot be met based on analytical results for chromium (all species), chromium speciation may be necessary. Standard is 10 µg/L for chromium, hexavalent. Standard is 90 µg/L for chromium, trivalent. The standard of 10 µg/L was used to identify exceedances for total chromium in order to demonstrate compliance with the standards.

Note 3.7 for Copper (dissolved):

```
The standard for copper is as follows:
20 μg/L @ H < 50
```

30 μg/L @ H 50 - < 75

40 μg/L @ H 75 - < 100

50 μg/L @ H 100 - < 125

60 μg/L @ H 125 - < 150

70 μg/L @ H 150 - < 175

80 μg/L @ H 175 - < 200

90 µg/L @ H ≥ 200

Where H means water hardness in mg/L as CaCO3.

Note 3.8 for Copper (total):

The standard for copper is as follows:

20 μg/L @ H < 50

30 μg/L @ H 50 - < 75

40 μg/L @ H 75 - < 100

50 μg/L @ H 100 - < 125

60 μg/L @ H 125 - < 150

70 μg/L @ H 150 - < 175

80 µg/L @ H 175 - < 200

90 µg/L @ H ≥ 200

Where H means water hardness in mg/L as CaCO3.

Note 3.9 for Lead (dissolved):

The standard for lead is as follows:

40 μg/L @ H < 50

50 μg/L @ H 50 - < 100

 $60 \mu g/L @ H 100 - < 200$

110 μg/L @ H 200 - < 300

160 µg/L @ ≥ 300

Where H means water hardness in mg/L as CaCO3.

Note 3.10 for Lead (total):

The standard for lead is as follows:

40 μg/L @ H < 50

50 μg/L @ H 50 - < 100

60 μg/L @ H 100 - < 200

110 μ g/L @ H 200 - < 300

160 μ g/L @ ≥ 300

Where H means water hardness in mg/L as CaCO3.

Note 3.11 for Nickel (dissolved):

The standard for nickel is as follows:

250 μg/L @ H < 60

650 µg/L @ H 60 - < 120

 $1,100 \mu g/L @ H 120 - < 180$

1,500 µg/L @ H ≥ 180

Where H means water hardness in mg/L as CaCO3.

Note 3.12 for Nickel (total):

The standard for nickel is as follows:

 $250 \mu g/L @ H < 60$

650 ug/L @ H 60 - < 120

 $1,100 \mu g/L @ H 120 - < 180$

1,500 µg/L @ H ≥ 180

Where H means water hardness in mg/L as CaCO3.

Note 3.13 for Silver (dissolved):

The standard for silver is:

 $0.5 \mu g/L @ H \le 100$

 $15 \mu g/L @ H > 100$

Where H means water hardness in mg/L as CaCO3.

Note 3.14 for Silver (total):

Water Quality Results

```
The standard for silver is:
```

 $0.5 \mu g/L @ H \le 100$

 $15 \mu g/L @ H > 100$

Where H means water hardness in mg/L as CaCO3.

Note 3.15 for Zinc (dissolved):

The standard for zinc is as follows:

 $75 \mu g/L @ H < 90$

 $150 \mu g/L @ H = 90 - < 100$

900 μ g/L @ H = 100 - < 200

1,650 µg/L @ H = 200 - < 300

 $2,400 \mu g/L @ H = 300 - < 400$

 $3,150 \mu g/L @ H = 400 - < 500$

If H ≥ 500 then use following formula:

Standard (μ g/L) = 10 x [7.5 +{(0.75)(H - 90)}]

Where H means water hardness in mg/L as CaCO3.

There are special ministry approval and data reporting requirements for water hardness values ≥ 500 mg/L as CaCO3.

Reference is Schedule 3.2 and Protocol 10.

Note 3.16 for Zinc (total):

The standard for zinc is as follows:

 $75 \,\mu g/L @ H < 90$

 $150 \mu g/L @ H = 90 - < 100$

900 μg/L @ H = 100 - < 200

1,650 µg/L @ H = 200 - < 300

2,400 µg/L @ H = 300 - < 400

3,150 µg/L @ H = 400 - < 500

If H ≥ 500 then use following formula:

Standard (μ g/L) = 10 x [7.5 +{(0.75)(H – 90)}] Where H means water hardness in mg/L as CaCO3.

There are special ministry approval and data reporting requirements for water hardness values ≥ 500 mg/L as CaCO3.

Reference is Schedule 3.2 and Protocol 10.

Note 3.17 for VHw6-10:

VHw6-10 - Volatile Hydrocarbons (nC6-nC10) in water as defined in the 2015 British Columbia Environmental Laboratory Manual, as updated from time to time. Standard is applicable at all sites, irrespective of water use.

Note 3.18 for VPHw:

VPHw - Volatile Petroleum Hydrocarbons in water as defined in the 2015 British Columbia Environmental Laboratory Manual, as updated from time to time.

Note 3.19 for Ammonia (total, as N):

Standard varies with pH and temperature. 10 degrees C is assumed. Consult a director for further advice.

The standard for ammonia, total (as N) is:

1,310 µg/L @ pH ≥ to 8.5

3,700 µg/L @ pH 8.0 - < 8.5

11,300 μg/L @ pH 7.5 - < 8.0

18,500 μg/L @ pH 7.0 - < 7.5

18,400 μ g/L @ pH < 7.0 Note 3.20 for Nitrate (as N):

Standard may not protect all amphibians. Consult director for further advice.

Note 3.21 for Nitrate + Nitrite (as N):

Standard may not protect all amphibians. Consult director for further advice.

Note 3.22 for Nitrate + Nitrite (as N) (calculated):

Standard may not protect all amphibians. Consult director for further advice.

Note 3.23 for Nitrite (as N):

Standard varies with chloride concentration. Consult a director for further advice.

The standard for nitrite (as N) is:

200 μg/L (Cl < 2 mg/L)

 $400 \mu g/L (Cl 2 - < 4 mg/L)$

 $600 \mu g/L (Cl 4 - < 6 mg/L)$

800 μg/L (Cl 6 - < 8 mg/L)

 $1,000 \mu g/L (Cl 8 - < 10 mg/L)$

 $2,000 \mu g/L (CI \ge 10 mg/L)$

4. Notes for BC CSR, Schedule 3.2, Generic Numerical Water Standards for Drinking Water (2017 and updates) (BC CSR DW)

General Notes:

Drinking water standards are for unfiltered samples obtained at the point of consumption. Heavy metals, metalloids and inorganic ions are expressed as total substance concentrations unless otherwise indicated.

Note 4.1 for 1,2-Dichlorobenzene:

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.2 for 1,4-Dichlorobenzene:

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.3 for Monochlorobenzene:

Water Quality Results

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.4 for Chloride:

Standard to protect against taste and odour concerns.

Note 4.5 for Sulphate:

Standard to protect against taste and odour concerns.

Note 4.6 for Bromodichloromethane:

Standard is specific for total trihalomethanes. Sum of the concentrations of bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform (tribromomethane) and chloroform (trichloromethane) must not exceed the standard specified.

Note 4.7 for Bromoform:

Standard is specific for total trihalomethanes. Sum of the concentrations of bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform (tribromomethane) and chloroform (trichloromethane) must not exceed the

Note 4.8 for Chloroform:

Standard is specific for total trihalomethanes. Sum of the concentrations of bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform (tribromomethane) and chloroform (trichloromethane) must not exceed the standard specified.

Note 4.9 for Dibromochloromethane:

Standard is specific for total trihalomethanes. Sum of the concentrations of bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform (tribromomethane) and chloroform (trichloromethane) must not exceed the standard specified.

Note 4.10 for Total Trihalomethanes (calculated):

Standard is specific for total trihalomethanes. Sum of the concentrations of bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (bromoform) and trichloromethane (chloroform) must not exceed the standard specified.

Note 4.11 for Aluminum (dissolved):

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.12 for Aluminum (total):

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.13 for Chromium (dissolved):

Analytical results for chromium (all species) in water may be used to demonstrate compliance with the standards. Where the standards cannot be met based on analytical results for chromium (all species), chromium speciation may be necessary. Standard is 50 μ g/L for chromium, hexavalent. Standard is 6000 μ g/L for chromium, trivalent. The standard of 50 μ g/L was used to identify exceedances for dissolved chromium in order to demonstrate compliance with the standards.

Note 4.14 for Chromium (total):

Analytical results for chromium (all species) in water may be used to demonstrate compliance with the standards. Where the standards cannot be met based on analytical results for chromium (all species), chromium speciation may be necessary. Standard is 50 μ g/L for chromium, hexavalent. Standard is 6000 μ g/L for chromium, trivalent. The standard of 50 μ g/L was used to identify exceedances for total chromium in order to demonstrate compliance with the standards.

Note 4.15 for Copper (dissolved):

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.16 for Copper (total):

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.17 for Iron (dissolved):

Standard applies to a site used for an industrial or commercial purpose or activity set out in Schedule 2 as

- (a) item A6, A7, A8 or A11
- (b) item C1, C2, C3, C4 or C6,
- (c) item D2, D3, D5, or D6
- (d) item E4, or
- (e) item H14.

Standard applies to a site used for an industrial or commercial purpose or activity set out in Schedule 2 as item H11 or H20, but only if the site was used for the purpose or activity in conjunction with or as a result of the site also being used for at least one of the purposes or activities set out above.

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups. Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.18 for Iron (total):

Water Quality Results

Standard applies to a site used for an industrial or commercial purpose or activity set out in Schedule 2 as

- (a) item A6, A7, A8 or A11
- (b) item C1, C2, C3, C4 or C6,
- (c) item D2, D3, D5, or D6
- (d) item E4, or
- (e) item H14.

Standard applies to a site used for an industrial or commercial purpose or activity set out in Schedule 2 as item H11 or H20, but only if the site was used for the purpose or activity in conjunction with or as a result of the site also being used for at least one of the purposes or activities set out above.

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.19 for Manganese (dissolved):

Standard applies to a site used for an industrial or commercial purpose or activity set out in Schedule 2 as

- (a) item B1
- (b) item C1, C3 or C4
- (c) item D2, D3, D5, or D6
- (d) item E4, or
- (e) item H3 or H14.

Standard applies to a site used for an industrial or commercial purpose or activity set out in Schedule 2 as item H11 or H20, but only if the site was used for the purpose or activity in conjunction with or as a result of the site also being used for at least one of the purposes or activities set out above.

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.20 for Manganese (total):

Standard applies to a site used for an industrial or commercial purpose or activity set out in Schedule 2 as

- (a) item B1
- (b) item C1, C3 or C4
- (c) item D2, D3, D5, or D6
- (d) item E4, or
- (e) item H3 or H14.

Standard applies to a site used for an industrial or commercial purpose or activity set out in Schedule 2 as item H11 or H20, but only if the site was used for the purpose or activity in conjunction with or as a result of the site also being used for at least one of the purposes or activities set out above.

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.21 for Sodium (dissolved):

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Note 4.22 for Sodium (total):

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Note 4.23 for Zinc (dissolved):

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Note 4.24 for Zinc (total):

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Note 4.25 for Methyl tert-butyl ether (MTBE):

Standard is specific to protection of human health. Standard is derived with TRV protective of adults. Standard may not adequately protect other age groups.

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.26 for VHw6-10:

VHw6-10 - Volatile Hydrocarbons (nC6-nC10) in water as defined in the 2015 British Columbia Environmental Laboratory Manual, as updated from time to time. Standard is applicable at all sites, irrespective of water use.

Note 4.27 for Ethylbenzene:

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.28 for Toluene:

Standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

Note 4.29 for Nitrate (as N):

Where nitrate and nitrite are present, total nitrate plus nitrite-nitrogen should not exceed this value.

Note 4.30 for Nitrate + Nitrite (as N):

Where nitrate and nitrite are present, total nitrate plus nitrite-nitrogen should not exceed this value.

Note 4.31 for Nitrate + Nitrite (as N) (calculated):

Water Quality Results

Where nitrate and nitrite are present, total nitrate plus nitrite-nitrogen should not exceed this value.

Water Quality Results

Legend for Reports for CSRD Refuse Disposal Sites Water Quality Results

<	Less than reported detection limit
>	Greater than reported upper detection limit
>=	Greater than or equal to
Α	Absent
BC CSR LW	BC CSR, Schedule 3.2, Generic Numerical Water Standards for Livestock (2017 and updates)
Calc	Calculated guideline or standard. The guideline or standard is dependent on the value of one or more other analytes, and is calculated from a formula or table.
L	Laboratory reading type (Lab result)
m asl	metres above sea level
N	Narrative type of guideline or standard, or Result Note.
ND	Non-detect. Result is less than lower detection limit.
NG	No Guideline
NR	No Result
NS	No Standard
NT	Not Tested
OG	Overgrown
Р	Present
PR	Presumptive
TK	Test kit reading type (Field result)
TNTC	Too numerous to count
	Highlighted value has a lower detection limit that is greater than the guideline/standard maximum and/or the guideline/standard minimum, or has an upper detection limit that is less than the guideline/standard maximum and/or the guideline/standard minimum.
BC CSR LW	Highlighted value exceeds BC CSR LW
SL Criteria Override	Highlighted value exceeds sampling location criteria override

	_		5 ".	5 "0	
	Sa	mpling Location		Runoff 2	Runoff 3
		Date Sampled	· •	05-Apr-17	30-Mar-17
		Lab Sample ID	7040434-01	7040434-02	7040370-01
	1	Sample Type	Normal	Normal	
Analyte	Unit	Guideline	1		
,	J	BC CSR LW			
Field Results					
Conductivity	μS/cm	NG	2370	13170	Not Measured
Oxidation reduction potential	mV	NG	-2	-112	Not Measured
pH		NG	7.4	7.6	Not Measured
Temperature	°C	NG	4.2	4.3	Not Measured
Lab Results					
Chlorinated Hydrocarbons					
1,2-Dichlorobenzene	mg/L	NG		<0.0005	<0.0005
1,3-Dichlorobenzene	mg/L	NG		<0.0010	<0.0010
1,4-Dichlorobenzene	mg/L	NG		<0.0010	<0.0010
1,1-Dichloroethane	mg/L	NG		<0.0010	<0.0010
1,2-Dichloroethane	mg/L	0.005		0.0019	<0.0010
1,1-Dichloroethylene	mg/L	NG		<0.0010	<0.0010
cis-1,2-Dichloroethylene	mg/L	NG		<0.0010	<0.0010
trans-1,2-Dichloroethylene	mg/L	NG		<0.0010	<0.0010
Monochlorobenzene	mg/L	NG		<0.0010	<0.0010
1,1,2,2-Tetrachloroethane	mg/L	NG		<0.0005	<0.0005
Tetrachloroethylene	mg/L	NG		<0.0010	<0.0010
1,1,1-Trichloroethane	mg/L	NG		<0.0010	<0.0010
1,1,2-Trichloroethane	mg/L	NG		<0.0010	<0.0010
Trichloroethylene	mg/L	0.050		<0.0010	<0.0010
					10.0000
General					
Alkalinity (bicarbonate, as CaCO3)	mg/L	NG	3050	9700	6010
Alkalinity (carbonate, as CaCO3)	mg/L	NG	<1.0	<1.0	<1
Alkalinity (hydroxide, as CaCO3)	mg/L	NG	<1.0	<1.0	<1
Alkalinity (phenolphthalein, as CaCO3)	mg/L	NG	<1.0	<1.0	<1
Alkalinity (total, as CaCO3)	mg/L	NG	3050	9700	6010
Bicarbonate Alkalinity (as HCO3)	mg/L	NG	3720	11800	7330
Carbonate Alkalinity (as CO3)	mg/L	NG	<0.600	<0.600	<0.600
Hydroxide Alkalinity (as OH)		NG	<0.340	<0.340	<0.340
Bromide	mg/L mg/L	NG	1.82	<10.0	<0.10
Chloride	mg/L	600	708	1230	5.45
				13800	4
Conductivity	μS/cm	NG 1.000 ^{1.1}	8440		324
Fluoride Hardness, Total (dissolved as CaCO3)	mg/L		<1.00	<1.00	0.47
, , ,	mg/L	NG		2090	602
pH Sulphoto		NG 1000	452	7.70	7.85
Sulphate	mg/L	1000	153	32.7	13.0
Total suspended solids	mg/L	NG		307	1000
Turbidity	NTU	NG		212	>4000
Halaman at al Madica ca					
Halogenated Methanes		0.400			
Bromodichloromethane	mg/L	0.100		<0.0010	<0.0010
Bromoform	mg/L	0.100		<0.0010	<0.0010
Carbon tetrachloride	mg/L	0.005		<0.0005	<0.0005
Chloroform	mg/L	0.100		<0.0010	<0.0010
Dibromochloromethane	mg/L	0.100		<0.0010	<0.0010
Dibromomethane	mg/L	NG		<0.0010	<0.0010
Dichloromethane	mg/L	0.050		<0.0030	<0.0030
Total Trihalomethanes (calculated)	mg/L	NG		<0.0020	<0.0020
Trichlorofluoromethane	mg/L	NG		<0.0010	<0.0010
Metals					
	1		I	l	1

Golden WW Report 2017 - SW

	Sa	mpling Location	Runoff 1	Runoff 2	Runoff 3
	Sai	Date Sampled	05-Apr-17	05-Apr-17	30-Mar-17
		-	7040434-01	7040434-02	7040370-01
		Lab Sample ID		Normal	7040370-01
		Sample Type Guideline	Normal	Normal	
Analyte	Unit				
Al., (A-A-I)	//	BC CSR LW		0.47	44.4
Aluminum (total)	mg/L	5.000		2.17	41.1
Antimony (total)	mg/L	NG		0.0063	0.0008
Arsenic (total)	mg/L	0.025		0.0524	0.0123
Barium (total)	mg/L	NG		0.259	0.421
Beryllium (total)	mg/L	0.100		0.0001	0.0014
Bismuth (total)	mg/L	NG		<0.0001	0.0003
Boron (total)	mg/L	5.000		4.90	0.164
Cadmium (total)	mg/L	0.080		0.00048	0.00011
Calcium (total)	mg/L	1000		382	174
Chromium (total)	mg/L	0.050 1.2		0.126	0.0530
Cobalt (total)	mg/L	1.000		0.0371	0.0191
Copper (total)	mg/L	0.300		0.0227	0.0330
Iron (total)	mg/L	NG		46.0	39.2
Lead (total)	mg/L	0.100		0.0119	0.0296
Lithium (total)	mg/L	5.000		0.238	0.0402
Magnesium (total)	mg/L	NG		276	40.6
Manganese (total)	mg/L	NG		1.41	0.710
Mercury (total)	mg/L	0.002		0.00004	0.00010
Molybdenum (total)	mg/L	0.050		0.0061	0.0025
Nickel (total)	mg/L	1.000		0.190	0.0400
Selenium (total)	mg/L	0.030		0.0007	<0.0005
Silicon (total, as Si)	mg/L	NG		29.8	73.8
Silver (total)	mg/L	NG		0.00015	<0.00005
Sodium (total)	mg/L	NG		1460	8.12
Strontium (total)	mg/L	NG		2.40	0.579
Sulphur (total)	mg/L	NG		31	4
Tellurium (total)	mg/L	NG		<0.0002	<0.0002
Thallium (total)	mg/L	NG		<0.00002	0.00032
Thorium (total)	mg/L	NG		0.0004	0.0099
Tin (total)	mg/L	NG		0.0093	0.0013
Titanium (total)	mg/L	NG		0.069	1.40
Uranium (total)	mg/L	0.200		0.00069	0.00239
Vanadium (total)	mg/L	0.100		0.011	0.042
Zinc (total)	mg/L	2.000		0.576	0.094
Zirconium (total)	mg/L	NG		0.0071	0.0280
Zirconium (totai)	IIIg/L	NG		0.0071	0.0280
Miscellaneous Organic Substances					
Chloroethane	ma/l	NC		-0.0020	-0.0020
1,2-Dibromoethane	mg/L	NG NG		<0.0020 <0.0002	<0.0020 <0.0002
	mg/L	+			
1,2-Dichloropropane	mg/L	NG		<0.0010	<0.0010
1,3-Dichloropropene Methyl tott buttlether (MTRE)	mg/L	NG		<0.0010	<0.0010
Methyl tert-butyl ether (MTBE)	mg/L	11.000		<0.0010	<0.0010
Vinyl chloride	mg/L	NG		<0.0010	<0.0010
Monocyclic Aromatic Hydrocarbons (MAHs)					
Benzene	mg/L	NG		0.0011	<0.0005
Ethylbenzene	mg/L	NG		0.0028	<0.0010
Styrene	mg/L	NG		<0.0010	<0.0010
Toluene	mg/L	NG		0.104	<0.0010
Xylenes	mg/L	NG		0.0067	<0.0020
Nutrients					
Ammonia (total, as N)	mg/L	NG		928	0.792
Nitrate (as N)	mg/L	100 ^{1.3}	2.78	<0.100	0.214

Water Quality Results

	Sa	mpling Location	Runoff 1	Runoff 2	Runoff 3
		Date Sampled	05-Apr-17	05-Apr-17	30-Mar-17
		Lab Sample ID	7040434-01	7040434-02	7040370-01
		Sample Type	Normal	Normal	
Analyte	Unit	Guideline			
Analyte	Oilit	BC CSR LW			
Nitrate + Nitrite (as N) (calculated)	mg/L	100 1.4	2.78	<0.141	0.235
Nitrite (as N)	mg/L	10.000	<0.100	<0.100	0.021
Phosphorus (total, by ICPMS/ICPOES)	mg/L	NG		13.1	0.61
Potassium (total)	mg/L	NG		852	16.6

Water Quality Results

Guideline Notes for Reports for CSRD Refuse Disposal Sites Water Quality Results

1. Notes for BC CSR, Schedule 3.2, Generic Numerical Water Standards for Livestock (2017 and updates) (BC CSR LW)

General Notes:

Standards for all organic substances are for total substance concentrations. Any water sample to be analyzed for organic substances should not be filtered.

Standards for surface water samples to be analyzed for heavy metals, metalloids and inorganic ions are total substance concentrations. In addition, it is recommended that surface water samples being analyzed for heavy metals, metalloids and inorganic ions should also be analyzed for dissolved substance concentrations.

Standards for groundwater samples for heavy metals, metalloids and inorganic ions are for dissolved substance concentrations. In addition, it is recommended that groundwater samples being analyzed for heavy metals, metalloids and inorganic ions should also be analyzed for total substance concentrations.

Note 1.1 for Fluoride:

Standard varies with type of livestock. Consult a director for further advice.

Note 1.2 for Chromium (total):

Analytical results for chromium (all species) in water may be used to demonstrate compliance with the standards. Where the standards cannot be met based on analytical results for chromium (all species), chromium speciation may be necessary.

Standard is 50 µg/L for chromium, hexavalent. Standard is 50 µg/L for chromium, trivalent. The standard of 50 µg/L was used to identify exceedances for total chromium in order to demonstrate compliance with the standards.

Note 1.3 for Nitrate (as N):

Where nitrate and nitrite are present, total nitrate plus nitrite-nitrogen should not exceed this value.

Note 1.4 for Nitrate + Nitrite (as N) (calculated):

Where nitrate and nitrite are present, total nitrate plus nitrite-nitrogen should not exceed this value.

Appendix D

Water Quality Reports

CERTIFICATE OF ANALYSIS

REPORTED TO Western Water Associates Ltd

 106 - 5145 26th Street
 TEL
 (250) 541-1030

 Vernon, BC V1T 8G4
 FAX
 (250) 575-4764

ATTENTION Bryer Manwell WORK ORDER 7040370

PO NUMBER RECEIVED / TEMP 2017-04-06 07:30 / 2°C

PROJECT CSRD Refuse Disposal - Golden MR17006 REPORTED 2017-04-07

PROJECT INFO 14-024-16 **COC NUMBER** B 47372

General Comments:

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Authorized By:

Sara Gulenchyn, B.Sc, P.Chem. Client Service Coordinator

If you have any questions or concerns, please contact me at sgulenchyn@caro.ca

Locations:

#110 4011 Viking Way Richmond, BC V6V 2K9 Tel: 604-279-1499 #102 3677 Highway 97N Kelowna, BC V1X 5C3 Tel: 250-765-9646 17225 109 Avenue Edmonton, AB T5S 1H7 Tel: 780-489-9100

www.caro.ca

TABLE OF CONTENTS

REPORTED TO PROJECT	Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006	WORK ORDER REPORTED	7040370 2017-04-07
Analysis Informa Analysis Desc	ation riptions, Method References, Glossary of Terms		Page 3
Sample Analytic Test Results,	al Data Reporting Limits, Analysis Dates, Sample & Analysis Notes		Page 4
Quality Control Method Blank	Data s, Duplicates, Spikes, Reference Materials		Appendix 1

ANALYSIS INFORMATION

REPORTED TOWestern Water Associates LtdWORK ORDER7040370PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-07

Analysis Description	Method Reference	Technique	Location
Alkalinity in Water	APHA 2320 B*	Titration with H2SO4	Kelowna
Ammonia, Total in Water	APHA 4500-NH3 G*	Automated Colorimetry (Phenate)	Kelowna
Anions by IC in Water	APHA 4110 B	lon Chromatography with Chemical Suppression of Eluent Conductivity	Kelowna
Conductivity in Water	APHA 2510 B	Conductivity Meter	Kelowna
Hardness (as CaCO3) in Water	APHA 2340 B*	Calculation: 2.497 [total Ca] + 4.118 [total Mg] (Estimated)	N/A
pH in Water	APHA 4500-H+ B	Electrometry	Kelowna
Total Metals by ICPMS in Water	APHA 3030 E* / APHA 3125 B	HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma Mass Spectrometry (ICP-MS)	Richmond
Turbidity in Water	APHA 2130 B	Nephelometry	Kelowna
Volatile Organic Compounds in Water	EPA 5030B / EPA 8260B	Purge&Trap / GC-MS (SIM)	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Method Reference Descriptions:

APHA Standard Methods for the Examination of Water and Wastewater, 22nd Edition, American Public Health

Association/American Water Works Association/Water Environment Federation

EPA United States Environmental Protection Agency Test Methods

Glossary of Terms:

MRL Method Reporting Limit

Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to various factors such

as dilutions, limited sample volume, high moisture, or interferences

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units pH units pH < 7 = acidic, ph > 7 = basic

μg/L Micrograms per litre

μS/cm Microsiemens per centimetre

REPORTED TO Western Water Associates Ltd **PROJECT**

CSRD Refuse Disposal - Golden MR17006

WORK ORDER 7040370 **REPORTED** 2017-04-07

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Runoff 3 (7040370-01)	Water] Sampled: 2017-03-30	15:00				CT1, CT2, F2, PRES
Anions						
Bromide	< 0.10		mg/L	N/A	2017-04-07	
Chloride	5.45		mg/L	N/A	2017-04-07	
Fluoride	0.47		mg/L	N/A	2017-04-07	
Nitrate (as N)	0.214	0.010		N/A	2017-04-07	HT1
Nitrite (as N)	0.021	0.010		N/A	2017-04-07	HT1
Sulfate	13.0	1.0	mg/L	N/A	2017-04-07	
General Parameters						
Alkalinity, Total (as CaCO3)	6010	2	mg/L	N/A	2017-04-07	
Alkalinity, Phenolphthalein (as CaCO3)	< 1	2	mg/L	N/A	2017-04-07	
Alkalinity, Bicarbonate (as CaCO3)	6010	2	mg/L	N/A	2017-04-07	
Alkalinity, Carbonate (as CaCO3)	<1	2	mg/L	N/A	2017-04-07	
Alkalinity, Hydroxide (as CaCO3)	<1	2	mg/L	N/A	2017-04-07	
Bicarbonate (HCO3)	7330	1.22	mg/L	N/A	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	N/A	
Ammonia, Total (as N)	0.792	0.020	mg/L	N/A	2017-04-07	
Conductivity (EC)	324	2.0	μS/cm	N/A	2017-04-07	
рН	7.85	0.01	pH units	N/A	2017-04-07	HT2
Turbidity	> 4000 NTU	0.10	NTU	N/A	2017-04-07	RA4
Calculated Parameters						
Hardness, Total (as CaCO3)	602	5.00	mg/L	N/A	N/A	
Total Metals						
Aluminum, total	41.1	0.005	mg/L	2017-04-07	2017-04-07	
Antimony, total	0.0008	0.0001		2017-04-07	2017-04-07	
Arsenic, total	0.0123	0.0005		2017-04-07	2017-04-07	
Barium, total	0.421	0.005		2017-04-07	2017-04-07	
Beryllium, total	0.0014	0.0001	mg/L	2017-04-07	2017-04-07	
Bismuth, total	0.0003	0.0001		2017-04-07	2017-04-07	
Boron, total	0.164	0.004		2017-04-07	2017-04-07	
Cadmium, total	0.00011	0.00001		2017-04-07	2017-04-07	
Calcium, total	174		mg/L	2017-04-07	2017-04-07	
Chromium, total	0.0530	0.0005		2017-04-07	2017-04-07	
Cobalt, total	0.0191	0.00005		2017-04-07	2017-04-07	
Copper, total	0.0330	0.0002		2017-04-07	2017-04-07	
Iron, total	39.2		mg/L	2017-04-07	2017-04-07	
Lead, total	0.0296	0.0001		2017-04-07	2017-04-07	
Lithium, total	0.0402	0.0001		2017-04-07	2017-04-07	
Magnesium, total	40.6		mg/L	2017-04-07	2017-04-07	
Manganese, total	0.710	0.0002		2017-04-07	2017-04-07	
Mercury, total	0.00010	0.00002		2017-04-07	2017-04-07	
Molybdenum, total	0.0025	0.0001		2017-04-07	2017-04-07	
Nickel, total	0.0400	0.0002		2017-04-07	2017-04-07	

REPORTED TO Western Water Associates Ltd WORK ORDER
PROJECT CSRD Refuse Disposal - Golden MR17006 REPORTED

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Runoff 3 (7040370-	01) [Water] Sampled: 2017-03	3-30 15:00, Continu	ued			CT1, CT2, F2, PRES
Total Metals, Continued						
Phosphorus, total	0.61		mg/L	2017-04-07	2017-04-07	
Potassium, total	16.6	0.02	mg/L	2017-04-07	2017-04-07	
Selenium, total	< 0.0005	0.0005	mg/L	2017-04-07	2017-04-07	
Silicon, total	73.8	0.5	mg/L	2017-04-07	2017-04-07	
Silver, total	< 0.00005	0.00005	mg/L	2017-04-07	2017-04-07	
Sodium, total	8.12	0.02	mg/L	2017-04-07	2017-04-07	
Strontium, total	0.579	0.001	mg/L	2017-04-07	2017-04-07	
Sulfur, total	4	1	mg/L	2017-04-07	2017-04-07	
Tellurium, total	< 0.0002	0.0002	mg/L	2017-04-07	2017-04-07	
Thallium, total	0.00032	0.00002	mg/L	2017-04-07	2017-04-07	
Thorium, total	0.0099	0.0001	mg/L	2017-04-07	2017-04-07	
Tin, total	0.0013	0.0002	mg/L	2017-04-07	2017-04-07	
Titanium, total	1.40	0.005	mg/L	2017-04-07	2017-04-07	
Uranium, total	0.00239	0.00002		2017-04-07	2017-04-07	
Vanadium, total	0.042	0.001		2017-04-07	2017-04-07	
Zinc, total	0.094	0.004		2017-04-07	2017-04-07	
Zirconium, total	0.0280	0.0001		2017-04-07	2017-04-07	
·						
Volatile Organic Compounds (VO						
Benzene	< 0.5		μg/L	N/A	2017-04-07	
Bromodichloromethane	< 1.0		μg/L	N/A	2017-04-07	
Bromoform	< 1.0		μg/L	N/A	2017-04-07	
Carbon tetrachloride	< 0.5		μg/L	N/A	2017-04-07	
Chlorobenzene	< 1.0		μg/L	N/A	2017-04-07	
Chloroethane	< 2.0	2.0	μg/L	N/A	2017-04-07	
Chloroform	< 1.0		μg/L	N/A	2017-04-07	
Dibromochloromethane	< 1.0	1.0	μg/L	N/A	2017-04-07	
1,2-Dibromoethane	< 0.2	0.2	μg/L	N/A	2017-04-07	
Dibromomethane	< 1.0	1.0	μg/L	N/A	2017-04-07	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	N/A	2017-04-07	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-07	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-07	
1,1-Dichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-07	
1,2-Dichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-07	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-07	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-07	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-07	
1,2-Dichloropropane	< 1.0		μg/L	N/A	2017-04-07	
1,3-Dichloropropene	< 1.0		μg/L	N/A	2017-04-07	
Ethylbenzene	< 1.0		μg/L	N/A	2017-04-07	
Methyl tert-butyl ether	< 1.0		μg/L	N/A	2017-04-07	
Dichloromethane	< 3.0		μg/L	N/A	2017-04-07	
Styrene	< 1.0		μg/L	N/A	2017-04-07	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	N/A	2017-04-07	
Tetrachloroethylene	< 1.0		μg/L	N/A	2017-04-07	

7040370

2017-04-07

REPORTED TOWestern Water Associates LtdWORK ORDER7040370PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-07

Analyte	Result / Recovery	MRL / Units <i>Limit</i> s	Prepared	Analyzed	Notes
Sample ID: Runoff 3 (704037	0-01) [Water] Sampled: 2017-03-	-30 15:00, Continued			CT1, CT2, F2, PRES
Volatile Organic Compounds (V	OC), Continued				
Toluene	< 1.0	1.0 μg/L	N/A	2017-04-07	
1,1,1-Trichloroethane	< 1.0	1.0 μg/L	N/A	2017-04-07	
1,1,2-Trichloroethane	< 1.0	1.0 μg/L	N/A	2017-04-07	
Trichloroethylene	< 1.0	1.0 μg/L	N/A	2017-04-07	
Trichlorofluoromethane	< 1.0	1.0 μg/L	N/A	2017-04-07	
Vinyl chloride	< 1.0	1.0 μg/L	N/A	2017-04-07	
Xylenes (total)	< 2.0	2.0 μg/L	N/A	2017-04-07	
Surrogate: Toluene-d8	102	70-130 %	N/A	2017-04-07	

70-130 %

70-130 %

N/A

N/A

2017-04-07

2017-04-07

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,4-Dichlorobenzene-d4

CT1	Incorrect	Containar(e)	cunnliad fo	r V/OC	Hg analysis
OII	HILOHITCUL	CUITAILICITO	SUDDII C U IU	I VOC.	i lu aliaivoio

CT2 Excessive headspace in sample container - VOC results may be compromised.

90

77

F2 The sample was not field-preserved with HNO3 and was therefore preserved in the laboratory and held for at least 16 hours prior to analysis for total metals.

HT1 The sample was prepared and/or analyzed past the recommended holding time.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is

recommended.

PRES Sample has been preserved for VOC, NH3 in the laboratory and the holding time has been extended.

RA4 This in an estimated value. The result was over the calibration range, and further dilution was not possible.

REPORTED TO PROJECT

Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006 WORK ORDER REPORTED 7040370 2017-04-07

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment
- **Duplicate (Dup)**: Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
Anions, Batch B7D0342									
Blank (B7D0342-BLK2)	Prepared: 2017-04-07, Analyzed: 2017-04-07								
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B7D0342-BS2)			Prepared	d: 2017-04-	-07, Analyz	zed: 2017	-04-07		
Bromide	3.99	0.10 mg/L	4.00		100	85-115			
Chloride	15.5	0.10 mg/L	16.0		97	90-110			
Fluoride	3.90	0.10 mg/L	4.00		98	88-108			
Nitrate (as N)	3.96	0.010 mg/L	4.00		99	93-108			
Nitrite (as N)	1.79	0.010 mg/L	2.00		90	83-110			
Sulfate	15.8	1.0 mg/L	16.0		99	91-109			

Blank (B7D0189-BLK1)			Prepared: 201	7-04-07, Analyzed: 2017-04-07		
Ammonia, Total (as N)	< 0.020	0.020 mg/L				
Blank (B7D0189-BLK2)			Prepared: 201	7-04-07, Analyzed: 2017-04-07		
Ammonia, Total (as N)	< 0.020	0.020 mg/L				
LCS (B7D0189-BS1)			Prepared: 201	7-04-07, Analyzed: 2017-04-07		
Ammonia, Total (as N)	1.00	0.020 mg/L	1.00	100 86-111		
LCS (B7D0189-BS2)		Prepared: 2017-04-07, Analyzed: 2017-04-07				
Ammonia, Total (as N)	< 0.020	0.020 mg/L	1.00	86-111		

General Parameters, Batch B7D0360

REPORTED TOWestern Water Associates LtdWORK ORDER7040370PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-07

Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
General Parameters, Batch B7D0360, C	ontinued								
Blank (B7D0360-BLK1)			Prepared	l: 2017-04-	07, Analyz	ed: 2017	-04-07		
Turbidity	< 0.10	0.10 NTU			-				
LCS (B7D0360-BS1)			Prepared	l: 2017-04-	07 Analyz	red: 2017	-04-07		
Turbidity	39.2	0.10 NTU	40.0	2017 01	98	90-110			
•							04.07		
Duplicate (B7D0360-DUP1)		urce: 7040370-01	Prepared	1: 2017-04-	07, Anaiyz	ed: 2017			
Turbidity	4000	0.10 NTU		> 4000 NTU			< 1	15	RA4
General Parameters, Batch B7D0371									
Blank (B7D0371-BLK1)			Prepared	l: 2017-04-	07, Analyz	ed: 2017	-04-07		
Alkalinity, Total (as CaCO3)	< 1	2 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1	2 mg/L							
Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	< 1	2 mg/L							
Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	< 1 < 1	2 mg/L 2 mg/L							
Conductivity (EC)	< 2.0	2.0 µS/cm							
• • •			Duanana	. 2017 04	07 Analys		04.07		
LCS (B7D0371-BS1)				l: 2017-04-			-04-07		
Alkalinity, Total (as CaCO3)	103	2 mg/L	100		103	92-106			
LCS (B7D0371-BS2)			Prepared	l: 2017-04-	07, Analyz		-04-07		
Conductivity (EC)	1420	2.0 μS/cm	1410		100	95-104			
Conductivity (EC) Reference (B7D0371-SRM1)	1420	2.0 μS/cm		l: 2017-04-			-04-07		
Reference (B7D0371-SRM1) pH	6.99	2.0 µS/cm 0.01 pH units		l: 2017-04-			-04-07		HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1)	6.99	0.01 pH units	Prepared 7.00	l: 2017-04- l: 2017-04-	07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total	6.99	0.01 pH units	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total	< 0.005 < 0.0001	0.01 pH units 0.005 mg/L 0.0001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total	6.99	0.01 pH units	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total	< 0.005 < 0.0001 < 0.0005	0.001 pH units 0.005 mg/L 0.0001 mg/L 0.0005 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total	< 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001	0.001 pH units 0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Total Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total	< 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.0004	0.001 pH units 0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Total Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total	< 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.0001 < 0.0004	0.001 pH units 0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0004 mg/L 0.00001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Total Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Calcium, total	 < 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.0004 < 0.02 	0.005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0004 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Total Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Bismuth, total Boron, total Cadmium, total Calcium, total Chromium, total	 < 0.005 < 0.0001 < 0.0005 < 0.0001 < 0.0001 < 0.0001 < 0.0004 < 0.00001 < 0.00001 < 0.00001 < 0.000000 < 0.00000 < 0.00005 	0.001 pH units 0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0005 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Total Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Calcium, total	 < 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.0004 < 0.02 	0.005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0004 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Bismuth, total Cadmium, total Cadmium, total Calcium, total Chromium, total Cobalt, total Copper, total Iron, total	 < 0.005 < 0.0001 < 0.0005 < 0.0001 < 0.0001 < 0.0001 < 0.0004 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.00005 < 0.0002 < 0.01 	0.005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00005 mg/L 0.00005 mg/L 0.0002 mg/L 0.001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Bismuth, total Cadmium, total Calcium, total Chromium, total Cobalt, total Copper, total Iron, total Lead, total	<.0.005 <.0.0001 <.0.0005 <.0.0005 <.0.0001 <.0.0001 <.0.0004 <.0.00001 <.0.02 <.0.00005 <.0.00005 <.0.00005 <.0.00005 <.0.00005 <.0.00005 <.0.00005 <.0.00005 <.0.00005 <.0.00005 <.0.00001 <.0.0001	0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0004 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0002 mg/L 0.0002 mg/L 0.001 mg/L 0.0001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Bismuth, total Cadmium, total Cadmium, total Calcium, total Cobalt, total Copper, total Iron, total Lead, total Lead, total Lithium, total	 < 0.005 < 0.0001 < 0.0005 < 0.0001 < 0.0001 < 0.0004 < 0.00001 < 0.0 < 0.0005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.00001 	0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0004 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0000 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Calcium, total Colcium, total Cobalt, total Copper, total Iron, total Lead, total Lead, total Lithium, total Magnesium, total	 < 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.00001 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.001 	0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0004 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.00005 mg/L 0.0002 mg/L 0.01 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Bismuth, total Cadmium, total Cadmium, total Calcium, total Calcium, total Cobalt, total Copper, total Iron, total Lead, total Lithium, total Magnesium, total Magnesium, total	 < 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.00001 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 < 0.0001 < 0.0001 < 0.0002 < 0.0000 <	0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0004 mg/L 0.0005 mg/L 0.0005 mg/L 0.00005 mg/L 0.0002 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Bismuth, total Cadmium, total Cadmium, total Calcium, total Chromium, total Copper, total Iron, total Lead, total Lithium, total Magnesium, total Manganese, total Mercury, total	 < 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.0004 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.00002 < 0.000002 	0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0002 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0002 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Bismuth, total Cadmium, total Cadmium, total Calcium, total Calcium, total Cobalt, total Copper, total Iron, total Lead, total Lithium, total Magnesium, total Magnesium, total	 < 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.00001 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 < 0.0001 < 0.0001 < 0.0002 < 0.0000 <	0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0004 mg/L 0.0005 mg/L 0.0005 mg/L 0.00005 mg/L 0.0002 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Bismuth, total Boron, total Cadmium, total Calcium, total Chromium, total Chromium, total Copper, total Iron, total Lead, total Lithium, total Magnesium, total Manganese, total Mercury, total Molybdenum, total	 < 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.00001 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.00002 < 0.0001 < 0.0002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.000002 < 0.000002 < 0.000000 < 0.000000 < 0.00000 < 0.0000 < 0.0000<td>0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0002 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0002 mg/L 0.0001 mg/L 0.0002 mg/L 0.0001 mg/L 0.0002 mg/L 0.0002 mg/L</td><td>Prepared 7.00</td><td></td><td>07, Analyz 100</td><td>zed: 2017 98-102</td><td></td><td></td><td>HT2</td>	0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0002 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0002 mg/L 0.0001 mg/L 0.0002 mg/L 0.0001 mg/L 0.0002 mg/L 0.0002 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Calcium, total Calcium, total Chromium, total Copper, total Iron, total Lead, total Lead, total Lead, total Magnesium, total Magnesium, total Molybdenum, total Nickel, total Potassium, total Potassium, total	 6.99 < 0.005 < 0.0001 < 0.0005 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0005 < 0.00005 < 0.00005 < 0.00005 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.00002 < 0.0002 /ul>	0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0000 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2
Reference (B7D0371-SRM1) pH Fotal Metals, Batch B7D0379 Blank (B7D0379-BLK1) Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total Bismuth, total Boron, total Cadmium, total Calcium, total Chromium, total Chromium, total Cobalt, total Iron, total Lead, total Lithium, total Magnesium, total Manganese, total Molybdenum, total Nickel, total	 < 0.005 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.0004 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 < 0.00002 < 0.00000 < 0.00002 < 0.0000 <	0.005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0001 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L	Prepared 7.00		07, Analyz 100	zed: 2017 98-102			HT2

REPORTED TO Western Water Associates Ltd
PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER 7040370 **REPORTED** 2017-04-07

Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
Total Metals, Batch B7D0379, Continued									
Blank (B7D0379-BLK1), Continued			Prepared	d: 2017-04-	07, Analyz	ed: 2017	-04-07		
Sodium, total	< 0.02	0.02 mg/L							
Strontium, total	< 0.001	0.001 mg/L							
Sulfur, total	< 1	1 mg/L							
Tellurium, total	< 0.0002	0.0002 mg/L							
Thallium, total	< 0.00002	0.00002 mg/L							
Thorium, total	< 0.0001	0.0001 mg/L							
Tin, total	< 0.0002	0.0002 mg/L							
Titanium, total	< 0.005	0.005 mg/L							
Uranium, total	< 0.00002	0.00002 mg/L							
Vanadium, total	< 0.001	0.001 mg/L							
Zinc, total	< 0.004	0.004 mg/L							
Zirconium, total	< 0.0001	0.0001 mg/L							
Reference (B7D0379-SRM1)			Prepared	d: 2017-04-	-07, Analyz	ed: 2017	-04-07		
Aluminum, total	0.290	0.005 mg/L	0.303		96	81-129			
Antimony, total	0.0511	0.0001 mg/L	0.0511		100	88-114			
Arsenic, total	0.114	0.0005 mg/L	0.118		96	88-114			
Barium, total	0.781	0.005 mg/L	0.823		95	72-104			
Beryllium, total	0.0466	0.0001 mg/L	0.0496		94	76-131			
Boron, total	3.25	0.004 mg/L	3.45		94	75-121			
Cadmium, total	0.0490	0.00001 mg/L	0.0495		99	89-111			
Calcium, total	11.3	0.2 mg/L	11.6		97	86-121			
Chromium, total	0.253	0.0005 mg/L	0.250		101	89-114			
Cobalt, total	0.0402	0.00005 mg/L	0.0377		107	91-113			
Copper, total	0.517	0.0002 mg/L	0.486		106	91-115			
Iron, total	0.51	0.01 mg/L	0.488		104	77-124			
Lead, total	0.211	0.0001 mg/L	0.204		103	92-113			
Lithium, total	0.369	0.0001 mg/L	0.403		92	85-115			
Magnesium, total	3.86	0.01 mg/L	3.79		102	78-120			
Manganese, total	0.107	0.0002 mg/L	0.109		98	90-114			
Mercury, total	0.00525	0.00002 mg/L	0.00489		107	50-150			
Molybdenum, total	0.198	0.0001 mg/L	0.198		100	90-111			
Nickel, total	0.261	0.0002 mg/L	0.249		105	90-111			
Phosphorus, total	0.20	0.05 mg/L	0.227		87	85-115			
Potassium, total	7.13	0.02 mg/L	7.21		99	84-113			
Selenium, total	0.129	0.0005 mg/L	0.121		107	85-115			
Sodium, total	7.75	0.02 mg/L	7.54		103	82-123			
Strontium, total	0.360	0.001 mg/L	0.375		96	88-112			
Thallium, total	0.0843	0.00002 mg/L	0.0805		105	91-114			
Uranium, total	0.0314	0.00002 mg/L	0.0306		102	85-120			
Vanadium, total	0.381	0.001 mg/L	0.386		99	86-111			
Zinc, total	2.42	0.004 mg/L	2.49		97	85-111			

Volatile Organic Compounds (VOC), Batch B7D0316

Blank (B7D0316-BLK1)		Prepared: 2017-04-07, Analyzed: 2017-04-07
Benzene	< 0.5	0.5 µg/L
Bromodichloromethane	< 1.0	1.0 µg/L
Bromoform	< 1.0	1.0 µg/L
Carbon tetrachloride	< 0.5	0.5 μg/L
Chlorobenzene	< 1.0	1.0 µg/L
Chloroethane	< 2.0	2.0 µg/L
Chloroform	< 1.0	1.0 µg/L
Dibromochloromethane	< 1.0	1.0 µg/L
1,2-Dibromoethane	< 0.2	0.2 µg/L
Dibromomethane	< 1.0	1.0 µg/L

REPORTED TO PROJECT

Western Water Associates Ltd

CSRD Refuse Disposal - Golden MR17006

WORK ORDER REPORTED 7040370 2017-04-07

Analyte Result MRL Offits . % REC % RPD Notes Level Result Limit Limit	Analyte Result MRL Units	Spike Level	Source Result	% REC	Limit	% RPD	RPD Limit	Notes
--	--------------------------	----------------	------------------	-------	-------	-------	--------------	-------

Analyte	Nosan		Level	Result	70 .KEO	Limit	,, IN D	Limit	
/olatile Organic Compounds (VOC), Ba	atch B7D0316, Co	ntinued							
Blank (B7D0316-BLK1), Continued			Prepared	l: 2017-04-	07, Analy	zed: 2017	-04-07		
1,2-Dichlorobenzene	< 0.5	0.5 µg/L							
1,3-Dichlorobenzene	< 1.0	1.0 µg/L							
1,4-Dichlorobenzene	< 1.0	1.0 µg/L							
1,1-Dichloroethane	< 1.0	1.0 µg/L							
1,2-Dichloroethane	< 1.0	1.0 µg/L							
1,1-Dichloroethylene	< 1.0	1.0 µg/L							
cis-1,2-Dichloroethylene	< 1.0	1.0 µg/L							
trans-1,2-Dichloroethylene	< 1.0	1.0 µg/L							
1,2-Dichloropropane	< 1.0	1.0 μg/L							
1,3-Dichloropropene	< 1.0	1.0 µg/L							
Ethylbenzene	< 1.0	1.0 µg/L							
Methyl tert-butyl ether	< 1.0	1.0 µg/L							
Dichloromethane	< 3.0	3.0 µg/L							
Styrene	< 1.0	1.0 µg/L							
1,1,2,2-Tetrachloroethane	< 0.5	0.5 μg/L							
Tetrachloroethylene	< 1.0	1.0 µg/L							
Toluene	< 1.0	1.0 µg/L							
1,1,1-Trichloroethane	< 1.0	1.0 µg/L							
1,1,2-Trichloroethane	< 1.0	1.0 µg/L							
Trichloroethylene	< 1.0	1.0 µg/L							
Trichlorofluoromethane	< 1.0	1.0 µg/L							
Vinyl chloride	< 1.0	1.0 μg/L							
Xylenes (total)	< 2.0	2.0 μg/L							
Surrogate: Toluene-d8	24.0		25.0		96	70-130			
Surrogate: 4-Bromofluorobenzene	21.8	μg/L	25.0			70-130			
<u> </u>		μg/L	25.0		87				
Surrogate: 1,4-Dichlorobenzene-d4	20.2	μg/L	25.0		81	70-130			
LCS (B7D0316-BS1)			Prepared	l: 2017-04-	07, Analy	zed: 2017-	-04-07		
Benzene	20.4	0.5 μg/L	20.0		102	70-130			
Bromodichloromethane	18.0	1.0 µg/L	20.0		90	70-130			
Bromoform	16.6	1.0 µg/L	20.0		83	70-130			
Carbon tetrachloride	17.7	0.5 µg/L	20.0		88	70-130			
Chlorobenzene	19.3	1.0 µg/L	20.0		97	70-130			
Chloroethane	19.6	2.0 μg/L	20.0		98	70-130			
Chloroform	19.1	1.0 µg/L	20.0		96	70-130			
Dibromochloromethane	17.1	1.0 µg/L	20.0		85	70-130			
1,2-Dibromoethane	17.0	0.2 µg/L	20.0		85	70-130			
Dibromomethane	18.3	1.0 µg/L	20.0		91	70-130			
1,2-Dichlorobenzene	20.6	0.5 µg/L	20.0		103	70-130			
1,3-Dichlorobenzene	19.8	1.0 µg/L	20.0		99	70-130			
1,4-Dichlorobenzene	19.4	1.0 µg/L	20.0		97	70-130			
1,1-Dichloroethane	18.4	1.0 µg/L	20.0		92	70-130			
1,2-Dichloroethane	18.0	1.0 µg/L	20.0		90	70-130			
1,1-Dichloroethylene	17.7	1.0 µg/L	20.0		88	70-130			
cis-1,2-Dichloroethylene	19.6	1.0 µg/L	20.0		98	70-130			
trans-1,2-Dichloroethylene	18.6	1.0 µg/L	20.0		93	70-130			
1,2-Dichloropropane	19.6	1.0 µg/L	20.0		98	70-130			
1,3-Dichloropropene	32.0	1.0 µg/L	40.0		80	70-130			
Ethylbenzene	19.6	1.0 µg/L	20.0		98	70-130			
Methyl tert-butyl ether	17.1	1.0 µg/L	20.0		86	70-130			
Dichloromethane	18.8	3.0 µg/L	20.0		94	70-130			
Styrene	19.6	1.0 μg/L	20.0		98	70-130			
1.1.2.2-Tetrachloroethane	18.4	0.5 µg/L	20.0		92	70-130			
T-tblass-fledon	10.4	0.5 μg/L	20.0		92	70-130			

18.0

19.4

18.2

1.0 µg/L

1.0 µg/L

1.0 µg/L

20.0

20.0

20.0

90

97

91

70-130

70-130

70-130

Toluene

Tetrachloroethylene

1,1,1-Trichloroethane

REPORTED TO Western Water Associates Ltd
PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER 7040370 **REPORTED** 2017-04-07

Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
Volatile Organic Compounds (VOC), Ba	atch B7D0316, Co	ntinued							
LCS (B7D0316-BS1), Continued			Prepared	d: 2017-04-	-07, Analyz	zed: 2017	-04-07		
1,1,2-Trichloroethane	18.9	1.0 µg/L	20.0		94	70-130			
Trichloroethylene	19.8	1.0 µg/L	20.0		99	70-130			
Trichlorofluoromethane	19.5	1.0 µg/L	20.0		98	70-130			
Vinyl chloride	19.4	1.0 µg/L	20.0		97	70-130			
Xylenes (total)	58.1	2.0 µg/L	60.0		97	70-130			
Surrogate: Toluene-d8	27.7	μg/L	25.0		111	70-130			
Surrogate: 4-Bromofluorobenzene	22.8	μg/L	25.0		91	70-130			
Surrogate: 1,4-Dichlorobenzene-d4	27.2	μg/L	25.0		109	70-130			

QC	• ^		1 : £:		
w	, u	'ua		ers	١.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

RA4 This in an estimated value. The result was over the calibration range, and further dilution was not possible.

CERTIFICATE OF ANALYSIS

REPORTED TO Western Water Associates Ltd

> 106 - 5145 26th Street (250) 541-1030 TEL Vernon, BC V1T 8G4 **FAX** (250) 575-4764

ATTENTION Bryer Manwell **WORK ORDER** 7040434

PO NUMBER RECEIVED / TEMP 2017-04-06 07:30 / 2°C

CSRD Refuse Disposal - Golden MR17006 2017-04-13 **PROJECT REPORTED PROJECT INFO** 14-024-16 **COC NUMBER** B47344

General Comments:

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Authorized By:

Sara Gulenchyn, B.Sc, P.Chem. Client Service Coordinator

If you have any questions or concerns, please contact me at sgulenchyn@caro.ca

Locations:

#110 4011 Viking Way Richmond, BC V6V 2K9 Tel: 604-279-1499

#102 3677 Highway 97N Kelowna, BC V1X 5C3 Tel: 250-765-9646

17225 109 Avenue Edmonton, AB T5S 1H7 Tel: 780-489-9100

www.caro.ca

TABLE OF CONTENTS

REPORTED TO PROJECT	Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006	WORK ORDER REPORTED	7040434 2017-04-13
Analysis Informa Analysis Desc	ation riptions, Method References, Glossary of Terms		Page 3
Sample Analytic Test Results,	al Data Reporting Limits, Analysis Dates, Sample & Analysis Notes		Page 4
Quality Control	Data s, Duplicates, Spikes, Reference Materials		Appendix 1
Analytical Sumn Tabulated data	nary a in condensed format to assist with comparisons		Appendix 2

ANALYSIS INFORMATION

REPORTED TOWestern Water Associates LtdWORK ORDER7040434PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-13

Analysis Description	Method Reference	Technique	Location
Alkalinity in Water	APHA 2320 B*	Titration with H2SO4	Kelowna
Ammonia, Total in Water	APHA 4500-NH3 G*	Automated Colorimetry (Phenate)	Kelowna
Anions by IC in Water	APHA 4110 B	lon Chromatography with Chemical Suppression of Eluent Conductivity	Kelowna
Conductivity in Water	APHA 2510 B	Conductivity Meter	Kelowna
Dissolved Metals by ICPMS in Water	APHA 3030 B / APHA 3125 B	0.45 µm Filtration / Inductively Coupled Plasma Mass Spectrometry (ICP-MS)	Richmond
Hardness (as CaCO3) in Water	APHA 2340 B	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	N/A
Mercury, dissolved by CVAFS in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	Richmond
Mercury, total by CVAFS in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	Richmond
pH in Water	APHA 4500-H+ B	Electrometry	Kelowna
Solids, Total Suspended in Water	APHA 2540 D*	Gravimetry (Dried at 103-105C)	Kelowna
Total Metals by ICPMS in Water	APHA 3030 E* / APHA 3125 B	HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma Mass Spectrometry (ICP-MS)	Richmond
Turbidity in Water	APHA 2130 B	Nephelometry	Kelowna
Volatile Organic Compounds in Water	EPA 5030B / EPA 8260B	Purge&Trap / GC-MS (SIM)	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Method Reference Descriptions:

APHA Standard Methods for the Examination of Water and Wastewater, 22nd Edition, American Public Health

Association/American Water Works Association/Water Environment Federation

EPA United States Environmental Protection Agency Test Methods

Glossary of Terms:

MRL Method Reporting Limit

Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to various factors such

as dilutions, limited sample volume, high moisture, or interferences

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units pH units pH < 7 = acidic, ph > 7 = basic

μg/L Micrograms per litre

μS/cm Microsiemens per centimetre

REPORTED TOWestern Water Associates LtdWORK ORDER7040434PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-13

	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Runoff 1 (7040434-01)	[Water] Sampled: 2017-04	4-05 00:00				
Anions						
Bromide	1.82	0.10	mg/L	N/A	2017-04-10	
Chloride	708		mg/L	N/A	2017-04-10	
Fluoride	< 1.00		mg/L	N/A	2017-04-10	
Nitrate (as N)	2.78	0.010		N/A	2017-04-07	
Nitrite (as N)	< 0.100	0.010		N/A	2017-04-07	
Sulfate	153		mg/L	N/A	2017-04-10	
	133	1.0	mg/L	19/74	2017-04-10	
General Parameters						
Alkalinity, Total (as CaCO3)	3050	2.0	mg/L	N/A	2017-04-11	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-11	
Alkalinity, Bicarbonate (as CaCO3)	3050		mg/L	N/A	2017-04-11	
Alkalinity, Carbonate (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-11	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-11	
Bicarbonate (HCO3)	3720	1.22	mg/L	N/A	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	N/A	
Conductivity (EC)	8440	2.0	μS/cm	N/A	2017-04-10	
Anions						
	< 10.0	0.10	mg/L	N/A	2017-04-10	
Bromide	< 10.0 1230		mg/L mg/L	N/A N/A	2017-04-10 2017-04-10	
Bromide Chloride		0.10				
Bromide Chloride Fluoride	1230	0.10	mg/L mg/L	N/A	2017-04-10	
Bromide Chloride Fluoride Nitrate (as N)	1230 < 1.00	0.10 0.10	mg/L mg/L mg/L	N/A N/A	2017-04-10 2017-04-10	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	1230 < 1.00 < 0.100	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	1230 < 1.00 < 0.100 < 0.100	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters	1230 < 1.00 < 0.100 < 0.100 32.7	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as	1230 < 1.00 < 0.100 < 0.100	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3)	1230 < 1.00 < 0.100 < 0.100 32.7	0.10 0.10 0.010 0.010 1.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3)	1230 < 1.00 < 0.100 < 0.100 32.7 9700 < 1.0	0.10 0.10 0.010 0.010 1.0 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	1230 < 1.00 < 0.100 < 0.100 32.7 9700 < 1.0	0.10 0.10 0.010 0.010 1.0 2.0 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	1230 < 1.00 < 0.100 < 0.100 32.7 9700 < 1.0 9700 < 1.0 < 1.0	0.10 0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11 2017-04-11	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3)	1230 < 1.00 < 0.100 < 0.100 32.7 9700 < 1.0 9710 < 1.0 11800	0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0 2.0 1.22	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3)	1230 < 1.00 < 0.100 < 0.100 32.7 9700 < 1.0 9700 < 1.0 11800 < 0.600	0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11 2017-04-11 2017-04-11 N/A N/A	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH)	1230 < 1.00 < 0.100 < 0.100 32.7 9700 < 1.0 9700 < 1.0 < 1.0 11800 < 0.600 < 0.340	0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11 2017-04-11 N/A N/A N/A	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N)	1230 < 1.00 < 0.100 < 0.100 32.7 9700 < 1.0 9700 < 1.0 < 1.0 11800 < 0.600 < 0.340 928	0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11 2017-04-11 N/A N/A N/A 2017-04-09	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) Conductivity (EC)	1230 < 1.00 < 0.100 < 0.100 32.7 9700 < 1.0 9700 < 1.0 11800 < 0.600 < 0.340 928 13800	0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 1.22 0.600 0.340 0.020 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11 2017-04-11 N/A N/A N/A 2017-04-09 2017-04-10	HT2
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) Conductivity (EC) pH	1230 < 1.00 < 0.100 < 0.100 < 0.100 32.7 9700 < 1.0 9700 < 1.0 11800 < 0.600 < 0.340 928 13800 7.70	0.10 0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0 1.22 0.600 0.340 0.020 2.0 0.01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11 2017-04-11 N/A N/A N/A 2017-04-09 2017-04-10	HT2
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) Conductivity (EC) pH Solids, Total Suspended	1230 < 1.00 < 0.100 < 0.100 32.7 9700 < 1.0 9700 < 1.0 11800 < 0.600 < 0.340 928 13800 7.70 307	0.10 0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0 2.0 1.22 0.600 0.340 0.020 2.0 0.01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11 2017-04-11 N/A N/A N/A 2017-04-09 2017-04-10 2017-04-10 2017-04-11	HT2
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) Conductivity (EC) pH	1230 < 1.00 < 0.100 < 0.100 < 0.100 32.7 9700 < 1.0 9700 < 1.0 11800 < 0.600 < 0.340 928 13800 7.70	0.10 0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0 2.0 1.22 0.600 0.340 0.020 2.0 0.01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11 2017-04-11 N/A N/A N/A 2017-04-09 2017-04-10	HT2
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) Conductivity (EC) pH Solids, Total Suspended	1230 < 1.00 < 0.100 < 0.100 32.7 9700 < 1.0 9700 < 1.0 11800 < 0.600 < 0.340 928 13800 7.70 307	0.10 0.10 0.010 0.010 1.0 2.0 2.0 2.0 2.0 2.0 1.22 0.600 0.340 0.020 2.0 0.01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2017-04-10 2017-04-07 2017-04-07 2017-04-10 2017-04-11 2017-04-11 2017-04-11 2017-04-11 N/A N/A N/A 2017-04-09 2017-04-10 2017-04-10 2017-04-11	HT2

REPORTED TO Western Water Associates Ltd
PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER 7040434 **REPORTED** 2017-04-13

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Runoff 2 (7040	1434-02) [Water] Sampled: 2017-04	4-05 00:00, Contin	ued			
Total Metals						
Aluminum, total	2.17	0.005	mg/L	2017-04-07	2017-04-08	
Antimony, total	0.0063	0.0001	mg/L	2017-04-07	2017-04-08	
Arsenic, total	0.0524	0.0005	mg/L	2017-04-07	2017-04-08	
Barium, total	0.259	0.005	mg/L	2017-04-07	2017-04-08	
Beryllium, total	0.0001	0.0001		2017-04-07	2017-04-08	
Bismuth, total	< 0.0001	0.0001	mg/L	2017-04-07	2017-04-08	
Boron, total	4.90	0.004	mg/L	2017-04-07	2017-04-08	
Cadmium, total	0.00048	0.00001	mg/L	2017-04-07	2017-04-08	
Calcium, total	382		mg/L	2017-04-07	2017-04-08	
Chromium, total	0.126	0.0005		2017-04-07	2017-04-08	
Cobalt, total	0.0371	0.00005		2017-04-07	2017-04-08	
Copper, total	0.0227	0.0002		2017-04-07	2017-04-08	
Iron, total	46.0		mg/L	2017-04-07	2017-04-08	
Lead, total	0.0119	0.0001		2017-04-07	2017-04-08	
Lithium, total	0.238	0.0001		2017-04-07	2017-04-08	
Magnesium, total	276		mg/L	2017-04-07	2017-04-08	
Manganese, total	1.41	0.0002		2017-04-07	2017-04-08	
Mercury, total	0.00004	0.00002		2017-04-11	2017-04-12	
Molybdenum, total	0.0061	0.0001		2017-04-07	2017-04-08	
Nickel, total	0.190	0.0002		2017-04-07	2017-04-08	
Phosphorus, total	13.1		mg/L	2017-04-07	2017-04-08	
Potassium, total	852		mg/L	2017-04-07	2017-04-08	
Selenium, total	0.0007	0.0005		2017-04-07	2017-04-08	
·	29.8			2017-04-07	2017-04-08	
Silicon, total Silver, total		0.00005	mg/L	2017-04-07	2017-04-08	
<u> </u>	0.00015					
Sodium, total	1460		mg/L	2017-04-07	2017-04-08	
Strontium, total	2.40		mg/L		2017-04-08	
Sulfur, total	31		mg/L	2017-04-07	2017-04-08	
Tellurium, total	< 0.0002	0.0002		2017-04-07	2017-04-08	
Thallium, total	< 0.00002	0.00002		2017-04-07	2017-04-08	
Thorium, total	0.0004	0.0001		2017-04-07	2017-04-08	
Tin, total	0.0093	0.0002		2017-04-07	2017-04-08	
Titanium, total	0.069	0.005		2017-04-07	2017-04-08	
Uranium, total	0.00069	0.00002		2017-04-07	2017-04-08	
Vanadium, total	0.011		mg/L	2017-04-07	2017-04-08	
Zinc, total	0.576	0.004		2017-04-07	2017-04-08	
Zirconium, total	0.0071	0.0001	mg/L	2017-04-07	2017-04-08	
Volatile Organic Compounds						
Benzene	1.1		μg/L	N/A	2017-04-12	
Bromodichloromethane	< 1.0		μg/L	N/A	2017-04-12	
Bromoform	< 1.0		μg/L	N/A	2017-04-12	
Carbon tetrachloride	< 0.5		μg/L	N/A	2017-04-12	
Chlorobenzene	< 1.0		μg/L	N/A	2017-04-12	
Chloroethane	< 2.0	2.0	μg/L	N/A	2017-04-12	
Chloroform	< 1.0	1.0	μg/L	N/A	2017-04-12	

Page 5 of 34

REPORTED TOWestern Water Associates LtdWORK ORDER7040434PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-13

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Runoff 2 (7040434-02) [Water] Sampled: 2017-04	-05 00:00, Continu	ıed			
Volatile Organic Compounds (VOC), Co	ontinued					
Dibromochloromethane	< 1.0	1.0	μg/L	N/A	2017-04-12	
1,2-Dibromoethane	< 0.2		μg/L	N/A	2017-04-12	
Dibromomethane	< 1.0	1.0	μg/L	N/A	2017-04-12	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	N/A	2017-04-12	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-12	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-12	
1,1-Dichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-12	
1,2-Dichloroethane	1.9	1.0	μg/L	N/A	2017-04-12	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-12	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-12	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-12	
1,2-Dichloropropane	< 1.0	1.0	μg/L	N/A	2017-04-12	
1,3-Dichloropropene	< 1.0	1.0	μg/L	N/A	2017-04-12	
Ethylbenzene	2.8	1.0	μg/L	N/A	2017-04-12	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	N/A	2017-04-12	
Dichloromethane	< 3.0	3.0	μg/L	N/A	2017-04-12	
Styrene	< 1.0	1.0	μg/L	N/A	2017-04-12	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	N/A	2017-04-12	
Tetrachloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-12	
Toluene	104	1.0	μg/L	N/A	2017-04-12	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-12	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-12	
Trichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-12	
Trichlorofluoromethane	< 1.0	1.0	μg/L	N/A	2017-04-12	
Vinyl chloride	< 1.0	1.0	μg/L	N/A	2017-04-12	
Xylenes (total)	6.7	2.0	μg/L	N/A	2017-04-12	
Surrogate: Toluene-d8	85	70-130		N/A	2017-04-12	
Surrogate: 4-Bromofluorobenzene	108	70-130	%	N/A	2017-04-12	
Surrogate: 1,4-Dichlorobenzene-d4	111	70-130	%	N/A	2017-04-12	
Sample ID: MW6-S (7040434-03) [W	/aste Water] Sampled: 20	17-04-05 00:00				
Anions		_				
Bromide	0.88		mg/L	N/A	2017-04-08	
Chloride	470		mg/L	N/A	2017-04-08	
Fluoride	0.14		mg/L	N/A	2017-04-08	
Nitrate (as N)	42.3	0.010		N/A	2017-04-08	
Nitrite (as N)	5.70	0.010		N/A	2017-04-08	
Sulfate	799	1.0	mg/L	N/A	2017-04-08	
General Parameters						
Alkalinity, Total (as CaCO3)	902	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Bicarbonate (as CaCO3)	902	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Carbonate (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	

REPORTED TO PROJECT

Western Water Associates Ltd

CSRD Refuse Disposal - Golden MR17006

WORK ORDER REPORTED 7040434 2017-04-13

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: MW6-S (7040434-03) [Waste Water] Sampled: 20	017-04-05 00:00, Co	ontinued			
General Parameters, Continued						
Alkalinity, Hydroxide (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Bicarbonate (HCO3)	1100		mg/L	N/A	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	N/A	
Ammonia, Total (as N)	1.19	0.020		N/A	2017-04-09	
Conductivity (EC)	4350		μS/cm	N/A	2017-04-09	
pH	7.42		pH units	N/A	2017-04-09	HT2
Solids, Total Suspended	5		mg/L	N/A	2017-04-11	
Turbidity	1.03		NTU	N/A	2017-04-07	
Calculated Parameters						
Hardness, Total (as CaCO3)	1650	5.00	mg/L	N/A	N/A	
Dissolved Metals						
Aluminum, dissolved	0.006	0.005	mg/L	N/A	2017-04-08	
Antimony, dissolved	0.0001	0.0001		N/A	2017-04-08	
Arsenic, dissolved	0.0007	0.0005		N/A	2017-04-08	
Barium, dissolved	0.057	0.005		N/A	2017-04-08	
Beryllium, dissolved	< 0.0001	0.0001		N/A	2017-04-08	
Bismuth, dissolved	< 0.0001	0.0001		N/A	2017-04-08	
Boron, dissolved	2.03	0.004		N/A	2017-04-08	
Cadmium, dissolved	< 0.00001	0.00001		N/A	2017-04-08	
Calcium, dissolved	163		mg/L	N/A	2017-04-10	
Chromium, dissolved	0.0006	0.0005		N/A	2017-04-08	
Cobalt, dissolved	0.00164	0.00005		N/A	2017-04-08	
Copper, dissolved	0.0028	0.0002		N/A	2017-04-08	
Iron, dissolved	< 0.010	0.010		N/A	2017-04-08	
Lead, dissolved	< 0.0001	0.0001		N/A	2017-04-08	
Lithium, dissolved	0.0484	0.0001		N/A	2017-04-08	
Magnesium, dissolved	302		mg/L	N/A	2017-04-08	
Manganese, dissolved	0.0597	0.0002		N/A	2017-04-08	
Mercury, dissolved	< 0.00002	0.00002		2017-04-10	2017-04-11	
Molybdenum, dissolved	0.0003	0.0001		N/A	2017-04-08	
Nickel, dissolved	0.0110	0.0002		N/A	2017-04-08	
Phosphorus, dissolved	< 0.05		mg/L	N/A	2017-04-08	
Potassium, dissolved	209		mg/L	N/A	2017-04-08	
Selenium, dissolved	< 0.0005	0.0005		N/A	2017-04-08	
Silicon, dissolved	12.6		mg/L	N/A	2017-04-08	
Silver, dissolved	< 0.00005	0.00005		N/A	2017-04-08	
Sodium, dissolved	343		mg/L	N/A	2017-04-08	
Strontium, dissolved	1.74	0.001		N/A	2017-04-08	
Sulfur, dissolved	284		mg/L	N/A	2017-04-08	
Tellurium, dissolved	< 0.0002	0.0002		N/A	2017-04-08	
Thallium, dissolved	0.00006	0.00002		N/A	2017-04-08	
Thorium, dissolved	< 0.0001	0.0001		N/A	2017-04-08	
Tin, dissolved	< 0.0002	0.0002		N/A	2017-04-08	

REPORTED TO Western Water Associates Ltd Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006 RE

WORK ORDER 7040434 **REPORTED** 2017-04-13

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: MW6-S (7040434-03) [W	aste Water] Sampled: 20	17-04-05 00:00, Co	ontinued			
Dissolved Metals, Continued						
Titanium, dissolved	< 0.005	0.005	mg/L	N/A	2017-04-08	
Uranium, dissolved	0.00734	0.00002		N/A	2017-04-08	
Vanadium, dissolved	< 0.001	0.001		N/A	2017-04-08	
Zinc, dissolved	0.005	0.004		N/A	2017-04-08	
Zirconium, dissolved	0.0002	0.0001		N/A	2017-04-08	
Volatile Organic Compounds (VOC)						
Benzene	< 0.5	0.5	μg/L	N/A	2017-04-11	
Bromodichloromethane	< 1.0		μg/L	N/A	2017-04-11	
Bromoform	< 1.0		μg/L	N/A	2017-04-11	
Carbon tetrachloride	< 0.5		μg/L	N/A	2017-04-11	
Chlorobenzene	< 1.0		μg/L	N/A	2017-04-11	
Chloroethane	< 2.0		μg/L μg/L	N/A	2017-04-11	
Chloroform	< 1.0		μg/L μg/L	N/A	2017-04-11	
Dibromochloromethane	< 1.0		μg/L μg/L	N/A	2017-04-11	
1,2-Dibromoethane	< 0.2		μg/L μg/L	N/A	2017-04-11	
Dibromomethane	< 1.0		μg/L	N/A	2017-04-11	
1.2-Dichlorobenzene	< 0.5		μg/L	N/A	2017-04-11	
1,3-Dichlorobenzene	< 1.0		μg/L μg/L	N/A	2017-04-11	
1,4-Dichlorobenzene	< 1.0		μg/L μg/L	N/A	2017-04-11	
1,1-Dichloroethane	< 1.0			N/A	2017-04-11	
1,2-Dichloroethane	< 1.0		μg/L	N/A	2017-04-11	
·			μg/L	N/A		
1,1-Dichloroethylene	< 1.0		μg/L		2017-04-11	
cis-1,2-Dichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
trans-1,2-Dichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
1,2-Dichloropropane	< 1.0		μg/L	N/A	2017-04-11	
1,3-Dichloropropene	< 1.0		μg/L	N/A	2017-04-11	
Ethylbenzene	< 1.0		μg/L	N/A	2017-04-11	
Methyl tert-butyl ether	< 1.0		μg/L	N/A	2017-04-11	
Dichloromethane	< 3.0		μg/L	N/A	2017-04-11	
Styrene	< 1.0		μg/L 	N/A	2017-04-11	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	N/A	2017-04-11	
Tetrachloroethylene	< 1.0		μg/L	N/A	2017-04-11	
Toluene	6.6		μg/L	N/A	2017-04-11	
1,1,1-Trichloroethane	< 1.0		μg/L	N/A	2017-04-11	
1,1,2-Trichloroethane	< 1.0		μg/L	N/A	2017-04-11	
Trichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
Trichlorofluoromethane	< 1.0		μg/L	N/A	2017-04-11	
Vinyl chloride	< 1.0		μg/L	N/A	2017-04-11	
Xylenes (total)	< 2.0		μg/L	N/A	2017-04-11	
Surrogate: Toluene-d8	81	70-130	%	N/A	2017-04-11	
Surrogate: 4-Bromofluorobenzene	99	70-130	%	N/A	2017-04-11	
Surrogate: 1,4-Dichlorobenzene-d4	77	70-130	%	N/A	2017-04-11	

Sample ID: Town Well #4 (7040434-04) [Waste Water] Sampled: 2017-04-05 00:00

REPORTED TO Western Water Associates Ltd
PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER REPORTED 7040434 2017-04-13

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Town Well #4 (7040434-	04) [Waste Water] Sampl	ed: 2017-04-05 00	:00, Continu	ued		
Anions						
Bromide	< 0.10	0.10	mg/L	N/A	2017-04-08	
Chloride	90.4	0.10	mg/L	N/A	2017-04-08	
Fluoride	< 0.10		mg/L	N/A	2017-04-08	
Nitrate (as N)	1.39	0.010	mg/L	N/A	2017-04-08	
Nitrite (as N)	< 0.010	0.010	mg/L	N/A	2017-04-08	
Phosphate (as P)	< 0.010	0.010	mg/L	N/A	2017-04-08	
Sulfate	42.8		mg/L	N/A	2017-04-08	
General Parameters						
	242	2.0	ma/l	N/A	2017-04-09	
Alkalinity, Total (as CaCO3)	343 < 1.0		mg/L	N/A N/A	2017-04-09	
Alkalinity, Phenolphthalein (as CaCO3)	~ 1.0	2.0	mg/L	IN/A	2011-04-09	
Alkalinity, Bicarbonate (as CaCO3)	343	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Carbonate (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Bicarbonate (HCO3)	418	1.22	mg/L	N/A	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	N/A	
Ammonia, Total (as N)	0.026	0.020	mg/L	N/A	2017-04-09	
Conductivity (EC)	959	2.0	μS/cm	N/A	2017-04-09	
pH	7.85	0.01	pH units	N/A	2017-04-09	HT.
Solids, Total Suspended	< 2	2	mg/L	N/A	2017-04-11	
Turbidity	< 0.10	0.10	NTU	N/A	2017-04-07	
Calculated Parameters						
Hardness, Total (as CaCO3)	398	0.500	ma/l	N/A	N/A	
. ,	330	0.500	ilig/L	IN/A	IN/A	
Total Metals						
Aluminum, total	< 0.005	0.005	mg/L	2017-04-07	2017-04-08	
Antimony, total	< 0.0001	0.0001	mg/L	2017-04-07	2017-04-08	
Arsenic, total	< 0.0005	0.0005	mg/L	2017-04-07	2017-04-08	
Barium, total	0.214	0.005	mg/L	2017-04-07	2017-04-08	
Beryllium, total	< 0.0001	0.0001	mg/L	2017-04-07	2017-04-08	
Bismuth, total	< 0.0001	0.0001		2017-04-07	2017-04-08	
Boron, total	0.025	0.004	mg/L	2017-04-07	2017-04-08	
Cadmium, total	< 0.00001	0.00001	mg/L	2017-04-07	2017-04-08	
Calcium, total	93.7	0.2	mg/L	2017-04-07	2017-04-08	
Chromium, total	0.0005	0.0005	mg/L	2017-04-07	2017-04-08	
Cobalt, total	< 0.00005	0.00005	mg/L	2017-04-07	2017-04-08	
Copper, total	0.0015	0.0002	mg/L	2017-04-07	2017-04-08	
ron, total	< 0.01	0.01	mg/L	2017-04-07	2017-04-08	
Lead, total	0.0001	0.0001	mg/L	2017-04-07	2017-04-08	
Lithium, total	0.0020	0.0001	mg/L	2017-04-07	2017-04-08	
Magnesium, total	39.6		mg/L	2017-04-07	2017-04-08	
Manganese, total	< 0.0002	0.0002		2017-04-07	2017-04-08	
Mercury, total	< 0.00002	0.00002		2017-04-11	2017-04-12	
Molybdenum, total	0.0002	0.0001		2017-04-07	2017-04-08	

Page 9 of 34

REPORTED TO Western Water Associates Ltd **WORK ORDER PROJECT** CSRD Refuse Disposal - Golden MR17006

7040434 **REPORTED** 2017-04-13

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Town Well #4	(7040434-04) [Waste Water]	Sampled: 2017-04-05 00	:00, Co	ntinued		
Total Metals, Continued						
Nickel, total	< 0.0002	0.0002	mg/L	2017-04-07	2017-04-08	
Phosphorus, total	< 0.05		mg/L	2017-04-07	2017-04-08	
Potassium, total	1.85		mg/L	2017-04-07	2017-04-08	
Selenium, total	< 0.0005	0.0005		2017-04-07	2017-04-08	
Silicon, total	4.7		mg/L	2017-04-07	2017-04-08	
Silver, total	< 0.00005	0.00005		2017-04-07	2017-04-08	
Sodium, total	52.7		mg/L	2017-04-07	2017-04-08	
Strontium, total	0.446	0.001		2017-04-07	2017-04-08	
Sulfur, total	12		mg/L	2017-04-07	2017-04-08	
Tellurium, total	< 0.0002	0.0002		2017-04-07	2017-04-08	
Thallium, total	< 0.0002	0.00002		2017-04-07	2017-04-08	
Thorium, total	< 0.0001	0.0001		2017-04-07	2017-04-08	
Tin, total	< 0.0001	0.0002		2017-04-07	2017-04-08	
Titanium, total	< 0.005	0.005		2017-04-07	2017-04-08	
Uranium, total	0.00124	0.00002		2017-04-07	2017-04-08	
Vanadium, total	< 0.001	0.001		2017-04-07	2017-04-08	
Zinc, total	< 0.004	0.004		2017-04-07	2017-04-08	
Zirconium, total	< 0.0001	0.0001		2017-04-07	2017-04-08	
<i>Volatile Organic Compound</i> Benzene	ds (VOC) < 0.5		μg/L	N/A	2017-04-11	
Bromodichloromethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
Bromoform	< 1.0	1.0	μg/L	N/A	2017-04-11	
Carbon tetrachloride	< 0.5	0.5	μg/L	N/A	2017-04-11	
Chlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-11	
Chloroethane	< 2.0	2.0	μg/L	N/A	2017-04-11	
Chloroform	< 1.0	1.0	μg/L	N/A	2017-04-11	
Dibromochloromethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,2-Dibromoethane	< 0.2	0.2	μg/L	N/A	2017-04-11	
Dibromomethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	N/A	2017-04-11	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,1-Dichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,2-Dichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-11	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-11	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,2-Dichloropropane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,3-Dichloropropene	< 1.0	1.0	μg/L	N/A	2017-04-11	
Ethylbenzene	< 1.0		μg/L	N/A	2017-04-11	
Methyl tert-butyl ether	< 1.0		μg/L	N/A	2017-04-11	
Dichloromethane	< 3.0		μg/L	N/A	2017-04-11	
Styrene	< 1.0		μg/L	N/A	2017-04-11	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	N/A	2017-04-11	
Tetrachloroethylene	< 1.0		μg/L	N/A	2017-04-11	

REPORTED TOWestern Water Associates LtdWORK ORDER7040434PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-13

COND Neiuse D	isposai - Goideil Mix 17000			REPORTED		2017-04-
Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Town Well #4 (7040434-0	04) [Waste Water] Sample	ed: 2017-04-05 00	:00, Contin	ued		
Volatile Organic Compounds (VOC), Co	ntinued					
Toluene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,1,1-Trichloroethane	< 1.0		μg/L	N/A	2017-04-11	
1,1,2-Trichloroethane	< 1.0		μg/L	N/A	2017-04-11	
Trichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
Trichlorofluoromethane	< 1.0		μg/L	N/A	2017-04-11	
Vinyl chloride	< 1.0		μg/L	N/A	2017-04-11	
Xylenes (total)	< 2.0		μg/L	N/A	2017-04-11	
Surrogate: Toluene-d8	81	70-130		N/A	2017-04-11	
Surrogate: 4-Bromofluorobenzene	102	70-130		N/A	2017-04-11	
Surrogate: 1,4-Dichlorobenzene-d4	78	70-130	%	N/A	2017-04-11	
Sample ID: Town Well #6 (7040434-0	05) [Waste Water] Sample	ed: 2017-04-05 00	:00			
Anions						
Bromide	< 0.10	0.10	mg/L	N/A	2017-04-08	
Chloride	31.0	0.10	mg/L	N/A	2017-04-08	
Fluoride	< 0.10	0.10	mg/L	N/A	2017-04-08	
Nitrate (as N)	1.09	0.010	mg/L	N/A	2017-04-08	
Nitrite (as N)	< 0.010	0.010	mg/L	N/A	2017-04-08	
Sulfate	27.6	1.0	mg/L	N/A	2017-04-08	
General Parameters						
Alkalinity, Total (as CaCO3)	314	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Phenolphthalein (as	< 1.0		mg/L	N/A	2017-04-09	
CaCO3)	•		9/=			
Alkalinity, Bicarbonate (as CaCO3)	314	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Carbonate (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Bicarbonate (HCO3)	383	1.22	mg/L	N/A	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	N/A	
Ammonia, Total (as N)	0.030	0.020	mg/L	N/A	2017-04-09	
Conductivity (EC)	692		μS/cm	N/A	2017-04-09	
pH	7.89		pH units	N/A	2017-04-09	HT2
Solids, Total Suspended	< 2		mg/L	N/A	2017-04-11	
Turbidity	0.16		NTU	N/A	2017-04-07	
Coloulated Bayamatara						
Calculated Parameters	•••	0.500	· /I	A 1 / A	N1/A	
Hardness, Total (as CaCO3)	334	0.500	mg/L	N/A	N/A	
Total Metals						
i Olai Melais				0047.04.07	2017-04-08	
	< 0.005	0.005	mg/L	2017-04-07	2017-04-06	
Aluminum, total	< 0.005 < 0.0001	0.005 0.0001		2017-04-07	2017-04-08	
Aluminum, total Antimony, total			mg/L			
Aluminum, total Antimony, total Arsenic, total	< 0.0001	0.0001	mg/L mg/L	2017-04-07	2017-04-08 2017-04-08	
Aluminum, total Antimony, total Arsenic, total Barium, total Beryllium, total	< 0.0001 < 0.0005	0.0001 0.0005	mg/L mg/L mg/L	2017-04-07 2017-04-07	2017-04-08	

Page 11 of 34

REPORTED TOWestern Water Associates LtdWORK ORDER7040434PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-13

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Town Well #6 (7040	0434-05) [Waste Water] Sampl	ed: 2017-04-05 00	:00, Contir	nued		
Total Metals, Continued						
Boron, total	0.016	0.004	mg/L	2017-04-07	2017-04-08	
Cadmium, total	< 0.00001	0.00001		2017-04-07	2017-04-08	
Calcium, total	89.6	0.2	mg/L	2017-04-07	2017-04-08	
Chromium, total	0.0006	0.0005		2017-04-07	2017-04-08	
Cobalt, total	< 0.0005	0.00005		2017-04-07	2017-04-08	
Copper, total	0.0013	0.0002		2017-04-07	2017-04-08	
Iron, total	< 0.01	0.01	mg/L	2017-04-07	2017-04-08	
Lead, total	< 0.0001	0.0001	mg/L	2017-04-07	2017-04-08	
Lithium, total	0.0013	0.0001	mg/L	2017-04-07	2017-04-08	
Magnesium, total	26.8	0.01	mg/L	2017-04-07	2017-04-08	
Manganese, total	0.0007	0.0002		2017-04-07	2017-04-08	
Mercury, total	< 0.00002	0.00002		2017-04-11	2017-04-12	
Molybdenum, total	0.0003	0.0001	mg/L	2017-04-07	2017-04-08	
Nickel, total	0.0003	0.0002		2017-04-07	2017-04-08	
Phosphorus, total	< 0.05		mg/L	2017-04-07	2017-04-08	
Potassium, total	0.93		mg/L	2017-04-07	2017-04-08	
Selenium, total	< 0.0005	0.0005		2017-04-07	2017-04-08	
Silicon, total	4.3		mg/L	2017-04-07	2017-04-08	
Silver, total	< 0.00005	0.00005		2017-04-07	2017-04-08	
Sodium, total	17.1	0.02		2017-04-07	2017-04-08	
Strontium, total	0.294	0.001	mg/L	2017-04-07	2017-04-08	
Sulfur, total	6		mg/L	2017-04-07	2017-04-08	
Tellurium, total	< 0.0002	0.0002		2017-04-07	2017-04-08	
Thallium, total	< 0.0002	0.0002		2017-04-07	2017-04-08	
Thorium, total	< 0.0001	0.0002	mg/L	2017-04-07	2017-04-08	
Tin, total	< 0.0001	0.0007		2017-04-07	2017-04-08	
Titanium, total	< 0.005	0.0002		2017-04-07	2017-04-08	
Uranium, total	0.00109	0.00002		2017-04-07	2017-04-08	
Vanadium, total	< 0.001	0.0002	mg/L	2017-04-07	2017-04-08	
Zinc, total	0.004	0.001		2017-04-07	2017-04-08	
Zirconium, total	< 0.0001	0.004		2017-04-07	2017-04-08	
·		0.0001	mg/L	2017-04-07	2017-04-00	
Volatile Organic Compounds (VO					001=0111	
Benzene	< 0.5		μg/L	N/A	2017-04-11	
Bromodichloromethane	< 1.0		μg/L	N/A	2017-04-11	
Bromoform	< 1.0		μg/L	N/A	2017-04-11	
Carbon tetrachloride	< 0.5		μg/L	N/A	2017-04-11	
Chlorobenzene	< 1.0		μg/L	N/A	2017-04-11	
Chloroethane	< 2.0		μg/L	N/A	2017-04-11	
Chloroform	< 1.0		μg/L	N/A	2017-04-11	
Dibromochloromethane	< 1.0		μg/L	N/A	2017-04-11	
1,2-Dibromoethane	< 0.2		μg/L	N/A	2017-04-11	
Dibromomethane	< 1.0		μg/L	N/A	2017-04-11	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	N/A	2017-04-11	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-11	

REPORTED TOWestern Water Associates LtdWORK ORDER7040434PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-13

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Town Well #6 (7040434-	05) [Waste Water] Sample	ed: 2017-04-05 00	:00, Contin	ued		
Volatile Organic Compounds (VOC), Co	ontinued					
1,1-Dichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,2-Dichloroethane	< 1.0		μg/L	N/A	2017-04-11	
1,1-Dichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
cis-1,2-Dichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
trans-1,2-Dichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
1,2-Dichloropropane	< 1.0		μg/L	N/A	2017-04-11	
1,3-Dichloropropene	< 1.0		μg/L	N/A	2017-04-11	
Ethylbenzene	< 1.0		μg/L	N/A	2017-04-11	
Methyl tert-butyl ether	< 1.0		μg/L	N/A	2017-04-11	
Dichloromethane	< 3.0		μg/L	N/A	2017-04-11	
Styrene	< 1.0		μg/L	N/A	2017-04-11	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	N/A	2017-04-11	
Tetrachloroethylene	< 1.0		μg/L	N/A	2017-04-11	
Toluene	< 1.0		μg/L	N/A	2017-04-11	
1,1,1-Trichloroethane	< 1.0		μg/L	N/A	2017-04-11	
1,1,2-Trichloroethane	< 1.0		μg/L	N/A	2017-04-11	
Trichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
Trichlorofluoromethane	< 1.0		μg/L	N/A	2017-04-11	
Vinyl chloride	< 1.0		μg/L	N/A	2017-04-11	
-	< 2.0		μg/L μg/L	N/A	2017-04-11	
Xylenes (total)	79	70-130		N/A	2017-04-11	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene	97	70-130		N/A	2017-04-11	
Surrogate: 1,4-Dichlorobenzene-d4	72	70-130		N/A	2017-04-11	
Sample ID: DMW - 4 (7040434-06)	Water] Sampled: 2017-04-	05 00:00				
Anions						
Bromide	< 0.10	0.10	mg/L	N/A	2017-04-08	
Chloride	12.8		mg/L	N/A	2017-04-08	
Fluoride	0.34		mg/L	N/A	2017-04-08	
Nitrate (as N)	0.494	0.010		N/A	2017-04-08	
Nitrite (as N)	< 0.010	0.010		N/A	2017-04-08	
Sulfate	153		mg/L	N/A	2017-04-08	
General Parameters						
Alkalinity, Total (as CaCO3)	399	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Phenolphthalein (as	< 1.0		mg/L	N/A	2017-04-09	
CaCO3)	- 1.0	2.0	y/ L	197		
Alkalinity, Bicarbonate (as CaCO3)	399	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Carbonate (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Bicarbonate (HCO3)	486	1.22	mg/L	N/A	N/A	
0	< 0.600	0.600	mg/L	N/A	N/A	
Carbonate (CO3)						
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	N/A	
	< 0.340 0.024	0.340 0.020		N/A N/A	N/A 2017-04-09	

REPORTED TO PROJECT

Western Water Associates Ltd

CSRD Refuse Disposal - Golden MR17006

WORK ORDER REPORTED 7040434 2017-04-13

Analyte	Result / Recovery	MRL / <i>Limit</i> s	Units	Prepared	Analyzed	Note
Sample ID: DMW - 4 (7040434-0	6) [Water] Sampled: 2017-04	I-05 00:00, Continu	ıed			
General Parameters, Continued						
Н	7.76	0.01	pH units	N/A	2017-04-09	HT2
Solids, Total Suspended	< 2		mg/L	N/A	2017-04-11	
Turbidity	0.25		NTU	N/A	2017-04-07	
Calculated Parameters						
Hardness, Total (as CaCO3)	515	0.500	ma/l	N/A	N/A	
Total Metals						
	40.005	0.005		2017 04 07	2047.04.00	
Aluminum, total	< 0.005	0.005		2017-04-07	2017-04-08	
Antimony, total	0.0001	0.0001	mg/L	2017-04-07	2017-04-08	
Arsenic, total	0.0010	0.0005	mg/L	2017-04-07	2017-04-08	
Barium, total	0.016	0.005	mg/L	2017-04-07	2017-04-08	
Beryllium, total	< 0.0001	0.0001	mg/L	2017-04-07	2017-04-08	
Bismuth, total	< 0.0001	0.0001	mg/L	2017-04-07	2017-04-08	
Boron, total	0.106	0.004	mg/L	2017-04-07	2017-04-08	
Cadmium, total	< 0.00001	0.00001	mg/L	2017-04-07	2017-04-08	
Calcium, total	73.2		mg/L	2017-04-07	2017-04-08	
Chromium, total	< 0.0005	0.0005		2017-04-07	2017-04-08	
Cobalt, total	0.00077	0.00005	mg/L	2017-04-07	2017-04-08	
Copper, total	0.0394	0.0002		2017-04-07	2017-04-08	
Iron, total	0.03	0.01		2017-04-07	2017-04-08	
Lead, total	0.0002	0.0001	mg/L	2017-04-07	2017-04-08	
Lithium, total	0.0192	0.0001	mg/L	2017-04-07	2017-04-08	
Magnesium, total	80.5	0.01	mg/L	2017-04-07	2017-04-08	
Manganese, total	0.0017	0.0002		2017-04-07	2017-04-08	
Mercury, total	< 0.00002	0.00002		2017-04-11	2017-04-12	
Molybdenum, total	0.0014	0.0001		2017-04-07	2017-04-08	
Nickel, total	0.0017	0.0002		2017-04-07	2017-04-08	
Phosphorus, total	< 0.05	0.05		2017-04-07	2017-04-08	
Potassium, total	4.15	0.02		2017-04-07	2017-04-08	
Selenium, total	0.0006	0.0005	mg/L	2017-04-07	2017-04-08	
Silicon, total	7.3		mg/L	2017-04-07		
Silver, total	< 0.00005	0.00005		2017-04-07	2017-04-08	
Sodium, total	21.1		mg/L	2017-04-07	2017-04-08	
Strontium, total	2.30	0.001		2017-04-07	2017-04-08	
Sulfur, total	46 < 0.0002		mg/L	2017-04-07		
Tellurium, total	< 0.0002	0.0002		2017-04-07	2017-04-08	
Thallium, total		0.00002		2017-04-07	2017-04-08	
Thorium, total	< 0.0001			2017-04-07	2017-04-08	
Tin, total	< 0.0002	0.0002			2017-04-08	
Titanium, total	< 0.005	0.005		2017-04-07	2017-04-08	
Uranium, total	0.00225	0.00002		2017-04-07	2017-04-08	
Vanadium, total	< 0.001	0.001	mg/L	2017-04-07	2017-04-08	
Zinc, total Zirconium, total	0.024 0.0004	0.004	mg/L mg/L	2017-04-07	2017-04-08	

CARO Analytical Services

REPORTED TOWestern Water Associates LtdWORK ORDERPROJECTCSRD Refuse Disposal - Golden MR17006REPORTED

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: DMW - 4 (7040434-06) [Water] Sampled: 2017-04	-05 00:00, Continu	ıed			
Volatile Organic Compounds (VOC), Co	ontinued					
Benzene	< 0.5	0.5	μg/L	N/A	2017-04-11	
Bromodichloromethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
Bromoform	< 1.0	1.0	μg/L	N/A	2017-04-11	
Carbon tetrachloride	< 0.5	0.5	μg/L	N/A	2017-04-11	
Chlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-11	
Chloroethane	< 2.0	2.0	μg/L	N/A	2017-04-11	
Chloroform	< 1.0	1.0	μg/L	N/A	2017-04-11	
Dibromochloromethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,2-Dibromoethane	< 0.2	0.2	μg/L	N/A	2017-04-11	
Dibromomethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	N/A	2017-04-11	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,1-Dichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,2-Dichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-11	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-11	
rans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,2-Dichloropropane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,3-Dichloropropene	< 1.0	1.0	μg/L	N/A	2017-04-11	
Ethylbenzene	< 1.0	1.0	μg/L	N/A	2017-04-11	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	N/A	2017-04-11	
Dichloromethane	< 3.0	3.0	μg/L	N/A	2017-04-11	
Styrene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	N/A	2017-04-11	
Tetrachloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-11	
Toluene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
Trichloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-11	
Trichlorofluoromethane	< 1.0	1.0	μg/L	N/A	2017-04-11	
Vinyl chloride	< 1.0	1.0	μg/L	N/A	2017-04-11	
Xylenes (total)	< 2.0	2.0	μg/L	N/A	2017-04-11	
Surrogate: Toluene-d8	82	70-130	%	N/A	2017-04-11	
Surrogate: 4-Bromofluorobenzene	102	70-130	%	N/A	2017-04-11	
Surrogate: 1,4-Dichlorobenzene-d4	77	70-130	%	N/A	2017-04-11	
ample ID: DMW - 1b (7040434-07)	[Water] Sampled: 2017-0	04-05 00:00				
Anions						
Bromide	< 0.10		mg/L	N/A	2017-04-08	
Chloride	42.1		mg/L	N/A	2017-04-08	
Fluoride	1.25		mg/L	N/A	2017-04-08	
Nitrate (as N)	< 0.010	0.010		N/A	2017-04-08	
Nitrite (as N)	< 0.010	0.010	mg/L	N/A	2017-04-08	

7040434

REPORTED TO PROJECT

Western Water Associates Ltd

CSRD Refuse Disposal - Golden MR17006

WORK ORDER REPORTED

Analyte	Result / Recovery	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: DMW - 1b (7040434-07)	[Water] Sampled: 2017-	04-05 00:00, Contir	nued			
Anions, Continued						
Sulfate	126	1.0	mg/L	N/A	2017-04-08	
0						
General Parameters		0.0	,,	N1/A	0017.01.00	
Alkalinity, Total (as CaCO3)	504		mg/L	N/A	2017-04-09	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Bicarbonate (as CaCO3)	504		mg/L	N/A	2017-04-09	
Alkalinity, Carbonate (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	2.0	mg/L	N/A	2017-04-09	
Bicarbonate (HCO3)	614	1.22	mg/L	N/A	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	N/A	
Ammonia, Total (as N)	0.239	0.020	mg/L	N/A	2017-04-09	
Conductivity (EC)	1140	2.0	μS/cm	N/A	2017-04-09	
рН	7.67	0.01	pH units	N/A	2017-04-09	HT2
Solids, Total Suspended	< 2	2	mg/L	N/A	2017-04-11	
Turbidity	2.40	0.10	NTU	N/A	2017-04-07	
Calculated Parameters						
Hardness, Total (as CaCO3)	676	0.500	mg/L	N/A	N/A	
Total Metals						
Aluminum, total	0.005	0.005	mg/L	2017-04-07	2017-04-08	
Antimony, total	0.0003	0.0001		2017-04-07	2017-04-08	
Arsenic, total	0.0326	0.0005		2017-04-07	2017-04-08	
Barium, total	0.025	0.005		2017-04-07	2017-04-08	
Beryllium, total	< 0.0001	0.0001		2017-04-07	2017-04-08	
Bismuth, total	< 0.0001	0.0001		2017-04-07	2017-04-08	
Boron, total	0.137	0.004		2017-04-07	2017-04-08	
Cadmium, total	< 0.00001	0.00001		2017-04-07	2017-04-08	
Calcium, total	77.3		mg/L	2017-04-07	2017-04-08	
Chromium, total	< 0.0005	0.0005		2017-04-07	2017-04-08	
Cobalt, total	0.00050	0.00005		2017-04-07	2017-04-08	
Copper, total	0.0079	0.0002		2017-04-07	2017-04-08	
Iron, total	0.43		mg/L	2017-04-07	2017-04-08	
Lead, total	0.0002	0.0001		2017-04-07	2017-04-08	
Lithium, total	0.0236	0.0001		2017-04-07	2017-04-08	
Magnesium, total	117		mg/L	2017-04-07	2017-04-08	
Manganese, total	0.0110	0.0002		2017-04-07	2017-04-08	
Mercury, total	< 0.00002	0.00002		2017-04-11	2017-04-12	
Molybdenum, total	0.0003	0.0001		2017-04-07	2017-04-08	
Nickel, total	0.0020	0.0002		2017-04-07	2017-04-08	
Phosphorus, total	< 0.05		mg/L	2017-04-07	2017-04-08	
Potassium, total	4.73		mg/L	2017-04-07	2017-04-08	
Selenium, total	< 0.0005	0.0005		2017-04-07	2017-04-08	
Co.cum, total						
Silicon, total	7.5	0.5	mg/L	2017-04-07	2017-04-08	

REPORTED TO Western Water Associates Ltd
PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER 7040434 **REPORTED** 2017-04-13

Analyte	Result / Recovery	MRL / <i>Limit</i> s	Units	Prepared	Analyzed	Notes
Sample ID: DMW - 1b (704043	4-07) [Water] Sampled: 2017-0	4-05 00:00, Contir	nued			
Total Metals, Continued						
Sodium, total	26.3	0.02	mg/L	2017-04-07	2017-04-08	
Strontium, total	1.78	0.001		2017-04-07	2017-04-08	
Sulfur, total	43		mg/L	2017-04-07	2017-04-08	
Tellurium, total	< 0.0002	0.0002		2017-04-07	2017-04-08	
Thallium, total	< 0.0002	0.00002		2017-04-07	2017-04-08	
Thorium, total	< 0.0001	0.0001		2017-04-07	2017-04-08	
Tin, total	< 0.0002	0.0002		2017-04-07	2017-04-08	
Titanium, total	< 0.005	0.005		2017-04-07	2017-04-08	
Uranium, total	0.00020	0.00002		2017-04-07	2017-04-08	
Vanadium, total	< 0.001	0.0002		2017-04-07	2017-04-08	
Zinc, total	0.017	0.001		2017-04-07	2017-04-08	
Zirconium, total	0.017	0.004		2017-04-07	2017-04-08	
·		0.0001	my/L	2011-U4-U1	2011-0 4- 00	
Volatile Organic Compounds (VC Benzene	(0.5 × 0.5	0.5	μg/L	N/A	2017-04-11	
Bromodichloromethane	< 1.0		μg/L	N/A	2017-04-11	
Bromoform	< 1.0		µg/L	N/A		
Carbon tetrachloride	< 0.5		μg/L	N/A	2017-04-11	
Chlorobenzene	< 1.0		μg/L	N/A	2017-04-11	
Chloroethane	< 2.0		μg/L	N/A	2017-04-11	
Chloroform	< 1.0		μg/L	N/A	2017-04-11	
Dibromochloromethane	< 1.0		μg/L	N/A	2017-04-11	
1,2-Dibromoethane	< 0.2		μg/L	N/A	2017-04-11	
Dibromomethane	< 1.0		μg/L	N/A	2017-04-11	
1,2-Dichlorobenzene	< 0.5		μg/L	N/A	2017-04-11	
1,3-Dichlorobenzene	< 1.0		μg/L	N/A	2017-04-11	
1,4-Dichlorobenzene	< 1.0		μg/L	N/A	2017-04-11	
1,1-Dichloroethane	< 1.0		μg/L	N/A	2017-04-11	
1,2-Dichloroethane	< 1.0		μg/L	N/A	2017-04-11	
1,1-Dichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
cis-1,2-Dichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
trans-1,2-Dichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
1,2-Dichloropropane	< 1.0		μg/L	N/A	2017-04-11	
1,3-Dichloropropene	< 1.0	1.0	μg/L	N/A	2017-04-11	
Ethylbenzene	< 1.0		μg/L	N/A	2017-04-11	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	N/A	2017-04-11	
Dichloromethane	< 3.0	3.0	μg/L	N/A	2017-04-11	
Styrene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	N/A	2017-04-11	
Tetrachloroethylene	< 1.0	1.0	μg/L	N/A	2017-04-11	
Toluene	< 1.0	1.0	μg/L	N/A	2017-04-11	
1,1,1-Trichloroethane	< 1.0		μg/L	N/A	2017-04-11	
1,1,2-Trichloroethane	< 1.0		μg/L	N/A	2017-04-11	
Trichloroethylene	< 1.0		μg/L	N/A	2017-04-11	
Trichlorofluoromethane	< 1.0		μg/L	N/A	2017-04-11	
Vinyl chloride	< 1.0		μg/L	N/A	2017-04-11	

N/A

2017-04-11

REPORTED TOWestern Water Associates LtdWORK ORDER7040434PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-13

Analyte	Result / Recovery	MRL / Units Limits	Prepared	Analyzed	Notes
Sample ID: DMW - 1b (7040434-07)	[Water] Sampled: 2017-04	1-05 00:00, Continued			
Volatile Organic Compounds (VOC), C	ontinued				
Xylenes (total)	< 2.0	2.0 µg/L	N/A	2017-04-11	
Surrogate: Toluene-d8	79	70-130 %	N/A	2017-04-11	
Surrogate: 4-Bromofluorobenzene	97	70-130 %	N/A	2017-04-11	

70-130 %

Sample / Analysis Qualifiers:

Surrogate: 1,4-Dichlorobenzene-d4

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

70

REPORTED TO **PROJECT**

Western Water Associates Ltd

CSRD Refuse Disposal - Golden MR17006

WORK ORDER REPORTED

7040434 2017-04-13

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment
- Duplicate (Dup): Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
Anions, Batch B7D0418									
Blank (B7D0418-BLK1)			Prepared	d: 2017-04	-08, Analyz	zed: 2017	-04-08		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B7D0418-BLK2)			Prepared	d: 2017-04-	-08, Analyz	zed: 2017	-04-08		
Bromide	< 0.10	0.10 mg/L	_						
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B7D0418-BS1)			Prepared	d: 2017-04-	-08, Analyz	zed: 2017	-04-08		
Bromide	4.20	0.10 mg/L	4.00		105	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Fluoride	3.86	0.10 mg/L	4.00		96	88-108			
Nitrate (as N)	4.22	0.010 mg/L	4.00		105	93-108			
Nitrite (as N)	1.98	0.010 mg/L	2.00		99	83-110			
Phosphate (as P)	0.989	0.010 mg/L	1.00		99	85-115			
Sulfate	16.2	1.0 mg/L	16.0		101	91-109			
LCS (B7D0418-BS2)			Prepared	d: 2017-04	-08, Analyz	zed: 2017	-04-08		
Bromide	4.20	0.10 mg/L	4.00		105	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Fluoride	3.84	0.10 mg/L	4.00		96	88-108			
Nitrate (as N)	4.30	0.010 mg/L	4.00		107	93-108			
Nitrite (as N)	1.99	0.010 mg/L	2.00		99	83-110			
Phosphate (as P)	1.01	0.010 mg/L	1.00		101	85-115			

REPORTED TO Western Water Associates Ltd
PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER 7040434 **REPORTED** 2017-04-13

Analyte	Result	MRL	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
Anions, Batch B7D0418, Continued										
LCS (B7D0418-BS2), Continued				Prepared	l: 2017-04-	-08, Analyz	ed: 2017	-04-08		
Sulfate	16.0	1.0	mg/L	16.0		100	91-109			
Dissolved Metals, Batch B7D0413										
Blank (B7D0413-BLK1)				Prepared	l: 2017-04-	-08, Analyz	ed: 2017	-04-08		
Aluminum, dissolved	< 0.005	0.005								
Antimony, dissolved	< 0.0001	0.0001								
Arsenic, dissolved	< 0.0005	0.0005								
Barium, dissolved	< 0.005	0.005								
Beryllium, dissolved	< 0.0001	0.0001								
Bismuth, dissolved	< 0.0001	0.0001								
Boron, dissolved	< 0.004	0.004								
Cadmium, dissolved	< 0.00001	0.00001								
Calcium, dissolved	< 0.2		mg/L							
Chromium, dissolved	< 0.0005	0.0005								
Cobalt, dissolved	< 0.00005	0.00005								
Copper, dissolved	< 0.0002	0.0002								
Iron, dissolved	< 0.010	0.010								
Lead, dissolved	< 0.0001	0.0001								
Lithium, dissolved	< 0.0001	0.0001								
Magnesium, dissolved	< 0.01		mg/L							
Manganese, dissolved	< 0.0002	0.0002								
Molybdenum, dissolved	< 0.0001	0.0001								
Nickel, dissolved	< 0.0002	0.0002								
Phosphorus, dissolved	< 0.05		mg/L							
Potassium, dissolved	< 0.02		mg/L							
Selenium, dissolved	< 0.0005	0.0005								
Silicon, dissolved	< 0.5		mg/L							
Silver, dissolved	< 0.00005	0.00005								
Sodium, dissolved	< 0.02		mg/L							
Strontium, dissolved	< 0.001	0.001								
Sulfur, dissolved	< 1		mg/L							
Tellurium, dissolved	< 0.0002	0.0002								
Thallium, dissolved	< 0.00002	0.00002								
Thorium, dissolved	< 0.0001	0.0001								
Tin, dissolved	< 0.0002	0.0002								
Titanium, dissolved	< 0.005	0.005								
Uranium, dissolved	< 0.00002	0.00002								
Vanadium, dissolved	< 0.001	0.001								
Zinc, dissolved	< 0.004 < 0.0001	0.004								
Zirconium, dissolved	< 0.0001	0.0001	mg/L							
Reference (B7D0413-SRM1)				Prepared	l: 2017-04-	-08, Analyz	ed: 2017	-04-08		
Aluminum, dissolved	0.224	0.005	mg/L	0.233		96	58-142			
Antimony, dissolved	0.0424	0.0001	mg/L	0.0430		99	75-125			
Arsenic, dissolved	0.423	0.0005	mg/L	0.438		97	81-119			
Barium, dissolved	3.35	0.005		3.35		100	83-117			
Beryllium, dissolved	0.211	0.0001	mg/L	0.213		99	80-120			
Boron, dissolved	1.68	0.004		1.74		97	74-117			
Cadmium, dissolved	0.220	0.00001		0.224		98	83-117			
Calcium, dissolved	7.4		mg/L	7.69		97	76-124			
Chromium, dissolved	0.435	0.0005		0.437		100	81-119			
Cobalt, dissolved	0.125	0.00005		0.128		98	76-124			
Copper, dissolved	0.856	0.0002		0.844		101	84-116			
Iron, dissolved	1.27	0.010	mg/L	1.29		99	74-126			
Lead, dissolved	0.112	0.0001	ma/l	0.112		100	72-128			

Western Water Associates Ltd

REPORTED TO

APPENDIX 1: QUALITY CONTROL DATA

WORK ORDER

7040434

PROJECT CSRD Refuse Disposal - Golden MR17006 2017-04-13 **REPORTED RPD** Spike Source **REC** % REC % RPD Analyte Result MRL Units Notes Level Result Limit Limit Dissolved Metals, Batch B7D0413, Continued Prepared: 2017-04-08, Analyzed: 2017-04-08 Reference (B7D0413-SRM1), Continued 0.0001 mg/L Lithium, dissolved 0.105 0.104 101 60-140 Magnesium, dissolved 6.80 0.01 mg/L 6.92 98 81-119 0.342 Manganese, dissolved 0.0002 mg/L 0.345 99 84-116 0.0001 mg/L 0.420 0.426 83-117 Molybdenum, dissolved 99 Nickel, dissolved 0.809 0.0002 mg/L 0.840 96 74-126 Phosphorus, dissolved 0.47 0.05 mg/L 0.495 95 68-132 0.02 mg/L Potassium, dissolved 3.15 3.19 99 74-126 Selenium, dissolved 0.0321 0.0005 mg/L 0.0331 97 70-130 Sodium, dissolved 18.6 0.02 mg/L 19.1 98 72-128 0.001 mg/L 0.916 84-113 Strontium, dissolved 0.896 98 0.0397 0.00002 mg/L 0.0393 101 57-143 Thallium, dissolved Uranium, dissolved 0.261 0.00002 mg/L 0.266 98 85-115 Vanadium, dissolved 0.853 0.001 mg/L 0.869 98 87-113 0.850 0.881 72-128 Zinc, dissolved 0.004 mg/L 97 Dissolved Metals, Batch B7D0551 Blank (B7D0551-BLK1) Prepared: 2017-04-10, Analyzed: 2017-04-11 < 0.00002 Mercury, dissolved 0.00002 mg/L Blank (B7D0551-BLK2) Prepared: 2017-04-10, Analyzed: 2017-04-11 < 0.00002 0.00002 mg/L Mercury, dissolved Reference (B7D0551-SRM1) Prepared: 2017-04-10, Analyzed: 2017-04-11 0.00491 0.00489 100 Mercury, dissolved 0.00002 mg/L 50-150 Reference (B7D0551-SRM2) Prepared: 2017-04-10, Analyzed: 2017-04-11 Mercury, dissolved 0.00418 0.00002 mg/L 0.00489 50-150 General Parameters, Batch B7D0360 Blank (B7D0360-BLK1) Prepared: 2017-04-07, Analyzed: 2017-04-07 < 0.10 0.10 NTU Turbidity LCS (B7D0360-BS1) Prepared: 2017-04-07, Analyzed: 2017-04-07 0.10 NTU Turbidity 39.2 40.0 98 90-110

Blank (B7D0439-BLK1)			Prepared: 201	7-04-07, Analy	zed: 2017-04-07	
Turbidity	< 0.10	0.10 NTU				
Blank (B7D0439-BLK2)			Prepared: 201	7-04-07, Analy	zed: 2017-04-07	
Turbidity	< 0.10	0.10 NTU				
LCS (B7D0439-BS1)			Prepared: 201	7-04-07, Analy	zed: 2017-04-07	
Turbidity	39.4	0.10 NTU	40.0	98	90-110	
LCS (B7D0439-BS2)			Prepared: 201	7-04-07, Analy	zed: 2017-04-07	
Turbidity	39.5	0.10 NTU	40.0	99	90-110	

General Parameters, Batch B7D0486

General Parameters, Batch B7D0439

Blank (B7D0486-BLK1)			Prepared: 2017-04-09, Analyzed: 2017-04-09	
Ammonia, Total (as N)	< 0.005	0.020 mg/L		

REPORTED TOWestern Water Associates LtdWORK ORDER7040434PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-13

Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
General Parameters, Batch B7D0486, Co	ontinued								
Blank (B7D0486-BLK2)			Prepared	: 2017-04-	09, Analyz	zed: 2017	-04-09		
Ammonia, Total (as N)	< 0.005	0.020 mg/L							
Blank (B7D0486-BLK3)			Prenared	: 2017-04-	.09 Analv:	zed: 2017	-04-09		
Ammonia, Total (as N)	< 0.005	0.020 mg/L	Порагса	. 2017 04	00,71110192	2017	04 00		
	` 0.003	0.020 Hig/L							
LCS (B7D0486-BS1)			Prepared	: 2017-04-	09, Analyz	zed: 2017	-04-09		
Ammonia, Total (as N)	1.06	0.020 mg/L	1.00		106	86-111			
LCS (B7D0486-BS2)			Prepared	: 2017-04-	09. Analv	zed: 2017	-04-09		
Ammonia, Total (as N)	1.03	0.020 mg/L	1.00		103	86-111			
		0.0 <u>1</u> 0g/_		201= 01					
LCS (B7D0486-BS3)			Prepared	: 2017-04-	09, Analyz	zed: 2017	-04-09		
Ammonia, Total (as N)	1.01	0.020 mg/L	1.00		101	86-111			
General Parameters, Batch B7D0494 Blank (B7D0494-BLK1)			Prepared	: 2017-04-	09. Analv	zed: 2017	-04-09		
Alkalinity, Total (as CaCO3)	< 1.0	2.0 mg/L			, - ,				
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	2.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	2.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	2.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0	2.0 mg/L							
Conductivity (EC)	< 2.0	2.0 μS/cm							
Blank (B7D0494-BLK2)			Prepared	: 2017-04-	09, Analyz	zed: 2017	-04-09		
Alkalinity, Total (as CaCO3)	< 1.0	2.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	2.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	2.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	2.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0	2.0 mg/L							
Conductivity (EC)	< 2.0	2.0 µS/cm							
LCS (B7D0494-BS1)			Prepared	: 2017-04-	09, Analyz	zed: 2017	-04-09		
Alkalinity, Total (as CaCO3)	103	2.0 mg/L	100		103	92-106			
LCS (B7D0494-BS2)		<u> </u>	Dranarad	: 2017-04-	.00 Δnalv	zed: 2017	_04_09		
Conductivity (EC)	1390	2.0 µS/cm	1410	. 2017-04-	99	95-104	-04-03		
				. 2017 04			04.00		
LCS (B7D0494-BS3) Alkalinity, Total (as CaCO3)	103	2.0 mg/L	100	: 2017-04-	103, Arialy2	92-106	-04-09		
	103	2.0 Hig/L		. 0047.04			04.00		
LCS (B7D0494-BS4)	1400	2.0 µS/cm	•	: 2017-04-	99 99		-04-09		
Conductivity (EC)	1400	·	1410			95-104			
Duplicate (B7D0494-DUP1)		rce: 7040434-07	Prepared	: 2017-04-	09, Analyz	zed: 2017			
Alkalinity, Total (as CaCO3)	501	2.0 mg/L		504			< 1	10	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	2.0 mg/L		< 1.0				10	
Alkalinity, Bicarbonate (as CaCO3)	501	2.0 mg/L		504			< 1	10	
Alkalinity, Carbonate (as CaCO3)	< 1.0	2.0 mg/L		< 1.0				10	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	2.0 mg/L 2.0 µS/cm		< 1.0			< 1	10	
Conductivity (EC) pH	7.67	2.0 μS/cm 0.01 pH units		7.67			<1	5 4	
	7.07	0.01 pm units						4	
Reference (B7D0494-SRM1)			Prepared	: 2017-04-	09, Analyz	zed: 2017	-04-09		
pH	6.99	0.01 pH units	7.00		100	98-102			

REPORTED TOWestern Water Associates LtdWORK ORDER7040434PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-04-13

Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
General Parameters, Batch B7D0494, Co	ntinued								
Reference (B7D0494-SRM2)			Prepared	: 2017-04	-09, Analy	zed: 2017	-04-09		
DH .	6.99	0.01 pH units	7.00		100	98-102			
eneral Parameters, Batch B7D0543									
Blank (B7D0543-BLK1)			Prepared	: 2017-04	-10, Analy	zed: 2017	-04-10		
Conductivity (EC)	1.0	2.0 μS/cm							BLK
Blank (B7D0543-BLK2)			Prepared	: 2017-04	-10, Analy	zed: 2017	-04-10		
Conductivity (EC)	1.0	2.0 µS/cm							BLK
.CS (B7D0543-BS3)			Prepared	: 2017-04	-10, Analy	zed: 2017	-04-10		
Conductivity (EC)	1380	2.0 µS/cm	1410		98	95-104			
.CS (B7D0543-BS4)			Prepared	. 2017-04	-10, Analy	zed: 2017	-04-10		
conductivity (EC)	1420	2.0 µS/cm	1410		100	95-104	00		
Reference (B7D0543-SRM1)				. 2017-04	-10, Analy		-04-10		
H	7.00	0.01 pH units	7.00	. 2017-04	100, Arialy2	98-102	-04-10		
	7.00	0.01 pri units		. 0047.04			04.40		
Reference (B7D0543-SRM2)	7.00	0.01 pH units	7.00	: 2017-04	-10, Analy: 100	zed: 2017 98-102	-04-10		
Blank (B7D0577-BLK1) Ukalinity, Total (as CaCO3) Ukalinity, Phenolohthalein (as CaCO3)	< 1.0	2.0 mg/L	Prepared	: 2017-04	-11, Analyz	zed: 2017	-04-11		
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3)	< 1.0 < 1.0	2.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	2.0 mg/L 2.0 mg/L							
lkalinity, Hydroxide (as CaCO3)	< 1.0	2.0 mg/L							
.CS (B7D0577-BS1)			Prepared	: 2017-04	-11, Analyz	zed: 2017	-04-11		
ılkalinity, Total (as CaCO3)	97.0	2.0 mg/L	100		97	92-106			
Ouplicate (B7D0577-DUP1)	Sou	rce: 7040434-01	Prepared	: 2017-04	-11, Analyz	zed: 2017	-04-11		
lkalinity, Total (as CaCO3)	3100	2.0 mg/L		3050			2	10	
Illustrative Picordo prote (as CaCO3)	< 1.0	2.0 mg/L		< 1.0				10	
Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	3100 < 1.0	2.0 mg/L 2.0 mg/L		3050 < 1.0			2	10 10	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	2.0 mg/L		< 1.0				10	
eneral Parameters, Batch B7D0578									
Blank (B7D0578-BLK1)			Prepared	: 2017-04	-11, Analyz	zed: 2017	-04-11		
Solids, Total Suspended	< 1	2 mg/L							
-CS (B7D0578-BS1)			Prepared	: 2017-04	-11, Analyz	zed: 2017	-04-11		
Solids, Total Suspended	50	2 mg/L	50.0	<u> </u>	99	91-106	<u> </u>		
eneral Parameters, Batch B7D0607		J							
Blank (B7D0607-BLK1)			Prepared	: 2017-04	-11, Analyz	zed: 2017	-04-11		
Solids, Total Suspended	< 1	2 mg/L							
_CS (B7D0607-BS1)			Prepared	: 2017-04	-11, Analyz	zed: 2017	-04-11		
Solids, Total Suspended	48	2 mg/L	50.0		97	91-106			

REPORTED TO Western Water Associates Ltd
PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER REPORTED

7040434 2017-04-13

Analyte	Result	MRL Units	Spike	Source	% REC	REC	% RPD	RPD	Notes
7			Level	Result	,,,,,,	Limit	,,,,,,	Limit	

General Parameters, Batch B7D0607, Continued

Total Metals, Batch B7D0411

Blank (B7D0411-BLK1)			Prepared: 201	7-04-07, Analyz	ed: 2017-04-08	
Aluminum, total	< 0.005	0.005 mg/L				
Antimony, total	< 0.0001	0.0001 mg/L				
Arsenic, total	< 0.0005	0.0005 mg/L				
Barium, total	< 0.005	0.005 mg/L				
Beryllium, total	< 0.0001	0.0001 mg/L				
Bismuth, total	< 0.0001	0.0001 mg/L				
Boron, total	< 0.004	0.004 mg/L				
Cadmium, total	< 0.00001	0.00001 mg/L				
Calcium, total	< 0.2	0.2 mg/L				
Chromium, total	< 0.0005	0.0005 mg/L				
Cobalt, total	< 0.00005	0.00005 mg/L				
Copper, total	< 0.0002	0.0002 mg/L				
Iron, total	< 0.01	0.01 mg/L				
Lead, total	< 0.0001	0.0001 mg/L				
Lithium, total	< 0.0001	0.0001 mg/L				
Magnesium, total	< 0.01	0.01 mg/L				
Manganese, total	< 0.0002	0.0002 mg/L				
Molybdenum, total	< 0.0001	0.0001 mg/L				
Nickel, total	< 0.0002	0.0002 mg/L				
Phosphorus, total	< 0.05	0.05 mg/L				
Potassium, total	< 0.02	0.02 mg/L				
Selenium, total	< 0.0005	0.0005 mg/L				
Silicon, total	< 0.5	0.5 mg/L				
Silver, total	< 0.00005	0.00005 mg/L				
Sodium, total	< 0.02	0.02 mg/L				
Strontium, total	< 0.001	0.001 mg/L				
Sulfur, total	< 1	3 mg/L				
Tellurium, total	< 0.0002	0.0002 mg/L				
Thallium, total	< 0.00002	0.00002 mg/L				
Thorium, total	< 0.0001	0.0001 mg/L				
Tin, total	< 0.0002	0.0002 mg/L				
Titanium, total	< 0.005	0.005 mg/L				
Uranium, total	< 0.00002	0.00002 mg/L				
Vanadium, total	< 0.001	0.001 mg/L				
Zinc, total	< 0.004	0.004 mg/L				
Zirconium, total	< 0.0001	0.0001 mg/L				
Reference (B7D0411-SRM1)			Prepared: 201	7-04-07, Analyz	ed: 2017-04-08	
Aluminum, total	0.304	0.005 mg/L	0.303	100	81-129	
Antimony, total	0.0500	0.0001 mg/L	0.0511	98	88-114	
Arsenic, total	0.118	0.0001 mg/L	0.118	100	88-114	
Barium, total	0.822	0.005 mg/L	0.823	100	72-104	
Beryllium, total	0.0504	0.0001 mg/L	0.0496	102	76-131	
Boron, total	3.49	0.004 mg/L	3.45	101	75-121	
Cadmium, total	0.0506	0.0004 mg/L	0.0495	102	89-111	
Calcium, total	11.9	0.2 mg/L	11.6	103	86-121	
Chromium, total	0.249	0.0005 mg/L	0.250	100	89-114	
Cobalt, total	0.0395	0.00005 mg/L	0.0377	105	91-113	
Copper, total	0.505	0.0002 mg/L	0.486	104	91-115	
Iron, total	0.50	0.01 mg/L	0.488	102	77-124	
Lead, total	0.203	0.0001 mg/L	0.204	100	92-113	
Lithium, total	0.412	0.0001 mg/L	0.403	102	85-115	
Magnesium, total	3.87	0.01 mg/L	3.79	102	78-120	
Manganese, total	0.106	0.0002 mg/L	0.109	97	90-114	
	0.100	0.000= mg/L	556			

REPORTED TOWestern Water Associates LtdWORK ORDERPROJECTCSRD Refuse Disposal - Golden MR17006REPORTED

Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
otal Metals, Batch B7D0411, Continu	ed								
Reference (B7D0411-SRM1), Continue	d		Prepared	I: 2017-04-	07, Analyz	zed: 2017	'-04-08		
Molybdenum, total	0.204	0.0001 mg/L	0.198		103	90-111			
Nickel, total	0.256	0.0002 mg/L	0.249		103	90-111			
Phosphorus, total	0.22	0.05 mg/L	0.227		98	85-115			
Potassium, total	7.21	0.02 mg/L	7.21		100	84-113			
Selenium, total	0.121	0.0005 mg/L	0.121		100	85-115			
Sodium, total	8.02	0.02 mg/L	7.54		106	82-123			
Strontium, total	0.380	0.001 mg/L	0.375		101	88-112			
Thallium, total	0.0830	0.00002 mg/L	0.0805		103	91-114			
Uranium, total	0.0302	0.00002 mg/L	0.0306		99	85-120			
Vanadium, total	0.377	0.001 mg/L	0.386		98	86-111			
Zinc, total	2.48	0.004 mg/L	2.49		100	85-111			
Total Metals, Batch B7D0647 Blank (B7D0647-BLK1) Mercury, total	< 0.00002	0.00002 mg/L	Prepared	l: 2017-04-	11, Analyz	zed: 2017	7-04-12		
Blank (B7D0647-BLK2)			Prepared	I: 2017-04-	11, Analyz	ed: 2017	-04-12		
Mercury, total	< 0.00002	0.00002 mg/L							
Reference (B7D0647-SRM1)		-	Prepared	I: 2017-04-	11, Analyz	ed: 2017	-04-12		
	0.00495	0.00002 mg/L	0.00489		101	50-150			
wercury, total									
	0.00 .00		Prepared	l· 2017-04-	11 Analyz	ed: 2017	-04-12		
Reference (B7D0647-SRM2) Mercury, total	0.00466	0.00002 mg/L	Prepared 0.00489	l: 2017-04-	11, Analyz 95	ed: 2017 50-150	7-04-12		
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E	0.00466	0.00002 mg/L	0.00489	l: 2017-04- l: 2017-04-	95	50-150			
Reference (B7D0647-SRM2) Mercury, total /olatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene	0.00466 Batch B7D0548 < 0.5	0.5 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total /olatile Organic Compounds (VOC), B Blank (B7D0548-BLK1) Benzene Bromodichloromethane	0.00466 Batch B7D0548 < 0.5 < 1.0	0.5 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total /olatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Volatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 2.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Volatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 2.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L 1.0 µg/L 0.2 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total /olatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 0.2 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 5.5 < 1.0 < 5.5 < 1.0 < 5.5 < 1.0 < 5.5 < 1.0 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5 < 5.5	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 0.2 µg/L 1.0 µg/L 0.5 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 μg/L 1.0 μg/L 1.0 μg/L 0.5 μg/L 1.0 μg/L 2.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 0.2 μg/L 1.0 μg/L 0.5 μg/L 1.0 μg/L 0.7 μg/L 0.9 μg/L 0.9 μg/L 0.9 μg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 0.2 < 1.0 < 0.5 < 1.0 < 1.0 < 0.2 < 1.0 < 0.5	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L 1.0 µg/L 0.2 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total folatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L 1.0 µg/L 0.2 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chlorotemane Chlorotemane Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L 1.0 µg/L 0.2 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total folatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L 1.0 µg/L 0.2 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylene cis-1,2-Dichloroethylene	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 0.2 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chloroethane Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethylene 1,1-Dichloroethylene 1,1-Dichloroethylene 1,2-Dichloroethylene 1,1-Dichloroethylene 1,1-Dichloroethylene 1,2-Dichloroethylene 1,1-Dichloroethylene 1,2-Dichloroethylene 1,3-Dichloroethylene 1,1-Dichloroethylene 1,1-Dichloroethylene 1,1-Dichloroethylene 1,1-Dichloroethylene 1,1-Dichloroethylene 1,1-Dichloroethylene 1,2-Dichloroethylene	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 0.2 µg/L 1.0 µg/L 0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Yolatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chloroethane Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloroethylene 1,2-Dichloropropane	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Meloury, total Melo	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 0.2 < 1.0 < 0.5 < 1.0 < 1.0 < 0.10 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Polatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloropene 1,3-Dichloropopane 1,3-Dichloropropane 1,3-Dichloropropene Ethylbenzene	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 0.2 < 1.0 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total Meloury, total Melo	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 0.2 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total /olatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloropopane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene Ethylbenzene Methyl tert-butyl ether Dichloromethane	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 0.2 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene Ethylbenzene Methyl tert-butyl ether Dichloromethane Styrene	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 0.2 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L	0.00489		95	50-150			
Reference (B7D0647-SRM2) Mercury, total /olatile Organic Compounds (VOC), E Blank (B7D0548-BLK1) Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloropopane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene Ethylbenzene Methyl tert-butyl ether Dichloromethane	0.00466 Satch B7D0548 < 0.5 < 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 0.2 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.5 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 2.0 µg/L 1.0 µg/L	0.00489		95	50-150			

Page 25 of 34

7040434

REPORTED TO Western Water Associates Ltd
PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER 704 REPORTED 20

7040434 2017-04-13

Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes	
Volatile Organic Compounds (VOC), Batch B7D0548, Continued										
Blank (B7D0548-BLK1) Continued			Dranara	4· 2017_04.	11 Analyz	ad: 2017.	-04_11			

Blank (B7D0548-BLK1), Continued			Prepared: 201	7-04-11, Analy	zed: 2017-04-11	
1,1,1-Trichloroethane	< 1.0	1.0 μg/L				
1,1,2-Trichloroethane	< 1.0	1.0 µg/L				
Trichloroethylene	< 1.0	1.0 µg/L				
Trichlorofluoromethane	< 1.0	1.0 µg/L				
Vinyl chloride	< 1.0	1.0 µg/L				
Xylenes (total)	< 2.0	2.0 μg/L				
Surrogate: Toluene-d8	18.0	μg/L	25.0	72	70-130	
Surrogate: 4-Bromofluorobenzene	22.0	μg/L	25.0	88	70-130	
Surrogate: 1,4-Dichlorobenzene-d4	15.8	μg/L	25.0	63	70-130	S02
LCS (B7D0548-BS1)		, ,	Prepared: 201	7-04-11. Analy	zed: 2017-04-11	
Benzene	22.8	0.5 µg/L	20.0	114	70-130	
Bromodichloromethane	20.8	1.0 μg/L	20.0	104	70-130	
Bromoform	20.6	1.0 μg/L 1.0 μg/L	20.0	104	70-130	
Carbon tetrachloride	21.7	0.5 μg/L	20.0	108	70-130	
Chlorobenzene	21.5	1.0 μg/L	20.0	108	70-130	
Chloroethane	24.2	2.0 μg/L	20.0	121	70-130	
Chloroform	21.8	1.0 μg/L	20.0	109	70-130	
Dibromochloromethane	20.1	1.0 µg/L	20.0	100	70-130	
1,2-Dibromoethane	19.2	0.2 µg/L	20.0	96	70-130	
Dibromomethane	20.7	1.0 µg/L	20.0	104	70-130	
1,2-Dichlorobenzene	23.0	0.5 μg/L	20.0	115	70-130	
1,3-Dichlorobenzene	20.1	1.0 µg/L	20.0	100	70-130	
1,4-Dichlorobenzene	21.6	1.0 µg/L	20.0	108	70-130	
1,1-Dichloroethane	21.0	1.0 µg/L	20.0	105	70-130	
1,2-Dichloroethane	20.6	1.0 µg/L	20.0	103	70-130	
1,1-Dichloroethylene	20.9	1.0 µg/L	20.0	104	70-130	
cis-1,2-Dichloroethylene	21.8	1.0 µg/L	20.0	109	70-130	
trans-1,2-Dichloroethylene	21.1	1.0 µg/L	20.0	105	70-130	
1,2-Dichloropropane	21.4	1.0 µg/L	20.0	107	70-130	
1,3-Dichloropropene	36.2	1.0 µg/L	40.0	91	70-130	
Ethylbenzene	22.0	1.0 µg/L	20.0	110	70-130	
Methyl tert-butyl ether	18.3	1.0 µg/L	20.0	91	70-130	
Dichloromethane	21.1	3.0 µg/L	20.0	106	70-130	
Styrene	21.8	1.0 µg/L	20.0	109	70-130	
1,1,2,2-Tetrachloroethane	20.7	0.5 µg/L	20.0	104	70-130	
Tetrachloroethylene	20.7	1.0 μg/L	20.0	103	70-130	
Toluene	21.8	1.0 µg/L	20.0	109	70-130	
1,1,1-Trichloroethane	21.6	1.0 μg/L 1.0 μg/L	20.0	108	70-130	
1,1,2-Trichloroethane	21.3	1.0 μg/L 1.0 μg/L	20.0	106	70-130	
Trichloroethylene	21.3	1.0 μg/L 1.0 μg/L	20.0	114	70-130	
Trichlorofluoromethane	24.2	1.0 μg/L 1.0 μg/L	20.0	121	70-130	
	24.2				70-130	
Vinyl chloride		1.0 µg/L	20.0	113		
Xylenes (total)	65.9	2.0 µg/L	60.0	110	70-130	

Volatile Organic Compounds (VOC), Batch B7D0633

Blank (B7D0633-BLK1) Prepared: 2017-04-12, Analyzed: 2017-04-12 Benzene < 0.5 $0.5 \mu g/L$ < 1.0 1.0 µg/L Bromodichloromethane < 1.0 1.0 µg/L Bromoform Carbon tetrachloride < 0.5 0.5 µg/L Chlorobenzene < 1.0 $1.0~\mu g/L$

μg/L

μg/L

μg/L

22.9

28.0

25.0

25.0

25.0

92

112

131

70-130

70-130

70-130

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,4-Dichlorobenzene-d4

S02

REPORTED TO PROJECT

Western Water Associates Ltd

Volatile Organic Compounds (VOC), Batch B7D0633, Continued

CSRD Refuse Disposal - Golden MR17006

WORK ORDER REPORTED 7040434 2017-04-13

Analyte Result MRL Units L	Spike Source Level Result	% REC	% RPD RPD Notes Limit
----------------------------	------------------------------	-------	--------------------------

Blank (B7D0633-BLK1), Continued			Prepared: 201	7-04-12, Analy	zed: 2017-04-12
Chloroethane	< 2.0	2.0 µg/L			
Chloroform	< 1.0	1.0 μg/L			
Dibromochloromethane	< 1.0	1.0 μg/L			
1,2-Dibromoethane	< 0.2	0.2 μg/L			
Dibromomethane	< 1.0	1.0 µg/L			
1,2-Dichlorobenzene	< 0.5	0.5 µg/L			
1,3-Dichlorobenzene	< 1.0	1.0 µg/L			
1,4-Dichlorobenzene	< 1.0	1.0 µg/L			
1,1-Dichloroethane	< 1.0	1.0 µg/L			
1,2-Dichloroethane	< 1.0	1.0 µg/L			
1,1-Dichloroethylene	< 1.0	1.0 µg/L			
cis-1,2-Dichloroethylene	< 1.0	1.0 µg/L			
trans-1,2-Dichloroethylene	< 1.0	1.0 µg/L			
1,2-Dichloropropane	< 1.0	1.0 µg/L			
1,3-Dichloropropene	< 1.0	1.0 µg/L			
Ethylbenzene	< 1.0	1.0 µg/L			
Methyl tert-butyl ether	< 1.0	1.0 µg/L			
Dichloromethane	< 3.0	3.0 µg/L			
Styrene	< 1.0	1.0 µg/L			
1,1,2,2-Tetrachloroethane	< 0.5	0.5 µg/L			
Tetrachloroethylene	< 1.0	1.0 µg/L			
Toluene	< 1.0	1.0 µg/L			
1,1,1-Trichloroethane	< 1.0	1.0 µg/L			
1,1,2-Trichloroethane	< 1.0	1.0 µg/L			
Trichloroethylene	< 1.0	1.0 μg/L			
Trichlorofluoromethane	< 1.0	1.0 µg/L			
Vinyl chloride	< 1.0	1.0 µg/L			
Xylenes (total)	< 2.0	2.0 μg/L			
Surrogate: Toluene-d8	20.1	μg/L	25.0	80	70-130
Surrogate: 4-Bromofluorobenzene	25.6	μg/L	25.0	102	70-130
Surrogate: 1,4-Dichlorobenzene-d4	20.8	μg/L	25.0	83	70-130
gater i, iionic.ooonicono u i	20.0	μg/L			
LCS (B7D0633-BS1)			Prepared: 201	7-04-12, Analy	zed: 2017-04-12
Benzene	22.3	0.5 μg/L	20.0	112	70-130
Bromodichloromethane	19.5	1.0 µg/L	20.0	97	70-130
Bromoform	17.6	1.0 µg/L	20.0	88	70-130
Carbon tetrachloride	21.2	0.5 μg/L	20.0	106	70-130
Chlorobenzene	21.2	1.0 µg/L	20.0	106	70-130
Chloroethane	23.9	2.0 µg/L	20.0	120	70-130
Chloroform	21.1	1.0 µg/L	20.0	106	70-130
Dibromochloromethane	18.2	1.0 µg/L	20.0	91	70-130
1,2-Dibromoethane	17.6	0.2 μg/L	20.0	88	70-130
Dibromomethane	19.2	1.0 µg/L	20.0	96	70-130
1,2-Dichlorobenzene	21.8	0.5 µg/L	20.0	109	70-130
1,3-Dichlorobenzene	19.4	1.0 µg/L	20.0	97	70-130
1,4-Dichlorobenzene	20.9	1.0 µg/L	20.0	105	70-130
1,1-Dichloroethane	20.6	1.0 µg/L	20.0	103	70-130
1,2-Dichloroethane	19.4	1.0 μg/L	20.0	97	70-130
1.1 Dioblaracthylana	20.7	1.0 μα/	20.0	104	70 120

20.7

21.1

20.8

20.6

33.5

21.8

16.7

20.3

 $1.0~\mu g/L$

1.0 µg/L

1.0 µg/L

1.0 µg/L

1.0 µg/L

1.0 µg/L

1.0 µg/L

3.0 µg/L

20.0

20.0

20.0

20.0

40.0

20.0

20.0

20.0

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

104

106

104

103

84

109

84

102

Ethylbenzene

Dichloromethane

1,1-Dichloroethylene

1,2-Dichloropropane

1,3-Dichloropropene

Methyl tert-butyl ether

cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene

REPORTED TO Western Water Associates Ltd
PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER 70 REPORTED 20

7040434 2017-04-13

Analyte	Result	MRL Units	Spike	Source	% REC	REC	% RPD	RPD	Notes
7			Level	Result	,,,,,,	Limit	,	Limit	

Volatile Organic Compounds (VOC), Batch B7D0633, Continued

Prepared: 2017-04-12, Analyzed: 2017-04-12					
21.2	1.0 μg/L	20.0	106	70-130	
18.8	0.5 µg/L	20.0	94	70-130	
20.6	1.0 µg/L	20.0	103	70-130	
21.6	1.0 µg/L	20.0	108	70-130	
21.2	1.0 µg/L	20.0	106	70-130	
19.8	1.0 µg/L	20.0	99	70-130	
22.4	1.0 µg/L	20.0	112	70-130	
23.8	1.0 µg/L	20.0	119	70-130	
22.4	1.0 µg/L	20.0	112	70-130	
65.6	2.0 µg/L	60.0	109	70-130	
21.9	μg/L	25.0	88	70-130	
26.2	μg/L	25.0	105	70-130	
30.4	μg/L	25.0	122	70-130	
	18.8 20.6 21.6 21.2 19.8 22.4 23.8 22.4 65.6 21.9 26.2	18.8 0.5 µg/L 20.6 1.0 µg/L 21.6 1.0 µg/L 21.2 1.0 µg/L 19.8 1.0 µg/L 22.4 1.0 µg/L 23.8 1.0 µg/L 22.4 1.0 µg/L 22.4 1.0 µg/L 21.9 µg/L 26.2 µg/L	21.2 1.0 μg/L 20.0 18.8 0.5 μg/L 20.0 20.6 1.0 μg/L 20.0 21.6 1.0 μg/L 20.0 21.2 1.0 μg/L 20.0 19.8 1.0 μg/L 20.0 22.4 1.0 μg/L 20.0 23.8 1.0 μg/L 20.0 22.4 1.0 μg/L 20.0 23.8 1.0 μg/L 20.0 21.9 μg/L 20.0 21.9 μg/L 20.0 25.0 μg/L 25.0 26.2 μg/L 25.0	21.2 1.0 μg/L 20.0 106 18.8 0.5 μg/L 20.0 94 20.6 1.0 μg/L 20.0 103 21.6 1.0 μg/L 20.0 108 21.2 1.0 μg/L 20.0 106 19.8 1.0 μg/L 20.0 99 22.4 1.0 μg/L 20.0 112 23.8 1.0 μg/L 20.0 119 22.4 1.0 μg/L 20.0 112 65.6 2.0 μg/L 60.0 109 21.9 μg/L 25.0 88 26.2 μg/L 25.0 105	21.2 1.0 μg/L 20.0 106 70-130 18.8 0.5 μg/L 20.0 94 70-130 20.6 1.0 μg/L 20.0 103 70-130 21.6 1.0 μg/L 20.0 108 70-130 21.2 1.0 μg/L 20.0 106 70-130 19.8 1.0 μg/L 20.0 99 70-130 22.4 1.0 μg/L 20.0 112 70-130 23.8 1.0 μg/L 20.0 119 70-130 22.4 1.0 μg/L 20.0 119 70-130 23.6 1.0 μg/L 20.0 119 70-130 21.9 μg/L 25.0 88 70-130 26.2 μg/L 25.0 105 70-130

QC Qualifiers:

BLK Analyte concentration in the Method Blank is above the Method Reporting Limit (MRL).

Surrogate recovery outside of control limits. Data accepted based on acceptable recovery of other surrogates.

REPORTED TO PROJECT

Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006 WORK ORDER REPORTED

		7040434-01	7040434-02	7040434-03	7040434-04	7040434-05	7040434-06
		Water	Water	Water	Water	Water	Water
		2017-04-05	2017-04-05	2017-04-05	2017-04-05	2017-04-05	2017-04-05
		Runoff 1	Runoff 2	MW6-S	Town Well #4	Town Well #6	DMW - 4
Anions	Bromide (mg/L)	1.82	< 10.0	0.88	< 0.10	< 0.10	< 0.10
	Chloride (mg/L)	708	1230	470	90.4	31.0	12.8
	Fluoride (mg/L)	< 1.00	< 1.00	0.14	< 0.10	< 0.10	0.34
	Nitrate (as N) (mg/L)	2.78	< 0.100	42.3	1.39	1.09	0.494
	Nitrite (as N) (mg/L)	< 0.100	< 0.100	5.70	< 0.010	< 0.010	< 0.010
	Phosphate (as P) (mg/L)				< 0.010		
	Sulfate (mg/L)	153	32.7	799	42.8	27.6	153
General Parameters	Alkalinity, Total (as CaCO3) (mg/L)	3050	9700	902	343	314	399
	Alkalinity, Phenolphthalein (as CaCO3) (mg/	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	3050	9700	902	343	314	399
	Alkalinity, Carbonate (as CaCO3) (mg/L)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Bicarbonate (HCO3) (mg/L)	3720	11800	1100	418	383	486
	Carbonate (CO3) (mg/L)	< 0.600	< 0.600	< 0.600	< 0.600	< 0.600	< 0.600
	Hydroxide (OH) (mg/L)	< 0.340	< 0.340	< 0.340	< 0.340	< 0.340	< 0.340
	Ammonia, Total (as N) (mg/L)		928	1.19	0.026	0.030	0.024
	Conductivity (EC) (uS/cm)	8440	13800	4350	959	692	955
	pH (pH units)		7.70	7.42	7.85	7.89	7.76
	Solids, Total Suspended (mg/L)		307	5	< 2	< 2	< 2
	Turbidity (NTU)		212	1.03	< 0.10	0.16	0.25
Calculated Parameters	Hardness, Total (as CaCO3) (mg/L)			1650			
	Hardness, Total (as CaCO3) (mg/L)		2090		398	334	515
Dissolved Metals	Aluminum, dissolved (mg/L)			0.006			
	Antimony, dissolved (mg/L)			0.0001			
	Arsenic, dissolved (mg/L)			0.0007			
	Barium, dissolved (mg/L)			0.057			
	Beryllium, dissolved (mg/L)			< 0.0001			
	Bismuth, dissolved (mg/L)			< 0.0001			
	Boron, dissolved (mg/L)			2.03			
	Cadmium, dissolved (mg/L)			< 0.00001			
	Calcium, dissolved (mg/L)			163			
	Chromium, dissolved (mg/L)			0.0006			
	Cobalt, dissolved (mg/L)			0.00164			
	Copper, dissolved (mg/L)			0.0028			
	Iron, dissolved (mg/L)			< 0.010			
	Lead, dissolved (mg/L)			< 0.0001			
	Lithium, dissolved (mg/L)			0.0484			
	Magnesium, dissolved (mg/L)			302			
	Manganese, dissolved (mg/L)			0.0597			
	Mercury, dissolved (mg/L)			< 0.00002			
	Molybdenum, dissolved (mg/L)			0.0003			
	Nickel, dissolved (mg/L)			0.0110			
	Phosphorus, dissolved (mg/L)			< 0.05			
	Potassium, dissolved (mg/L)			209			

REPORTED TO PROJECT

Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006 WORK ORDER REPORTED

		7040434-01	7040434-02	7040434-03	7040434-04	7040434-05	7040434-06
		Water	Water	Water	Water	Water	Water
		2017-04-05	2017-04-05	2017-04-05	2017-04-05	2017-04-05	2017-04-05
		Runoff 1	Runoff 2	MW6-S	Town Well #4	Town Well #6	DMW - 4
Dissolved Metals	Selenium, dissolved (mg/L)			< 0.0005			
	Silicon, dissolved (mg/L)			12.6			
	Silver, dissolved (mg/L)			< 0.00005			
	Sodium, dissolved (mg/L)			343			
	Strontium, dissolved (mg/L)			1.74			
	Sulfur, dissolved (mg/L)			284			
	Tellurium, dissolved (mg/L)			< 0.0002			
	Thallium, dissolved (mg/L)			0.00006			
	Thorium, dissolved (mg/L)			< 0.0001			
	Tin, dissolved (mg/L)			< 0.0002			
	Titanium, dissolved (mg/L)			< 0.005			
	Uranium, dissolved (mg/L)			0.00734			
	Vanadium, dissolved (mg/L)			< 0.001			
	Zinc, dissolved (mg/L)			0.005			
	Zirconium, dissolved (mg/L)			0.0002			
Total Metals	Aluminum, total (mg/L)		2.17	0.0002	< 0.005	< 0.005	< 0.005
Total Wetals	Antimony, total (mg/L)		0.0063		< 0.003	< 0.0001	0.0001
	Arsenic, total (mg/L)		0.0003		< 0.0001	< 0.0001	0.0001
			0.0324		0.0003	0.150	0.0010
	Barium, total (mg/L)		0.239		< 0.0001	< 0.0001	< 0.0001
	Beryllium, total (mg/L) Bismuth, total (mg/L)		< 0.0001		< 0.0001	< 0.0001	< 0.0001
	Boron, total (mg/L)		4.90		0.0001	0.016	0.106
	Cadmium, total (mg/L)		0.00048		< 0.0001	< 0.00001	< 0.0000
	Calcium, total (mg/L)		382		93.7	89.6	73.2
			0.126		0.0005	0.0006	< 0.0005
	Chromium, total (mg/L)		0.120		< 0.0005	< 0.00005	0.00077
	Copper total (mg/L)		0.0371		-	0.0003	0.00077
	Copper, total (mg/L)		46.0		0.0015	< 0.01	0.0394
	Iron, total (mg/L)		0.0119		< 0.01	< 0.001	0.0002
	Lead, total (mg/L)		0.0119		0.0001		0.0002
	Lithium, total (mg/L)		276		0.0020 39.6	0.0013	
	Magnesium, total (mg/L)					26.8	80.5
	Manganese, total (mg/L)		1.41		< 0.0002	0.0007	0.0017
	Mercury, total (mg/L)		0.00004		< 0.00002	< 0.00002	< 0.00002
	Molybdenum, total (mg/L)		0.0061		0.0002	0.0003	0.0014
	Nickel, total (mg/L)		0.190		< 0.0002	0.0002	0.0017
	Phosphorus, total (mg/L)		13.1		< 0.05	< 0.05	< 0.05
	Potassium, total (mg/L)		852		1.85	0.93	4.15
	Selenium, total (mg/L)		0.0007		< 0.0005	< 0.0005	0.0006
	Silicon, total (mg/L)		29.8		4.7	4.3	7.3
	Silver, total (mg/L)		0.00015		< 0.00005	< 0.00005	< 0.00005
	Sodium, total (mg/L)		1460		52.7	17.1	21.1
	Strontium, total (mg/L)		2.40		0.446	0.294	2.30
	Sulfur, total (mg/L)		31		12	6	46
	Tellurium, total (mg/L)		< 0.0002		< 0.0002	< 0.0002	< 0.0002
	Thallium, total (mg/L)		< 0.00002		< 0.00002	< 0.00002	< 0.00002

REPORTED TO **PROJECT**

Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006 **WORK ORDER** REPORTED

		7040434-01	7040434-02	7040434-03	7040434-04	7040434-05	7040434-06
		Water	Water	Water	Water	Water	Water
		2017-04-05	2017-04-05	2017-04-05	2017-04-05	2017-04-05	2017-04-05
		Runoff 1	Runoff 2	MW6-S	Town Well #4	Town Well #6	DMW - 4
Total Metals	Thorium, total (mg/L)		0.0004		< 0.0001	< 0.0001	< 0.0001
. otal motalo	Tin, total (mg/L)		0.0093		< 0.0002	< 0.0002	< 0.0002
	Titanium, total (mg/L)		0.069		< 0.005	< 0.005	< 0.005
	Uranium, total (mg/L)		0.00069		0.00124	0.00109	0.00225
	Vanadium, total (mg/L)		0.011		< 0.001	< 0.001	< 0.001
	Zinc, total (mg/L)		0.576		< 0.004	0.004	0.024
	Zirconium, total (mg/L)		0.0071		< 0.0001	< 0.0001	0.0004
Volatile Organic	Benzene (ug/L)		1.1	< 0.5	< 0.5	< 0.5	< 0.5
Compounds (VOC)	Bromodichloromethane (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Bromoform (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Carbon tetrachloride (ug/L)		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Chlorobenzene (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Chloroethane (ug/L)		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
	Chloroform (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Dibromochloromethane (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1,2-Dibromoethane (ug/L)		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Dibromomethane (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1,2-Dichlorobenzene (ug/L)		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	1,3-Dichlorobenzene (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1,4-Dichlorobenzene (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1,1-Dichloroethane (ug/L)		1.9	< 1.0	< 1.0	< 1.0	< 1.0
	1,2-Dichloroethane (ug/L)						
	1,1-Dichloroethylene (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	cis-1,2-Dichloroethylene (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	trans-1,2-Dichloroethylene (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1,2-Dichloropropane (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1,3-Dichloropropene (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Ethylbenzene (ug/L)		2.8	< 1.0	< 1.0	< 1.0	< 1.0
	Methyl tert-butyl ether (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Dichloromethane (ug/L)		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
	Styrene (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1,1,2,2-Tetrachloroethane (ug/L)		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Tetrachloroethylene (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Toluene (ug/L)		104	6.6	< 1.0	< 1.0	< 1.0
	1,1,1-Trichloroethane (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	1,1,2-Trichloroethane (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Trichloroethylene (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Trichlorofluoromethane (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Vinyl chloride (ug/L)		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Xylenes (total) (ug/L)		6.7	< 2.0	< 2.0	< 2.0	< 2.0
	Sur: Toluene-d8 (%)		85	81	81	79	82
	Sur: 4-Bromofluorobenzene (%)		108	99	102	97	102
	Sur: 1,4-Dichlorobenzene-d4 (%)		111	77	78	72	77

REPORTED TO PROJECT

Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006 WORK ORDER REPORTED

		7040434-07
		Water
		2017-04-05
		DMW - 1b
Anions	Bromide (mg/L)	< 0.10
	Chloride (mg/L)	42.1
	Fluoride (mg/L)	1.25
	Nitrate (as N) (mg/L)	< 0.010
	Nitrite (as N) (mg/L)	< 0.010
	Sulfate (mg/L)	126
General Parameters	Alkalinity, Total (as CaCO3) (mg/L)	504
	Alkalinity, Phenolphthalein (as CaCO3) (mg/	< 1.0
	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	504
	Alkalinity, Carbonate (as CaCO3) (mg/L)	< 1.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	< 1.0
	Bicarbonate (HCO3) (mg/L)	614
	Carbonate (CO3) (mg/L)	< 0.600
	Hydroxide (OH) (mg/L)	< 0.340
	Ammonia, Total (as N) (mg/L)	0.239
	Conductivity (EC) (uS/cm)	1140
	pH (pH units)	7.67
	Solids, Total Suspended (mg/L)	< 2
	Turbidity (NTU)	2.40
Calculated Parameters	Hardness, Total (as CaCO3) (mg/L)	676
Total Metals	Aluminum, total (mg/L)	0.005
	Antimony, total (mg/L)	0.0003
	Arsenic, total (mg/L)	0.0326
	Barium, total (mg/L)	0.025
	Beryllium, total (mg/L)	< 0.0001
	Bismuth, total (mg/L)	< 0.0001
	Boron, total (mg/L)	0.137
	Cadmium, total (mg/L)	< 0.00001
	Calcium, total (mg/L)	77.3
	Chromium, total (mg/L)	< 0.0005
	Cobalt, total (mg/L)	0.00050
	Copper, total (mg/L)	0.0079
	Iron, total (mg/L)	0.43
	Lead, total (mg/L)	0.0002
	Lithium, total (mg/L)	0.0236
	Magnesium, total (mg/L)	117
	Manganese, total (mg/L)	0.0110
	Mercury, total (mg/L)	< 0.00002
	Molybdenum, total (mg/L)	0.0003
	Nickel, total (mg/L)	0.0020
	Phosphorus, total (mg/L)	< 0.05
	Potassium, total (mg/L)	4.73
	Selenium, total (mg/L)	< 0.0005
	Silicon, total (mg/L)	7.5

REPORTED TO PROJECT

Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006 WORK ORDER REPORTED

		7040434-07
		Water
		2017-04-05
		DMW - 1b
		Dillivi - 10
Total Metals	Silver, total (mg/L)	< 0.00005
	Sodium, total (mg/L)	26.3
	Strontium, total (mg/L)	1.78
	Sulfur, total (mg/L)	43
	Tellurium, total (mg/L)	< 0.0002
	Thallium, total (mg/L)	< 0.00002
	Thorium, total (mg/L)	< 0.0001
	Tin, total (mg/L)	< 0.0002
	Titanium, total (mg/L)	< 0.005
	Uranium, total (mg/L)	0.00020
	Vanadium, total (mg/L)	< 0.001
	Zinc, total (mg/L)	0.017
	Zirconium, total (mg/L)	0.0012
Volatile Organic	Benzene (ug/L)	< 0.5
Compounds (VOC)	Bromodichloromethane (ug/L)	< 1.0
	Bromoform (ug/L)	< 1.0
	Carbon tetrachloride (ug/L)	< 0.5
	Chlorobenzene (ug/L)	< 1.0
	Chloroethane (ug/L)	< 2.0
	Chloroform (ug/L)	< 1.0
	Dibromochloromethane (ug/L)	< 1.0
	1,2-Dibromoethane (ug/L)	< 0.2
	Dibromomethane (ug/L)	< 1.0
	1,2-Dichlorobenzene (ug/L)	< 0.5
	1,3-Dichlorobenzene (ug/L)	< 1.0
	1,4-Dichlorobenzene (ug/L)	< 1.0
	1,1-Dichloroethane (ug/L)	< 1.0
	1,2-Dichloroethane (ug/L)	< 1.0
	1,1-Dichloroethylene (ug/L)	< 1.0
	cis-1,2-Dichloroethylene (ug/L)	< 1.0
	trans-1,2-Dichloroethylene (ug/L)	< 1.0
	1,2-Dichloropropane (ug/L)	< 1.0
	1,3-Dichloropropene (ug/L)	< 1.0
	Ethylbenzene (ug/L)	< 1.0
	Methyl tert-butyl ether (ug/L)	< 1.0
	Dichloromethane (ug/L)	< 3.0
	Styrene (ug/L)	< 1.0
	1,1,2,2-Tetrachloroethane (ug/L)	< 0.5
	Tetrachloroethylene (ug/L)	< 1.0
	Toluene (ug/L)	< 1.0
	1,1,1-Trichloroethane (ug/L)	< 1.0
	1,1,2-Trichloroethane (ug/L)	< 1.0
	Trichloroethylene (ug/L)	< 1.0
	Trichlorofluoromethane (ug/L)	< 1.0
	Vinyl chloride (ug/L)	< 1.0

REPORTED TO **PROJECT**

Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006 **WORK ORDER REPORTED**

		7040434-07
		Water
		2017-04-05
		DMW - 1b
Volatile Organic	Xylenes (total) (ug/L)	< 2.0
Compounds (VOC)	Sur: Toluene-d8 (%)	79
	Sur: 4-Bromofluorobenzene (%)	97
	Sur: 1,4-Dichlorobenzene-d4 (%)	70

7111886

CERTIFICATE OF ANALYSIS

REPORTED TO Western Water Associates Ltd

You know that the sample you collected after

snowshoeing to site, digging 5 meters, and

racing to get it on a plane so you can submit it

to the lab for time sensitive results needed to

make important and expensive decisions

(whew) is VERY important. We know that too.

106 - 5145 26th Street Vernon, BC V1T 8G4

ATTENTION Bryer Manwell WORK ORDER

PO NUMBER 14-024-16 RECEIVED / TEMP 2017-11-22 10:45 / 3°C

PROJECTCSRD Refuse Disposal - Golden MR17006REPORTED2017-11-29 14:59PROJECT INFOCOC NUMBERB 58240

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO 17025:2005 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Ahead of the Curve

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at sgulenchyn@caro.ca

Authorized By:

Sara Gulenchyn, B.Sc, P.Chem. Client Service Manager

Saw Gulendryn

1-888-311-8846 | www.caro.ca

REPORTED TO	Western Water Associates Ltd	WORK ORDER	7111886
PROJECT	CSRD Refuse Disposal - Golden MR17006	REPORTED	2017-11-29 14:59

Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-6S (7111886-01) Matrix: Waste W	ater Sampled: 2017-11-20 15:00				FILT, PRES
Anions					
Bromide	2.84	0.10	mg/L	2017-11-24	
Chloride	417	0.10	mg/L	2017-11-24	
Fluoride	0.51	0.10	mg/L	2017-11-24	
Nitrate (as N)	32.6	0.010	mg/L	2017-11-24	
Nitrite (as N)	< 0.010	0.010	mg/L	2017-11-24	
Sulfate	663	1.0	mg/L	2017-11-24	
General Parameters					
Alkalinity, Total (as CaCO3)	929	1.0	mg/L	2017-11-27	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2017-11-27	
Alkalinity, Bicarbonate (as CaCO3)	929		mg/L	2017-11-27	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2017-11-27	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2017-11-27	
Bicarbonate (HCO3)	1130	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	1.17	0.020	mg/L	2017-11-24	
Conductivity (EC)	4190		μS/cm	2017-11-27	
pH	7.51	0.10	pH units	2017-11-24	HT2
Solids, Total Suspended	437	2.0	mg/L	2017-11-23	
Turbidity	387		NTU	2017-11-23	
Calculated Parameters					
Hardness, Total (as CaCO3)	1520	0.500	mg/L	N/A	
Dissolved Metals					
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2017-11-27	
Antimony, dissolved	< 0.00020	0.00020		2017-11-27	
Arsenic, dissolved	< 0.00050	0.00050		2017-11-27	
Barium, dissolved	0.0500	0.0050		2017-11-27	
Beryllium, dissolved	< 0.00010	0.00010		2017-11-27	
Bismuth, dissolved	< 0.00010	0.00010		2017-11-27	
Boron, dissolved	1.57	0.0050		2017-11-27	
Cadmium, dissolved	< 0.000010	0.000010		2017-11-27	
Calcium, dissolved	167		mg/L	2017-11-27	
Chromium, dissolved	< 0.00050	0.00050		2017-11-27	
Cobalt, dissolved	0.00164	0.00010		2017-11-27	
Copper, dissolved	0.00211	0.00040		2017-11-27	
Iron, dissolved	< 0.010	0.010		2017-11-27	
Lead, dissolved	< 0.00020	0.00020		2017-11-27	
Lithium, dissolved	0.0420	0.00010		2017-11-27	
Magnesium, dissolved	267	0.010		2017-11-27	
Manganese, dissolved	0.0697	0.00020		2017-11-27	

REPORTED TO	Western Water Associates Ltd	WORK ORDER	7111886
PROJECT	CSRD Refuse Disposal - Golden MR17006	REPORTED	2017-11-29 14:59

Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-6S (7111886-01) Matrix: Waste V	Vater Sampled: 2017-11-20	15:00, Continued			FILT, PRES
Dissolved Metals, Continued					
Mercury, dissolved	0.000041	0.000040	mg/L	2017-11-27	CT5
Molybdenum, dissolved	0.00032	0.00010	mg/L	2017-11-27	
Nickel, dissolved	0.0116	0.00040	mg/L	2017-11-27	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2017-11-27	
Potassium, dissolved	184	0.10	mg/L	2017-11-27	
Selenium, dissolved	< 0.00050	0.00050		2017-11-27	
Silicon, dissolved	11.2		mg/L	2017-11-27	
Silver, dissolved	< 0.000050	0.000050		2017-11-27	
Sodium, dissolved	285		mg/L	2017-11-27	
Strontium, dissolved	1.73	0.0010		2017-11-27	
Sulfur, dissolved	273		mg/L	2017-11-27	
Tellurium, dissolved	< 0.00050	0.00050		2017-11-27	
Thallium, dissolved	0.000058	0.000020		2017-11-27	
Thorium, dissolved	< 0.00010	0.00010		2017-11-27	
Tin, dissolved	0.00023	0.00020		2017-11-27	
Titanium, dissolved	< 0.0050	0.0050		2017-11-27	
Tungsten, dissolved	< 0.0010	0.0010		2017-11-27	
Uranium, dissolved	0.00796	0.000020		2017-11-27	
Vanadium, dissolved	< 0.0010	0.0010		2017-11-27	
<u> </u>	10.0010				
/INC dissolved	< 0.0040	0.0040	ma/I	2017-11-27	
Zirconium, dissolved	< 0.0040 0.00012	0.0040 0.00010		2017-11-27 2017-11-27	
	0.00012	0.00010			
Zirconium, dissolved Town Well #6 (7111886-02) Matrix: Was	0.00012	0.00010 1-20 13:00			
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was	0.00012 te Water Sampled: 2017-1	0.00010 1-20 13:00 0.10	mg/L	2017-11-27	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide	0.00012 te Water Sampled: 2017-1 < 0.10	0.00010 1-20 13:00 0.10 0.10	mg/L	2017-11-27	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride	0.00012 te Water Sampled: 2017-1 < 0.10 36.2	0.00010 1-20 13:00 0.10 0.10	mg/L mg/L mg/L mg/L	2017-11-27 2017-11-24 2017-11-24	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride	0.00012 te Water Sampled: 2017-1 < 0.10 36.2 0.18	0.00010 1-20 13:00 0.10 0.10 0.10	mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride Nitrate (as N)	0.00012 te Water Sampled: 2017-1 < 0.10 36.2 0.18 1.30	0.00010 11-20 13:00 0.10 0.10 0.10 0.010 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	0.00012 te Water Sampled: 2017-1 < 0.10	0.00010 11-20 13:00 0.10 0.10 0.10 0.010 0.010 0.010	mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	0.00012 te Water Sampled: 2017-1 < 0.10	0.00010 1-20 13:00 0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters	0.00012 te Water Sampled: 2017-1 < 0.10 36.2 0.18 1.30 < 0.010 23.0	0.00010 1-20 13:00 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3)	0.00012 te Water Sampled: 2017-1 < 0.10 36.2 0.18 1.30 < 0.010 23.0	0.00010 1-20 13:00 0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3)	0.00012 te Water Sampled: 2017-1 < 0.10 36.2 0.18 1.30 < 0.010 23.0 304 < 1.0	0.00010 1-20 13:00 0.10 0.10 0.010 0.010 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-27 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3)	0.00012 te Water Sampled: 2017-1 < 0.10 36.2 0.18 1.30 < 0.010 23.0 304 < 1.0 304	0.00010 11-20 13:00 0.10 0.10 0.010 0.010 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-27 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	0.00012 te Water Sampled: 2017-1 < 0.10 36.2 0.18 1.30 < 0.010 23.0 304 < 1.0 304 < 1.0	0.00010 1-20 13:00 0.10 0.10 0.010 0.010 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-27 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26 2017-11-26	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	0.00012 te Water Sampled: 2017-1 < 0.10 36.2 0.18 1.30 < 0.010 23.0 304 < 1.0 304 < 1.0 < 1.0 < 1.0	0.00010 1-20 13:00 0.10 0.10 0.010 0.010 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26 2017-11-26 2017-11-26	
Zirconium, dissolved Fown Well #6 (7111886-02) Matrix: Was Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3)	0.00012 te Water Sampled: 2017-1 < 0.10 36.2 0.18 1.30 < 0.010 23.0 304 < 1.0 304 < 1.0 < 1.0 371	0.00010 1-20 13:00 0.10 0.10 0.010 0.010 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-27 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26 2017-11-26 2017-11-26 N/A	

REPORTED TO	Western Water Associates Ltd	WORK ORDER	7111886
PROJECT	CSRD Refuse Disposal - Golden MR17006	REPORTED	2017-11-29 14:59

Analyte	Result	RL	Units	Analyzed	Qualifier
Town Well #6 (7111886-02) Matrix:	Waste Water Sampled: 2017-	11-20 13:00, Continued			
General Parameters, Continued					
Conductivity (EC)	704	2.0	μS/cm	2017-11-26	
pH	8.00	0.10	pH units	2017-11-24	HT2
Solids, Total Suspended	8.6	2.0	mg/L	2017-11-23	
Turbidity	0.10	0.10	NTU	2017-11-23	
Calculated Parameters					
Hardness, Total (as CaCO3)	308	0.500	mg/L	N/A	
Total Metals					
Aluminum, total	< 0.0050	0.0050	mg/L	2017-11-27	
Antimony, total	< 0.00020	0.00020		2017-11-27	
Arsenic, total	< 0.00050	0.00050	mg/L	2017-11-27	
Barium, total	0.146	0.0050	mg/L	2017-11-27	
Beryllium, total	< 0.00010	0.00010	mg/L	2017-11-27	
Bismuth, total	< 0.00010	0.00010	mg/L	2017-11-27	
Boron, total	0.0068	0.0050	mg/L	2017-11-27	
Cadmium, total	< 0.000010	0.000010	mg/L	2017-11-27	
Calcium, total	83.6	0.20	mg/L	2017-11-27	
Chromium, total	0.00062	0.00050	mg/L	2017-11-27	
Cobalt, total	< 0.00010	0.00010	mg/L	2017-11-27	
Copper, total	0.00153	0.00040	mg/L	2017-11-27	
Iron, total	< 0.010	0.010	mg/L	2017-11-27	
Lead, total	< 0.00020	0.00020	mg/L	2017-11-27	
Lithium, total	0.00115	0.00010	mg/L	2017-11-27	
Magnesium, total	24.0	0.010	mg/L	2017-11-27	
Manganese, total	0.00077	0.00020	mg/L	2017-11-27	
Mercury, total	< 0.000010	0.000010	mg/L	2017-11-27	
Molybdenum, total	0.00026	0.00010		2017-11-27	
Nickel, total	< 0.00040	0.00040	mg/L	2017-11-27	
Phosphorus, total	< 0.050	0.050	mg/L	2017-11-27	
Potassium, total	0.91		mg/L	2017-11-27	
Selenium, total	< 0.00050	0.00050		2017-11-27	
Silicon, total	3.7		mg/L	2017-11-27	
Silver, total	< 0.000050	0.000050		2017-11-27	
Sodium, total	15.7		mg/L	2017-11-27	
Strontium, total	0.285	0.0010		2017-11-27	
Sulfur, total	7.9		mg/L	2017-11-27	
Tellurium, total	< 0.00050	0.00050		2017-11-27	
Thallium, total	< 0.000020	0.000020		2017-11-27	
Thorium, total	< 0.00010	0.00010		2017-11-27	
Tin, total	< 0.00020	0.00020		2017-11-27	
Titanium, total	< 0.0050	0.0050		2017-11-27	
Tungsten, total	< 0.0010	0.0010	mg/L	2017-11-27	

						WORK ORDER REPORTED	7111886 2017-11-29 14:59	
Analyte		Result	RL	Units	Analyzed	Qualifier		
Town Well #6 (711	1886-02) Matrix: Wa	ste Water Sampled: 201	7-11-20 13:00, Continued					
Total Metals, Contin	ued							
Uranium, total		0.00107	0.000020	ma/L	2017-11-27			
Vanadium, total		< 0.0010	0.0010		2017-11-27			
Zinc, total		< 0.0040	0.0040		2017-11-27			
Zirconium, total		< 0.00010	0.00010		2017-11-27			
Town Well #4 (711	1886-03) Matrix: Wa	ste Water Sampled: 201	7-11-20 14:00					
Anions								
Bromide		< 0.10	0.10	mg/L	2017-11-24			
Chloride		105		mg/L	2017-11-24			
Fluoride		< 0.10		mg/L	2017-11-24			
Nitrate (as N)		1.61	0.010		2017-11-24			
Nitrite (as N)		< 0.010	0.010		2017-11-24			
Phosphate (as P)		< 0.010	0.010		2017-11-24			
Sulfate		43.8		mg/L	2017-11-24			
General Parameters	1							
Alkalinity, Total (as	CaCO3)	361	1.0	mg/L	2017-11-26			
	nthalein (as CaCO3)	< 1.0		mg/L	2017-11-26			
Alkalinity, Bicarbon		361		mg/L	2017-11-26			
Alkalinity, Carbonat		< 1.0		mg/L	2017-11-26			
Alkalinity, Hydroxid		< 1.0		mg/L	2017-11-26			
Bicarbonate (HCO3		441		mg/L	N/A			
Carbonate (CO3)	,	< 0.600	0.600		N/A			
Hydroxide (OH)		< 0.340	0.340		N/A			
Ammonia, Total (as	; N)	0.024	0.020		2017-11-24			
Conductivity (EC)		1050		μS/cm	2017-11-26			
рН		7.91		pH units	2017-11-24	HT2		
Solids, Total Suspe	nded	< 2.0	2.0	mg/L	2017-11-23			
Turbidity		0.26	0.10	NTU	2017-11-23			
Calculated Paramet	ers							
Hardness, Total (as	s CaCO3)	389	0.500	mg/L	N/A			
Total Metals								
Aluminum, total		< 0.0050	0.0050		2017-11-27			
Antimony, total		< 0.00020	0.00020		2017-11-27			
Arsenic, total		< 0.00050	0.00050	mg/L	2017-11-27			
Barium, total		0.228	0.0050	mg/L	2017-11-27			
Beryllium, total		< 0.00010	0.00010	mg/L	2017-11-27			
Bismuth, total		< 0.00010	0.00010	mg/L	2017-11-27			
Boron, total		0.0140	0.0050	mg/L	2017-11-27			
Cadmium, total		< 0.000010	0.000010	mg/L	2017-11-27			

REPORTED TO Western Water Associates Ltd WORK ORDER

PROJECT CSRD Refuse Disposal - Golden MR17006 REPORTED 2017-11-29 14:59

Analyte	Result	RL	Units	Analyzed	Qualifier
Town Well #4 (7111886-03) Matr	ix: Waste Water Sampled: 2017-1	I-20 14:00, Continued			
Total Metals, Continued					
Calcium, total	91.1	0.20	mg/L	2017-11-27	
Chromium, total	0.00052	0.00050		2017-11-27	
Cobalt, total	< 0.00010	0.00010	mg/L	2017-11-27	
Copper, total	0.00073	0.00040	mg/L	2017-11-27	
Iron, total	< 0.010	0.010	mg/L	2017-11-27	
Lead, total	< 0.00020	0.00020	mg/L	2017-11-27	
Lithium, total	0.00199	0.00010	mg/L	2017-11-27	
Magnesium, total	39.2	0.010	mg/L	2017-11-27	
Manganese, total	< 0.00020	0.00020	mg/L	2017-11-27	
Mercury, total	< 0.000010	0.000010	mg/L	2017-11-27	
Molybdenum, total	0.00019	0.00010	mg/L	2017-11-27	
Nickel, total	< 0.00040	0.00040	mg/L	2017-11-27	
Phosphorus, total	< 0.050	0.050	mg/L	2017-11-27	
Potassium, total	1.89	0.10	mg/L	2017-11-27	
Selenium, total	< 0.00050	0.00050	mg/L	2017-11-27	
Silicon, total	4.4	1.0	mg/L	2017-11-27	
Silver, total	< 0.000050	0.000050	mg/L	2017-11-27	
Sodium, total	52.1	0.10	mg/L	2017-11-27	
Strontium, total	0.486	0.0010	mg/L	2017-11-27	
Sulfur, total	14.0	3.0	mg/L	2017-11-27	
Tellurium, total	< 0.00050	0.00050	mg/L	2017-11-27	
Thallium, total	< 0.000020	0.000020	mg/L	2017-11-27	
Thorium, total	< 0.00010	0.00010	mg/L	2017-11-27	
Tin, total	< 0.00020	0.00020	mg/L	2017-11-27	
Titanium, total	< 0.0050	0.0050	mg/L	2017-11-27	
Tungsten, total	< 0.0010	0.0010	mg/L	2017-11-27	
Uranium, total	0.00127	0.000020	mg/L	2017-11-27	
Vanadium, total	< 0.0010	0.0010	mg/L	2017-11-27	
Zinc, total	< 0.0040	0.0040	mg/L	2017-11-27	
Zirconium, total	< 0.00010	0.00010	mg/L	2017-11-27	

DMW-1B (7111886-05) | Matrix: Water | Sampled: 2017-11-20 16:00

Anions			
Bromide	< 0.10	0.10 mg/L	2017-11-24
Chloride	52.8	0.10 mg/L	2017-11-24
Fluoride	1.30	0.10 mg/L	2017-11-24
Nitrate (as N)	< 0.010	0.010 mg/L	2017-11-24
Nitrite (as N)	< 0.010	0.010 mg/L	2017-11-24
Sulfate	108	1.0 mg/L	2017-11-24

General Parameters

7111886

REPORTED TO	Western Water Associates Ltd	WORK ORDER	7111886
PROJECT	CSRD Refuse Disposal - Golden MR17006	REPORTED	2017-11-29 14:59

Analyte	Result	RL	Units	Analyzed	Qualifier
DMW-1B (7111886-05) Matrix: Water	Sampled: 2017-11-20 16:0	00, Continued			
General Parameters, Continued					
Alkalinity, Total (as CaCO3)	481	1.0	mg/L	2017-11-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2017-11-26	
Alkalinity, Bicarbonate (as CaCO3)	481	1.0	mg/L	2017-11-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2017-11-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2017-11-26	
Bicarbonate (HCO3)	587	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	0.262	0.020	mg/L	2017-11-24	
Conductivity (EC)	1170	2.0	μS/cm	2017-11-26	
рН	7.86		pH units	2017-11-24	HT2
Solids, Total Suspended	2.8	2.0	mg/L	2017-11-23	
Turbidity	5.34	0.10	NTU	2017-11-23	
Calculated Parameters					
Hardness, Total (as CaCO3)	582	0.500	mg/L	N/A	
Total Metals					
Aluminum, total	< 0.0050	0.0050	mg/L	2017-11-27	
Antimony, total	< 0.00020	0.00020	mg/L	2017-11-27	
Arsenic, total	0.0476	0.00050	mg/L	2017-11-27	
Barium, total	0.0246	0.0050	mg/L	2017-11-27	
Beryllium, total	0.00011	0.00010	mg/L	2017-11-27	
Bismuth, total	< 0.00010	0.00010	mg/L	2017-11-27	
Boron, total	0.101	0.0050	mg/L	2017-11-27	
Cadmium, total	< 0.000010	0.000010	mg/L	2017-11-27	
Calcium, total	65.9	0.20	mg/L	2017-11-27	
Chromium, total	< 0.00050	0.00050	mg/L	2017-11-27	
Cobalt, total	< 0.00010	0.00010	mg/L	2017-11-27	
Copper, total	0.00073	0.00040	mg/L	2017-11-27	
Iron, total	0.437	0.010	mg/L	2017-11-27	
Lead, total	< 0.00020	0.00020	mg/L	2017-11-27	
Lithium, total	0.0217	0.00010	mg/L	2017-11-27	
Magnesium, total	101	0.010	mg/L	2017-11-27	
Manganese, total	0.00419	0.00020	mg/L	2017-11-27	
Mercury, total	< 0.000010	0.000010	mg/L	2017-11-27	
Molybdenum, total	0.00035	0.00010		2017-11-27	
Nickel, total	0.00204	0.00040	mg/L	2017-11-27	
Phosphorus, total	< 0.050	0.050		2017-11-27	
Potassium, total	4.63	0.10	mg/L	2017-11-27	
Selenium, total	< 0.00050	0.00050	mg/L	2017-11-27	
Silicon, total	7.6		mg/L	2017-11-27	
Silver, total	< 0.000050	0.000050	mg/L	2017-11-27	

PROJECT	Western Water Associated CSRD Refuse Disposa			WORK ORDER REPORTED	7111886 2017-11-2	9 14:59
Analyte		Result	RL	Units	Analyzed	Qualifie
OMW-1B (711188	6-05) Matrix: Water S	ampled: 2017-11-20 16:00, Co	ntinued			
Total Metals, Conti	nued					
Sodium, total		26.9	0.10	mg/L	2017-11-27	
Strontium, total		1.85	0.0010	mg/L	2017-11-27	
Sulfur, total		42.6	3.0	mg/L	2017-11-27	
Tellurium, total		< 0.00050	0.00050	mg/L	2017-11-27	
Thallium, total		< 0.000020	0.000020	mg/L	2017-11-27	
Thorium, total		< 0.00010	0.00010	mg/L	2017-11-27	
Tin, total		< 0.00020	0.00020	mg/L	2017-11-27	
Titanium, total		< 0.0050	0.0050	mg/L	2017-11-27	
Tungsten, total		< 0.0010	0.0010	mg/L	2017-11-27	
Uranium, total		0.000068	0.000020	mg/L	2017-11-27	
Vanadium, total		< 0.0010	0.0010	mg/L	2017-11-27	
Zinc, total		0.0084	0.0040	mg/L	2017-11-27	
Zirconium, total		0.00161	0.00010	mg/L	2017-11-27	
	06) Matrix: Water Sar	mpled: 2017-11-20 16:30				
Anions	06) Matrix: Water Sar		0.10	ma/l	2017-11-24	
Anions Bromide	06) Matrix: Water Sar	< 0.10		mg/L	2017-11-24	
Anions Bromide Chloride	06) Matrix: Water Sar	< 0.10 11.7	0.10	mg/L	2017-11-24	
Anions Bromide Chloride Fluoride	06) Matrix: Water Sar	< 0.10 11.7 0.79	0.10 0.10	mg/L mg/L	2017-11-24 2017-11-24	
Anions Bromide Chloride Fluoride Nitrate (as N)	06) Matrix: Water Sar	< 0.10 11.7 0.79 0.138	0.10 0.10 0.010	mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24	
Anions Bromide Chloride Fluoride	06) Matrix: Water Sar	< 0.10 11.7 0.79	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	2017-11-24 2017-11-24	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)		< 0.10 11.7 0.79 0.138 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter	s	< 0.10 11.7 0.79 0.138 < 0.010	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as	s s CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as	s CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246 439 < 1.0	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as Alkalinity, Phenolp Alkalinity, Bicarbo	s CaCO3) shthalein (as CaCO3) nate (as CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246 439 < 1.0 439	0.10 0.10 0.010 0.010 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as Alkalinity, Bicarbon Alkalinity, Carbon	s CaCO3) hthtalein (as CaCO3) hate (as CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246 439 < 1.0	0.10 0.10 0.010 0.010 1.0 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as Alkalinity, Phenolp Alkalinity, Bicarbon Alkalinity, Hydroxid	s CaCO3) hthalein (as CaCO3) hate (as CaCO3) ate (as CaCO3) de (as CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246 439 < 1.0 439 < 1.0	0.10 0.10 0.010 0.010 1.0 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26 2017-11-26	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as Alkalinity, Phenolp Alkalinity, Bicarbon Alkalinity, Hydroxid Bicarbonate (HCC	s CaCO3) hthalein (as CaCO3) hate (as CaCO3) ate (as CaCO3) de (as CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246 439 < 1.0 439 < 1.0 < 1.0 < 1.0	0.10 0.10 0.010 0.010 1.0 1.0 1.0 1.0 1.	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26 2017-11-26 2017-11-26	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as Alkalinity, Phenologalkalinity, Bicarbonalkalinity, Hydroxide Bicarbonate (HCC) Carbonate (CO3)	s CaCO3) hthalein (as CaCO3) hate (as CaCO3) ate (as CaCO3) de (as CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246 439 < 1.0 439 < 1.0 < 1.0 536	0.10 0.10 0.010 0.010 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26 2017-11-26 2017-11-26 N/A	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as Alkalinity, Phenologalication Alkalinity, Carbona Alkalinity, Hydroxid Bicarbonate (HCC) Carbonate (CO3) Hydroxide (OH)	s CaCO3) Shthhalein (as CaCO3) Shate (as CaCO3) Shate (as CaCO3) Shate (as CaCO3) Shate (as CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246 439 < 1.0 439 < 1.0 < 1.0 < 536 < 0.600	0.10 0.10 0.010 0.010 1.0 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26 2017-11-26 2017-11-26 N/A N/A N/A	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as Alkalinity, Phenologalication Alkalinity, Carbona Alkalinity, Hydroxic Bicarbonate (HCC Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as	s CaCO3) Shthhalein (as CaCO3) Shate (as CaCO3) Shate (as CaCO3) Shate (as CaCO3) Shate (as CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246 439 < 1.0 439 < 1.0 < 1.0 < 536 < 0.600 < 0.340	0.10 0.10 0.010 0.010 1.0 1.0 1.0 1.0 1.	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26 2017-11-26 2017-11-26 N/A N/A N/A 2017-11-24	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as Alkalinity, Phenologalication Alkalinity, Carbona Alkalinity, Hydroxid Bicarbonate (HCC) Carbonate (CO3) Hydroxide (OH)	s CaCO3) Shthhalein (as CaCO3) Shate (as CaCO3) Shate (as CaCO3) Shate (as CaCO3) Shate (as CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246 439 < 1.0 439 < 1.0 < 1.0 536 < 0.600 < 0.340 1.06 1190	0.10 0.10 0.010 0.010 1.0 1.0 1.0 1.0 1.	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26 2017-11-26 N/A N/A N/A 2017-11-24 2017-11-24	HT2
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameter Alkalinity, Total (as Alkalinity, Phenolo Alkalinity, Bicarbon Alkalinity, Hydroxid Bicarbonate (HCC Carbonate (CO3) Hydroxide (OH) Ammonia, Total (a	s CaCO3) whithalein (as CaCO3) mate (as CaCO3) ate (as CaCO3) de (as CaCO3)	< 0.10 11.7 0.79 0.138 < 0.010 246 439 < 1.0 439 < 1.0 < 1.0 536 < 0.600 < 0.340 1.06	0.10 0.10 0.010 0.010 1.0 1.0 1.0 1.0 1.	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2017-11-24 2017-11-24 2017-11-24 2017-11-24 2017-11-26 2017-11-26 2017-11-26 2017-11-26 2017-11-26 N/A N/A N/A 2017-11-24	HT2

Total Metals

Hardness, Total (as CaCO3)

565

0.500 mg/L

N/A

REPORTED TO Western Water Associates Ltd

PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER REPORTED 7111886 2017-11-29 14:59

Analyte	Result	RL	Units	Analyzed	Qualifier
DMW-4 (7111886-06) Matrix: Wa	ter Sampled: 2017-11-20 16:30, C	ontinued			
Total Metals, Continued					
Aluminum, total	< 0.0050	0.0050	mg/L	2017-11-27	
Antimony, total	< 0.00020	0.00020	mg/L	2017-11-27	
Arsenic, total	0.00149	0.00050	mg/L	2017-11-27	
Barium, total	0.0165	0.0050	mg/L	2017-11-27	
Beryllium, total	< 0.00010	0.00010	mg/L	2017-11-27	
Bismuth, total	< 0.00010	0.00010	mg/L	2017-11-27	
Boron, total	0.386	0.0050	mg/L	2017-11-27	
Cadmium, total	< 0.000010	0.000010	mg/L	2017-11-27	
Calcium, total	76.1	0.20	mg/L	2017-11-27	
Chromium, total	< 0.00050	0.00050	mg/L	2017-11-27	
Cobalt, total	0.00068	0.00010	mg/L	2017-11-27	
Copper, total	0.00181	0.00040	mg/L	2017-11-27	
Iron, total	0.037	0.010	mg/L	2017-11-27	
Lead, total	< 0.00020	0.00020	mg/L	2017-11-27	
Lithium, total	0.0508	0.00010	mg/L	2017-11-27	
Magnesium, total	91.1	0.010	mg/L	2017-11-27	
Manganese, total	0.00377	0.00020	mg/L	2017-11-27	
Mercury, total	< 0.000010	0.000010	mg/L	2017-11-27	
Molybdenum, total	0.00049	0.00010	mg/L	2017-11-27	
Nickel, total	0.00105	0.00040	mg/L	2017-11-27	
Phosphorus, total	< 0.050	0.050	mg/L	2017-11-27	
Potassium, total	8.59	0.10	mg/L	2017-11-27	
Selenium, total	< 0.00050	0.00050	mg/L	2017-11-27	
Silicon, total	6.4	1.0	mg/L	2017-11-27	
Silver, total	< 0.000050	0.000050	mg/L	2017-11-27	
Sodium, total	46.4	0.10	mg/L	2017-11-27	
Strontium, total	5.49	0.0010	mg/L	2017-11-27	
Sulfur, total	88.3	3.0	mg/L	2017-11-27	
Tellurium, total	< 0.00050	0.00050	mg/L	2017-11-27	
Thallium, total	< 0.000020	0.000020	mg/L	2017-11-27	
Thorium, total	< 0.00010	0.00010	mg/L	2017-11-27	
Tin, total	< 0.00020	0.00020	mg/L	2017-11-27	
Titanium, total	< 0.0050	0.0050	mg/L	2017-11-27	
Tungsten, total	< 0.0010	0.0010	mg/L	2017-11-27	
Uranium, total	0.000895	0.000020	mg/L	2017-11-27	
Vanadium, total	< 0.0010	0.0010	mg/L	2017-11-27	
Zinc, total	0.0185	0.0040	mg/L	2017-11-27	
Zirconium, total	0.00058	0.00010	mg/L	2017-11-27	

REPORTED TO Western Water Associates Ltd

PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER

7111886

REPORTED 2017-11-29 14:59

Sample Qualifiers:

CT5 This sample has been incorrectly preserved for Mercury analysis

FILT The sample has been filtered for DISS METALS in the laboratory. Results may not reflect conditions at the time of

ampling.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is

recommended.

PRES Sample has been preserved for DISS METALS in the laboratory and the holding time has been extended.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Western Water Associates Ltd

PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER

7111886

REPORTED 2017-11-29 14:59

Analysis Description	Method Ref.	Technique	Location
Alkalinity in Water	SM 2320 B* (2011)	Titration with H2SO4	Kelowna
Ammonia, Total in Water	SM 4500-NH3 G* (2011)	Automated Colorimetry (Phenate)	Kelowna
Anions in Water	SM 4110 B (2011)	Ion Chromatography	Kelowna
Conductivity in Water	SM 2510 B (2011)	Conductivity Meter	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	Richmond
Hardness in Water	SM 2340 B (2011)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	N/A
Mercury, total in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	Richmond
pH in Water	SM 4500-H+ B (2011)	Electrometry	Kelowna
Solids, Total Suspended in Water	SM 2540 D* (2011)	Gravimetry (Dried at 103-105C)	Kelowna
Total Metals in Water	EPA 200.2* / EPA 6020B	HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	Richmond
Turbidity in Water	SM 2130 B (2011)	Nephelometry	Kelowna

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units pH units pH < 7 = acidic, ph > 7 = basic $\mu S/cm$ Microsiemens per centimetre

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

REPORTED TO Western Water Associates Ltd

PROJECT CSRD Refuse Disposal - Golden MR17006

WORK ORDER REPORTED 7111886 2017-11-29 14:59

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method
 blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B7K1840									
Blank (B7K1840-BLK1)			Prepared	d: 2017-11-2	23, Analyze	d: 2017-1	11-23		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B7K1840-BLK2)			Prepared	d: 2017-11-2	24, Analyze	d: 2017-1	11-24		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B7K1840-BS1)			Prepared	d: 2017-11-2	23, Analyze	d: 2017-1	11-23		
Bromide	3.86	0.10 mg/L	4.00		96	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Fluoride	4.09	0.10 mg/L	4.00		102	88-108			
Nitrate (as N)	3.99	0.010 mg/L	4.00		100	93-108			
Nitrite (as N)	2.00	0.010 mg/L	2.00		100	85-114			
Phosphate (as P)	1.03	0.010 mg/L	1.00		103	80-120			
Sulfate	16.0	1.0 mg/L	16.0		100	91-109			
LCS (B7K1840-BS2)			Prepared	d: 2017-11-2	23, Analyze	d: 2017-1	11-23		
Bromide	3.85	0.10 mg/L	4.00		96	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Fluoride	3.94	0.10 mg/L	4.00		99	88-108			
Nitrate (as N)	3.94	0.010 mg/L	4.00		99	93-108			
Nitrite (as N)	2.03	0.010 mg/L	2.00		102	85-114			
Phosphate (as P)	1.05	0.010 mg/L	1.00		105	80-120			
Sulfate	16.1	1.0 mg/L	16.0		100	91-109			

REPORTED TO	Western Water Associates Ltd	WORK ORDER	7111886
PROJECT	CSRD Refuse Disposal - Golden MR17006	REPORTED	2017-11-29 14:59

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batch B7K1990, Continued									
Reference (B7K1990-SRM1), Continued			Prepared	l: 2017-11-2	7, Analyze	d: 2017-1	11-27		
Lead, total	0.191	0.00020 mg/L	0.204		93	90-110			
Lithium, total	0.365	0.00010 mg/L	0.403		91	79-118			
Magnesium, total	3.46	0.010 mg/L	3.79		91	88-116			
Manganese, total	0.103	0.00020 mg/L	0.109		95	88-108			
Molybdenum, total	0.187	0.00010 mg/L	0.198		94	88-110			
Nickel, total	0.240	0.00040 mg/L	0.249		97	90-112			
Phosphorus, total	0.191	0.050 mg/L	0.227		84	72-118			
Potassium, total	6.45	0.10 mg/L	7.21		89	87-116			
Selenium, total	0.125	0.00050 mg/L	0.121		104	90-122			
Sodium, total	6.54	0.10 mg/L	7.54		87	86-118			
Strontium, total	0.367	0.0010 mg/L	0.375		98	86-110			
Thallium, total	0.0768	0.000020 mg/L	0.0805		95	90-113			
Uranium, total	0.0293	0.000020 mg/L	0.0306		96	88-112			
Vanadium, total	0.368	0.0010 mg/L	0.386		95	87-110			
Zinc, total	2.42	0.0040 mg/L	2.49		97	90-113			

Total Metals, Batch B7K2030

Blank (B7K2030-BLK1)			Prepared: 2017	7-11-27, Analyze	ed: 2017-11-27	
Mercury, total	< 0.000010	0.000010 mg/L				
Reference (B7K2030-SRM1)			Prepared: 2017	7-11-27, Analyze	ed: 2017-11-27	
Mercury, total	0.00454	0.000010 mg/L	0.00489	93	80-120	

QC Qualifiers:

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

REPORTED TO PROJECT	Western Water Associates Ltd CSRD Refuse Disposal - Gold	en MR17006			WORK REPOR	ORDER RTED	7111 2017	886 '-11-29	14:59
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, E	Batch B7K2014								
Blank (B7K2014-BL	.K1)		Prepared	l: 2017-11-2	7, Analyze	d: 2017-1	1-27		
Aluminum, dissolved	< 0.0050	0.0050 mg/L							
Antimony, dissolved	< 0.00020	0.00020 mg/L							
Arsenic, dissolved	< 0.00050	0.00050 mg/L							
Barium, dissolved	< 0.0050	0.0050 mg/L							
Beryllium, dissolved Bismuth, dissolved	< 0.00010 < 0.00010	0.00010 mg/L 0.00010 mg/L							
Boron, dissolved	< 0.0050	0.0050 mg/L							
Cadmium, dissolved	< 0.00001	0.000010 mg/L							
Calcium, dissolved	< 0.20	0.20 mg/L							
Chromium, dissolved	< 0.00050	0.00050 mg/L							
Cobalt, dissolved	< 0.00010	0.00010 mg/L							
Copper, dissolved	< 0.00040	0.00040 mg/L							
Iron, dissolved	< 0.010	0.010 mg/L							
Lead, dissolved	< 0.00020	0.00020 mg/L							
Lithium, dissolved	< 0.00010	0.00010 mg/L							
Magnesium, dissolved Manganese, dissolved		0.010 mg/L 0.00020 mg/L							
Mercury, dissolved	< 0.00020	0.000040 mg/L							
Molybdenum, dissolve		0.00010 mg/L							
Nickel, dissolved	< 0.00040	0.00040 mg/L							
Phosphorus, dissolved	d < 0.050	0.050 mg/L							
Potassium, dissolved	< 0.10	0.10 mg/L							
Selenium, dissolved	< 0.00050	0.00050 mg/L							
Silicon, dissolved	< 1.0	1.0 mg/L							
Silver, dissolved	< 0.000050	0.000050 mg/L							
Sodium, dissolved	< 0.10	0.10 mg/L							
Strontium, dissolved	< 0.0010 < 3.0	0.0010 mg/L							
Sulfur, dissolved Tellurium, dissolved	< 0.00050	3.0 mg/L 0.00050 mg/L							
Thallium, dissolved	< 0.00030	0.00030 mg/L							
Thorium, dissolved	< 0.00010	0.00010 mg/L							
Tin, dissolved	< 0.00020	0.00020 mg/L							
Titanium, dissolved	< 0.0050	0.0050 mg/L							
Tungsten, dissolved	< 0.0010	0.0010 mg/L							
Uranium, dissolved	< 0.000020	0.000020 mg/L							
Vanadium, dissolved	< 0.0010								
Zinc, dissolved	< 0.0040								
Zirconium, dissolved	< 0.00010	0.00010 mg/L							
LCS (B7K2014-BS1)		Prepared	l: 2017-11-2	7, Analyze	d: 2017-1	1-27		
Aluminum, dissolved	0.0222	0.0050 mg/L	0.0200		111	80-120			
Antimony, dissolved	0.0190		0.0200		95	80-120			
Arsenic, dissolved	0.0185		0.0200		93	80-120			
Barium, dissolved	0.0188		0.0200		94	80-120			
Beryllium, dissolved	0.0179		0.0200		89	80-120			
Bismuth, dissolved	0.0192		0.0200		96	80-120			
Boron, dissolved	0.0173		0.0200		86	80-120			
Cadmium, dissolved Calcium, dissolved	0.0192 1.89		2.00		96 95	80-120 80-120			
Chromium, dissolved	0.0183		0.0200		95	80-120			
Cobalt, dissolved	0.0183	0.00030 Hig/L	0.0200		90	80-120			
Copper, dissolved	0.0191	0.00040 mg/L	0.0200		96	80-120			
Iron, dissolved	1.77	0.010 mg/L	2.00		88	80-120			
Lead, dissolved	0.0190	0.00020 mg/L	0.0200		95	80-120			
Lithium, dissolved	0.0180		0.0200		90	80-120			
Magnesium, dissolved	1.83	0.010 mg/L	2.00		92	80-120			

						-					
REPORTED TO PROJECT	Western Water Ass CSRD Refuse Dis		MR17006				WORK REPOR	ORDER TED	7111 2017	886 '-11-29	14:59
Analyte		Result	RL I	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Dissolved Metals, I	Batch B7K2014, Cont	inued									
LCS (B7K2014-BS1	I), Continued				Prepared	: 2017-11-2	7, Analyze	d: 2017-1	1-27		
Manganese, dissolved	t	0.0181	0.00020 r	ng/L	0.0200		90	80-120			
Mercury, dissolved		0.000898	0.000040 r	ng/L	0.00100		90	80-120			
Molybdenum, dissolve	ed	0.0178	0.00010 r	ng/L	0.0200		89	80-120			
Nickel, dissolved		0.0184	0.00040 r		0.0200		92	80-120			
Phosphorus, dissolved	d	1.75	0.050 r		2.00		87	80-120			
Potassium, dissolved		1.87	0.10 r		2.00		93	80-120			
Selenium, dissolved		0.0190	0.00050 r		0.0200		95	80-120			
Silicon, dissolved		1.9	1.0 r		2.00		93	80-120			
Silver, dissolved		0.0189	0.000050 r		0.0200		94	80-120			
Sodium, dissolved		1.93	0.10 r		2.40		80	80-120			
Strontium, dissolved		0.0185	0.0010 r		0.0200		93	80-120			
Sulfur, dissolved		4.9	3.0 r		5.00		98	80-120			
Tellurium, dissolved		0.0179	0.00050 r		0.0200		90	80-120			
Thallium, dissolved		0.0190	0.000020 r		0.0200		95	80-120			
Thorium, dissolved		0.0183	0.00010 r		0.0200		92	80-120			
Tin, dissolved		0.0194	0.00020 r		0.0200		97	80-120			
Titanium, dissolved		0.0182	0.0050 r		0.0200		91	80-120			
Tungsten, dissolved		0.0167	0.0010 r		0.0200		83	80-120 80-120			
Uranium, dissolved		0.0196 0.0177	0.000020 r 0.0010 r		0.0200		98 89	80-120			
Vanadium, dissolved Zinc, dissolved		0.0177	0.0010 r		0.0200		99	80-120			
Zirconium, dissolved		0.0183	0.0040 r		0.0200		99	80-120			
Reference (B7K201	IA-SRM1)	0.0100	0.000101	119/12		: 2017-11-2			1_27		
•	14-01(11)	0.000	0.0050 =	//	-	. 2017-11-2			1-21		
Aluminum, dissolved		0.222	0.0050 r		0.233		95	79-114			
Antimony, dissolved		0.0464	0.00020 r		0.0430		108	89-123			
Arsenic, dissolved		0.448 3.48	0.00050 r		0.438		102 104	87-113 85-114			
Barium, dissolved			0.0050 r		3.35			79-122			
Beryllium, dissolved		0.209 1.51	0.00010 r 0.0050 r		0.213 1.74		98 87	79-122			
Boron, dissolved Cadmium, dissolved		0.233	0.0000 r		0.224		104	89-112			
Calcium, dissolved		7.76	0.000010 1		7.69		101	85-120			
Chromium, dissolved		0.432	0.00050 r		0.437		99	87-113			
Cobalt, dissolved		0.128	0.00030 r		0.128		100	90-117			
Copper, dissolved		0.848	0.00040 r		0.844		100	90-115			
Iron, dissolved		1.21	0.010 r		1.29		94	86-112			
Lead, dissolved		0.112	0.00020 r		0.112		100	90-113			
Lithium, dissolved		0.102	0.00010 r		0.104		98	77-127			
Magnesium, dissolved	1	6.29	0.010 r		6.92		91	84-116			
Manganese, dissolved		0.342	0.00020 r		0.345		99	85-113			
Molybdenum, dissolve		0.420	0.00010 r		0.426		99	87-112			
Nickel, dissolved		0.844	0.00040 r		0.840		101	90-114			
Phosphorus, dissolved	d	0.488	0.050 r		0.495		99	74-119			
Potassium, dissolved		2.98	0.10 r		3.19		93	78-119			
Selenium, dissolved		0.0343	0.00050 r		0.0331		104	89-123			
Sodium, dissolved		16.4	0.10 r		19.1		86	81-117			
Strontium, dissolved		0.911	0.0010 r		0.916		99	82-111			
							102	90-113			
Thallium, dissolved		0.0401	0.000020 r	ng/L	0.0393		102	00 110			
· · · · · · · · · · · · · · · · · · ·		0.0401 0.264	0.000020 r 0.000020 r		0.0393		99	87-113			
Thallium, dissolved				ng/L							

General Parameters, Batch B7K1777

	stern Water Associates RD Refuse Disposal - G		R17006			WORK O		7111 2017	886 '-11-29	14:59
Analyte	Res	sult	RL Units	Spike Level	Source Result	% REC	REC o	6 RPD	RPD Limit	Qualific
General Parameters, Bat	tch B7K1777, Continued									
Blank (B7K1777-BLK1)				Prepared	2017-11-23	, Analyzed	: 2017-11-	23		
Solids, Total Suspended	<	1.0	1.0 mg/L							
Blank (B7K1777-BLK2)				Prepared	2017-11-23	, Analyzed	: 2017-11-	23		
Solids, Total Suspended	<	1.0	1.0 mg/L							
LCS (B7K1777-BS1)				Prepared	2017-11-23	, Analyzed	: 2017-11-	23		
Solids, Total Suspended	(95.0	10.0 mg/L	100		95	91-106			
LCS (B7K1777-BS2)				Prepared	2017-11-23	, Analyzed	: 2017-11-	23		
Solids, Total Suspended	Ç	94.0	10.0 mg/L	100		94	91-106			
General Parameters, Bat	ch B7K1779									
Blank (B7K1779-BLK1)				Prepared	: 2017-11-23	, Analyzed	: 2017-11-	23		
Turbidity	<(0.10	0.10 NTU							
Blank (B7K1779-BLK2)				Prepared	2017-11-23	, Analyzed	: 2017-11-	23		
Turbidity	<(0.10	0.10 NTU	-		-				
LCS (B7K1779-BS1)				Prepared	: 2017-11-23	, Analyzed	: 2017-11-	23		
Turbidity		40.0	0.10 NTU	40.0		100	90-110			
LCS (B7K1779-BS2)				Prepared	: 2017-11-23	, Analyzed	: 2017-11-	23		
Turbidity		39.8	0.10 NTU	40.0		100	90-110			
eneral Parameters, Bat Blank (B7K1849-BLK1) Ammonia, Total (as N)		020	0.020 mg/L	Prepared	: 2017-11-24	, Analyzed	: 2017-11-	24		
Riank (R7K1940 B) K2\					0047 44 04	Analyzed	· 2017-11-	24		
DIGITA (D/N 1043-DLNZ)				Prepared	2017-11-24					
,	< 0.	020	0.020 mg/L	Prepared	2017-11-24	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 2017 11			
Ammonia, Total (as N)	< 0.	020	0.020 mg/L			· •				
Ammonia, Total (as N) Blank (B7K1849-BLK3)		020	J		: 2017-11-24	· •				
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N)			0.020 mg/L 0.020 mg/L	Prepared	: 2017-11-24	, Analyzed	: 2017-11-	24		
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1)	< 0.		J	Prepared		, Analyzed	: 2017-11-	24		
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1) Ammonia, Total (as N)	< 0.	020	0.020 mg/L	Prepared Prepared	: 2017-11-24 : 2017-11-24	, Analyzed , Analyzed	: 2017-11- : 2017-11- 90-115	24		
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1) Ammonia, Total (as N) LCS (B7K1849-BS2)	< 0.	020	0.020 mg/L 0.020 mg/L	Prepared Prepared	: 2017-11-24	, Analyzed , Analyzed	: 2017-11- : 2017-11- 90-115	24		
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1) Ammonia, Total (as N) LCS (B7K1849-BS2) Ammonia, Total (as N)	< 0.	020	0.020 mg/L	Prepared 1.00 Prepared 1.00	: 2017-11-24 : 2017-11-24 : 2017-11-24	, Analyzed , Analyzed 104 , Analyzed	: 2017-11- : 2017-11- 90-115 : 2017-11- 90-115	24 24 24		
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1) Ammonia, Total (as N) LCS (B7K1849-BS2) Ammonia, Total (as N) LCS (B7K1849-BS3)	< 0.	020 1.04 998	0.020 mg/L 0.020 mg/L 0.020 mg/L	Prepared 1.00 Prepared 1.00	: 2017-11-24 : 2017-11-24	, Analyzed , Analyzed 104 , Analyzed	: 2017-11- : 2017-11- 90-115 : 2017-11- 90-115 : 2017-11-	24 24 24		
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1) Ammonia, Total (as N) LCS (B7K1849-BS2) Ammonia, Total (as N) LCS (B7K1849-BS3) Ammonia, Total (as N)	< 0. 1 0.	020 1.04 998	0.020 mg/L 0.020 mg/L 0.020 mg/L 0.020 mg/L	Prepared 1.00 Prepared 1.00 Prepared 1.00	: 2017-11-24 : 2017-11-24 : 2017-11-24 : 2017-11-24	, Analyzed 104 , Analyzed 100 , Analyzed 109	: 2017-11- : 2017-11- 90-115 : 2017-11- 90-115 : 2017-11- 90-115	24 24 24 24		
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1) Ammonia, Total (as N) LCS (B7K1849-BS2) Ammonia, Total (as N) LCS (B7K1849-BS3) Ammonia, Total (as N) Duplicate (B7K1849-DUF	< 0. 1 0.	020 1.04 998 1.09 Source	0.020 mg/L 0.020 mg/L 0.020 mg/L 0.020 mg/L e: 7111886-02	Prepared 1.00 Prepared 1.00 Prepared 1.00	: 2017-11-24 : 2017-11-24 : 2017-11-24 : 2017-11-24	, Analyzed 104 , Analyzed 100 , Analyzed 109	: 2017-11- : 2017-11- 90-115 : 2017-11- 90-115 : 2017-11- 90-115	24 24 24 24	15	
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1) Ammonia, Total (as N) LCS (B7K1849-BS2) Ammonia, Total (as N) LCS (B7K1849-BS3) Ammonia, Total (as N) Duplicate (B7K1849-DUF Ammonia, Total (as N)	< 0. 1 0. 1 22)	020 1.04 998 1.09 Source	0.020 mg/L 0.020 mg/L 0.020 mg/L 0.020 mg/L 0.020 mg/L e: 7111886-02 0.020 mg/L	Prepared 1.00 Prepared 1.00 Prepared 1.00 Prepared 1.00 Prepared	: 2017-11-24 : 2017-11-24 : 2017-11-24 : 2017-11-24 : 2017-11-24	, Analyzed 104 , Analyzed 100 , Analyzed 109 , Analyzed	: 2017-11- : 2017-11- 90-115 : 2017-11- 90-115 : 2017-11- 90-115 : 2017-11-	24 24 24 24 24	15	
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1) Ammonia, Total (as N) LCS (B7K1849-BS2) Ammonia, Total (as N) LCS (B7K1849-BS3) Ammonia, Total (as N) Duplicate (B7K1849-DUF Ammonia, Total (as N)	< 0. 1 0. 1 22) 0. MS2)	020 1.04 998 1.09 Source 029	0.020 mg/L 0.020 mg/L 0.020 mg/L 0.020 mg/L e: 7111886-02 0.020 mg/L e: 7111886-02	Prepared 1.00 Prepared 1.00 Prepared 1.00 Prepared Prepared 1.00 Prepared	: 2017-11-24 : 2017-11-24 : 2017-11-24 : 2017-11-24 : 2017-11-24 0.028 : 2017-11-24	, Analyzed 104 , Analyzed 100 , Analyzed 109 , Analyzed	: 2017-11- : 2017-11- 90-115 : 2017-11- 90-115 : 2017-11- : 2017-11-	24 24 24 24 24	15	
Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1) Ammonia, Total (as N) LCS (B7K1849-BS2) Ammonia, Total (as N) LCS (B7K1849-BS3) Ammonia, Total (as N) Duplicate (B7K1849-DUF Ammonia, Total (as N) Matrix Spike (B7K1849-N Ammonia, Total (as N)	< 0. 1 0. 1 22) 0. MS2)	020 1.04 998 1.09 Source	0.020 mg/L 0.020 mg/L 0.020 mg/L 0.020 mg/L 0.020 mg/L e: 7111886-02 0.020 mg/L	Prepared 1.00 Prepared 1.00 Prepared 1.00 Prepared 1.00 Prepared	: 2017-11-24 : 2017-11-24 : 2017-11-24 : 2017-11-24 : 2017-11-24	, Analyzed 104 , Analyzed 100 , Analyzed 109 , Analyzed	: 2017-11- : 2017-11- 90-115 : 2017-11- 90-115 : 2017-11- 90-115 : 2017-11-	24 24 24 24 24	15	
Blank (B7K1849-BLK2) Ammonia, Total (as N) Blank (B7K1849-BLK3) Ammonia, Total (as N) LCS (B7K1849-BS1) Ammonia, Total (as N) LCS (B7K1849-BS2) Ammonia, Total (as N) LCS (B7K1849-BS3) Ammonia, Total (as N) Duplicate (B7K1849-DUFAmmonia, Total (as N) Matrix Spike (B7K1849-NAMMONIA, Total (as N) Beneral Parameters, Bate	< 0. 0. 22) 0. MS2) 0. tch B7K1887	020 1.04 998 1.09 Source 029	0.020 mg/L 0.020 mg/L 0.020 mg/L 0.020 mg/L e: 7111886-02 0.020 mg/L e: 7111886-02	Prepared 1.00 Prepared 1.00 Prepared 1.00 Prepared 0.250	: 2017-11-24 : 2017-11-24 : 2017-11-24 : 2017-11-24 : 2017-11-24 0.028 : 2017-11-24	, Analyzed 104 , Analyzed 100 , Analyzed 109 , Analyzed 109 , Analyzed	: 2017-11- : 2017-11- 90-115 : 2017-11- 90-115 : 2017-11- : 2017-11- : 2017-11- 75-125	24 24 24 24 24 24	15	

	Western Water Ass CSRD Refuse Disp		IR17006			WORK REPOR	ORDER TED	7111 2017	886 '-11-29	14:59
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters,	Batch B7K1887, Co.	ntinued								
Reference (B7K1887	-SRM2)			Prepared	I: 2017-11-2	24, Analyze	d: 2017-1	1-24		
рН		7.00	0.10 pH units	7.00		100	98-102			HT2
General Parameters,	Batch B7K1983									
Blank (B7K1983-BLK	(1)			Prepared	I: 2017-11-2	26, Analyze	d: 2017-1	1-26		
Alkalinity, Total (as CaCo	O3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthale		< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (a	· · · · · · · · · · · · · · · · · · ·	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as	<u> </u>	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as	CaCO3)	< 1.0 < 2.0	1.0 mg/L							
Conductivity (EC)		< 2.0	2.0 µS/cm							
Blank (B7K1983-BLK	· · · · · · · · · · · · · · · · · · ·			Prepared	I: 2017-11-2	27, Analyze	d: 2017-1	1-27		
Alkalinity, Total (as CaCo		< 1.0	1.0 mg/L							
Alkalinity, Phenolphthale Alkalinity, Bicarbonate (a		< 1.0 < 1.0	1.0 mg/L 1.0 mg/L							
Alkalinity, Carbonate (as		< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as		< 1.0	1.0 mg/L							
Conductivity (EC)		< 2.0	2.0 µS/cm							
Blank (B7K1983-BLK	(3)			Prepared	I: 2017-11-2	27, Analyze	d: 2017-1	1-27		
Alkalinity, Total (as CaCo	•	< 1.0	1.0 mg/L	•						
Alkalinity, Phenolphthale		< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (a		< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as		< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as	CaCO3)	< 1.0	1.0 mg/L							
Conductivity (EC)		< 2.0	2.0 µS/cm							
LCS (B7K1983-BS1)				Prepared	I: 2017-11-2	26, Analyze	d: 2017-1	1-26		
Alkalinity, Total (as CaCo	03)	100	1.0 mg/L	100		100	92-106			
LCS (B7K1983-BS2)				Prepared	I: 2017-11-2	26, Analyze	d: 2017-1	1-26		
Conductivity (EC)		1400	2.0 μS/cm	1410		99	95-104			
LCS (B7K1983-BS3)				Prepared	I: 2017-11-2	26, Analyze	d: 2017-1	1-26		
Alkalinity, Total (as CaCo	O3)	103	1.0 mg/L	100		103	92-106			
LCS (B7K1983-BS4)				Prepared	I: 2017-11-2	26, Analyze	d: 2017-1	1-26		
Conductivity (EC)		1410	2.0 μS/cm	1410		100	95-104			
LCS (B7K1983-BS5)				Prepared	I: 2017-11-2	27, Analyze	d: 2017-1	1-27		
Alkalinity, Total (as CaCo	O3)	102	1.0 mg/L	100		102	92-106			
LCS (B7K1983-BS6)				Prepared	I: 2017-11-2	27, Analyze	d: 2017-1	1-27		
Conductivity (EC)		1420	2.0 μS/cm	1410		101	95-104			
General Parameters,	Batch B7K2023									
Blank (B7K2023-BLK	(1)			Prepared	I: 2017-11-2	27, Analyze	d: 2017-1	1-27		
Alkalinity, Total (as CaCo	-	< 1.0	1.0 mg/L	- p s 00		,,				
Alkalinity, Phenolphthale		< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (a		< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as		< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as	CaCO3)	< 1.0	1.0 mg/L							
Conductivity (EC)		< 2.0	2.0 μS/cm							

REPORTED TO	Western Water Associates Ltd	WORK ORDER	7111886
PROJECT	CSRD Refuse Disposal - Golden MR17006	REPORTED	2017-11-29 14:59

Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
ntinued								
		Prepared	l: 2017-11-2	7, Analyze	d: 2017-1	1-27		
< 1.0	1.0 mg/L							
< 1.0	1.0 mg/L							
< 1.0	1.0 mg/L							
< 1.0	1.0 mg/L							
< 1.0	1.0 mg/L							
< 2.0	2.0 μS/cm							
		Prepared	l: 2017-11-2	7, Analyze	d: 2017-1	1-27		
104	1.0 mg/L	100		104	92-106			
		Prepared: 2017-11-27, Analyzed: 2017-11-27						
101	1.0 mg/L	100		101	92-106			
		Prepared: 2017-11-27, Analyzed: 2017-11-27						
1400	2.0 μS/cm	1410		99	95-104			
		Prepared: 2017-11-27, Analyzed: 2017-11-27						
1430	2.0 μS/cm	1410		101	95-104			
	<pre>1.0 < 1.0 < 2.0</pre>	1.0 mg/L 1.0 mg/L	Result RL Onlis Level	Result Level Result	Prepared: 2017-11-27, Analyze	Prepared: 2017-11-27, Analyzed: 2017-1 < 1.0	Prepared: 2017-11-27, Analyzed: 2017-11-27	Prepared: 2017-11-27, Analyzed: 2017-11-27

Total Metals, Batch B7K1990

Diamir (D7K4000 DLK4)			Drangrad: 2017 11 27 Angly and: 2017 11 27
Blank (B7K1990-BLK1)			Prepared: 2017-11-27, Analyzed: 2017-11-27
Aluminum, total	< 0.0050	0.0050 mg/L	
Antimony, total	< 0.00020	0.00020 mg/L	
Arsenic, total	< 0.00050	0.00050 mg/L	
Barium, total	< 0.0050	0.0050 mg/L	
Beryllium, total	< 0.00010	0.00010 mg/L	
Bismuth, total	< 0.00010	0.00010 mg/L	
Boron, total	< 0.0050	0.0050 mg/L	
Cadmium, total	< 0.000010	0.000010 mg/L	
Calcium, total	< 0.20	0.20 mg/L	
Chromium, total	< 0.00050	0.00050 mg/L	
Cobalt, total	< 0.00010	0.00010 mg/L	
Copper, total	< 0.00040	0.00040 mg/L	
Iron, total	< 0.010	0.010 mg/L	
Lead, total	< 0.00020	0.00020 mg/L	
Lithium, total	< 0.00010	0.00010 mg/L	
Magnesium, total	< 0.010	0.010 mg/L	
Manganese, total	< 0.00020	0.00020 mg/L	
Molybdenum, total	< 0.00010	0.00010 mg/L	
Nickel, total	< 0.00040	0.00040 mg/L	
Phosphorus, total	< 0.050	0.050 mg/L	
Potassium, total	< 0.10	0.10 mg/L	
Selenium, total	< 0.00050	0.00050 mg/L	
Silicon, total	< 1.0	1.0 mg/L	
Silver, total	< 0.000050	0.000050 mg/L	
Sodium, total	< 0.10	0.10 mg/L	
Strontium, total	< 0.0010	0.0010 mg/L	
Sulfur, total	< 3.0	3.0 mg/L	
Tellurium, total	< 0.00050	0.00050 mg/L	
Thallium, total	< 0.000020	0.000020 mg/L	
Thorium, total	< 0.00010	0.00010 mg/L	
Tin, total	< 0.00020	0.00020 mg/L	
Titanium, total	< 0.0050	0.0050 mg/L	
Tungsten, total	< 0.0010	0.0010 mg/L	
Uranium, total	< 0.000020	0.000020 mg/L	

REPORTED TO PROJECT	Western Water Associates Ltd CSRD Refuse Disposal - Golden MR17006				ORK ORDEI		7111886 2017-11-29 14:59		
Analyte	Result	RL Units	Spike Level	Source % I Result	REC REC Limit	% RPD	RPD Limit	Qualifier	
Total Metals, Batch	h B7K1990, Continued								
Blank (B7K1990-B	LK1), Continued		Prepared	: 2017-11-27, An	alyzed: 2017	-11-27			
Vanadium, total	< 0.0010	0.0010 mg/L							
Zinc, total	< 0.0040	0.0040 mg/L							
Zirconium, total	< 0.00010	0.00010 mg/L							
LCS (B7K1990-BS	1)		Prepared	: 2017-11-27, An	alyzed: 2017	-11-27			
Aluminum, total	0.0231	0.0050 mg/L	0.0200	1	15 80-120)			
Antimony, total	0.0206	0.00020 mg/L	0.0200		03 80-120				
Arsenic, total	0.0189	0.00050 mg/L	0.0200		94 80-120				
Barium, total Beryllium, total	0.0188 0.0173	0.0050 mg/L 0.00010 mg/L	0.0200 0.0200		94 80-120 87 80-120				
Bismuth, total	0.0173	0.00010 mg/L	0.0200		97 80-120				
Boron, total	0.0184	0.0050 mg/L	0.0200		92 80-120				
Cadmium, total	0.0194	0.000010 mg/L	0.0200		97 80-120				
Calcium, total	1.88	0.20 mg/L	2.00	9	94 80-120)			
Chromium, total	0.0188	0.00050 mg/L	0.0200	ę	94 80-120)			
Cobalt, total	0.0183	0.00010 mg/L	0.0200		92 80-120				
Copper, total	0.0196	0.00040 mg/L	0.0200		80-120				
Iron, total	1.80	0.010 mg/L	2.00		90 80-120				
Lead, total Lithium, total	0.0190 0.0173	0.00020 mg/L 0.00010 mg/L	0.0200		95 80-120 86 80-120				
Magnesium, total	1.85	0.000 10 mg/L	2.00		92 80-120				
Manganese, total	0.0185	0.00020 mg/L	0.0200		92 80-120				
Molybdenum, total	0.0185	0.00010 mg/L	0.0200		93 80-120				
Nickel, total	0.0186	0.00040 mg/L	0.0200	ę	93 80-120)			
Phosphorus, total	1.80	0.050 mg/L	2.00	ę	90 80-120)			
Potassium, total	1.90	0.10 mg/L	2.00		95 80-120				
Selenium, total	0.0196	0.00050 mg/L	0.0200		80-120				
Silicon, total	1.9	1.0 mg/L	2.00		97 80-120				
Silver, total Sodium, total	0.0192 1.97	0.000050 mg/L 0.10 mg/L	0.0200 2.40		96 80-120 32 80-120				
Strontium, total	0.0188	0.0010 mg/L	0.0200		94 80-120				
Sulfur, total	4.5	3.0 mg/L	5.00		89 80-120				
Tellurium, total	0.0189	0.00050 mg/L	0.0200	9	94 80-120)			
Thallium, total	0.0190	0.000020 mg/L	0.0200	9	95 80-120)			
Thorium, total	0.0191	0.00010 mg/L	0.0200	9	96 80-120)			
Tin, total	0.0204	0.00020 mg/L	0.0200		02 80-120				
Titanium, total	0.0192	0.0050 mg/L	0.0200		96 80-120				
Tungsten, total Uranium, total	0.0205 0.0203	0.0010 mg/L 0.000020 mg/L	0.0200		02 80-120 02 80-120				
Vanadium, total	0.0183	0.000020 mg/L	0.0200		92 80-120				
Zinc, total	0.0206	0.0040 mg/L	0.0200		03 80-120				
Zirconium, total	0.0193	0.00010 mg/L	0.0200	Ş	96 80-120				
Reference (B7K19	90-SRM1)		Prepared	: 2017-11-27, An	alvzed: 2017	-11-27			
Aluminum, total	0.282	0.0050 mg/L	0.303	-	93 82-114				
Antimony, total	0.0510	0.0000 mg/L	0.0511		00 88-115				
Arsenic, total	0.117	0.00050 mg/L	0.118		99 88-111				
Barium, total	0.785	0.0050 mg/L	0.823		95 83-110				
Beryllium, total	0.0451	0.00010 mg/L	0.0496	9	91 80-119)			
Boron, total	2.79	0.0050 mg/L	3.45		31 80-118				
Cadmium, total	0.0495	0.000010 mg/L	0.0495		00 90-110				
Calcium, total	11.1	0.20 mg/L	11.6		96 85-113				
Chromium, total	0.243	0.00050 mg/L	0.250		97 88-111				
Cobalt, total Copper, total	0.0371 0.485	0.00010 mg/L 0.00040 mg/L	0.0377 0.486		98 90-114 00 90-117				
Iron, total	0.465	0.00040 mg/L	0.488		90-117				
non, total	0.407	0.010 Hig/L	0.400		,o 90-110	,			

Western Water Associates Ltd. Standard Report Limitations

- I. This Document has been prepared for the particular purpose outlined in the work scope that has been mutually agreed to with the Client.
- 2. The scope and the period of service provided by Western Water Associates Ltd are subject to restrictions and limitations outlined in subsequent numbered limitations.
- 3. A complete assessment of all possible conditions or circumstances that may exist at the Site or within the Study Area referenced, has not been undertaken. Therefore, if a service is not expressly indicated, it has not been provided and if a matter is not addressed, no determination has been made by Western Water Associates Ltd. in regards to it.
- 4. Conditions may exist which were undetectable given the limited nature of the enquiry that Western Water Associates Ltd. was retained to undertake with respect to the assignment. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the Site, or Study Area, which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- 5. In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Western Water Associates Ltd's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Western Water Associates Ltd to form no more than an opinion of the actual conditions of the Site, or Study Area, at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the Site, or Study Area, nor the surroundings, or any laws or regulations.
- 6. Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either expressed or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- 7. Where data supplied by the Client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated.
- 8. No responsibility is accepted by Western Water Associates Ltd for incomplete or inaccurate data supplied by others.
- 9. The Client acknowledges that Western Water Associates Ltd may have retained sub-consultants affiliated to provide Services. Western Water Associates Ltd will be fully responsible to the Client for the Services and work done by all of its sub-consultants and subcontractors. The Client agrees that it will only assert claims against and seek to recover losses, damages or other liabilities from Western Water Associates Ltd.
- 10. This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Western Water Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

Groundwater Supply Development and Management
Source Water Assessment and Protection
Well Monitoring & Maintenance
Environmental & Water Quality Monitoring
Storm & Wastewater Disposal to Ground
Groundwater Modeling
Aquifer Test Design and Analysis
Geothermal / Geoexchange Systems
Policy and Guideline Development
Applied Research
Rural Subdivision Services

Environmental Assessment & Permitting