Geochemical Assessment Report

On

Kymar Silver Project

Golden Mining Division, Southeastern BC

BCGS Map 082K 049

NTS Map 082K 08W

Centre of Work

Latitude 50.43766, Longitude -116.38866

NAD 83 UTM Zone 11

543414 E, 5587472 N

Prepared for

Green River Gold Corp.

Ву

Tyler Y. Tian B. Eng, EIT

Fargo Exploration Ltd.

Submit on March 05, 2022

Table of Contents

Introduction	2
Project Location	3
Tenure Information	4
Exploration History	6
Regional Geology	8
Geochemistry Sampling Program	10
Conclusion	12
Recommendation	12
Reference	13
Statement of Qualifications	14
Statement of Costs	15
Appendix 1. Assaying Result	18
Appendix 2. QC Assaying Result	23
Appendix 3. Rock Sample Photos	31
List of Figures	
Figure 1 Kymar Silver Project Location	3
Figure 2 Property Map with Tenure Number	5
Figure 3 Minfile Records in the Property	6
Figure 4 Terranes of the Canadian-Alaskan Cordillera	8
Figure 5 Property Geology Map	9
Figure 6 Rock Sample Locations	11
List of Tables	
Table 1 Tenure Information	4
Table 2 Coordinates of Sampling Locations	11

Introduction

Kymar Silver property consists of 1440.87 hectares located approximately 28 kilometres west of Invermere, BC. This property is 100 % owned by Green River Gold Corp. There are eight previous mineral exploration or production records in the property which could be traced from BC Minfile. According to those records, this property is a multi-element deposit and contains high grades of silver, copper, lead and gold.

The 2021 geochemical program by Green River Gold was carried out from 11th to 14th October 2021 and consisted of six rock sampling by helicopter support. Although there are no anomalous values returned from the assay lab, this property remains an attractive exploration target and further work is recommended.

The total expenditure from the 2021 rock sampling program is \$22,245.18.

Project Location

Kymar Silver project locates in southeastern BC province, approximately 28 kilometres from the of Invermere, which roughly takes 45 minutes to drive from Invermere following the Toby Creek Road, then northward up the Delphine Creek road to the headwaters of Delphine Creek. The northern part of the property could only be accessed by helicopter as the cliff and glacier on the top are very challenging to reach. These claims lie within the Golden Mining Division on BCGS Map sheet 082K 049. The center coordinate of the property is at Latitude 50.43766, Longitude -116.38866. The location of the property is shown in Figure 1.

Figure 1 Kymar Silver Project Location

Tenure Information

Kymar Silver project consists of 1440.87 hectares of area with 8 title numbers. Green River Gold Corp has 100% ownership of this property. Table. 1 shows the details of the tenure.

Table 1 Tenure Information

Title Number	Claim Name	Owner	Title Type	Title Sub Type	Map Number	Issue Date	Good To Date	Status	Area (ha)
536427	НР	286343 (100%)	Mineral	Claim	082K	2006/JUN/30	2023/OCT/05	GOOD	61.776
1077791	HOT PUNCH	286343 (100%)	Mineral	Claim	082K	2020/AUG/05	2023/OCT/05	GOOD	82.379
1080901	KYMAR SILVER	286343 (100%)	Mineral	Claim	082K	2021/FEB/01	2023/OCT/05	GOOD	102.9364
1080963	KYMAR SILVER 2	286343 (100%)	Mineral	Claim	082K	2021/FEB/04	2023/OCT/05	GOOD	1111.3806
1083617	RHEA	286343 (100%)	Mineral	Claim	082K	2021/AUG/10	2023/OCT/05	GOOD	20.5981
1083618	JORGE	286343 (100%)	Mineral	Claim	082K	2021/AUG/10	2023/OCT/05	GOOD	20.5978
1083619	ADRIA	286343 (100%)	Mineral	Claim	082K	2021/AUG/10	2023/OCT/05	GOOD	20.5978
1083620	RHYS	286343 (100%)	Mineral	Claim	082K	2021/AUG/10	2023/OCT/05	GOOD	20.5994
Total Area									1440.87

Figure 2 shows the locations of each tenure number:

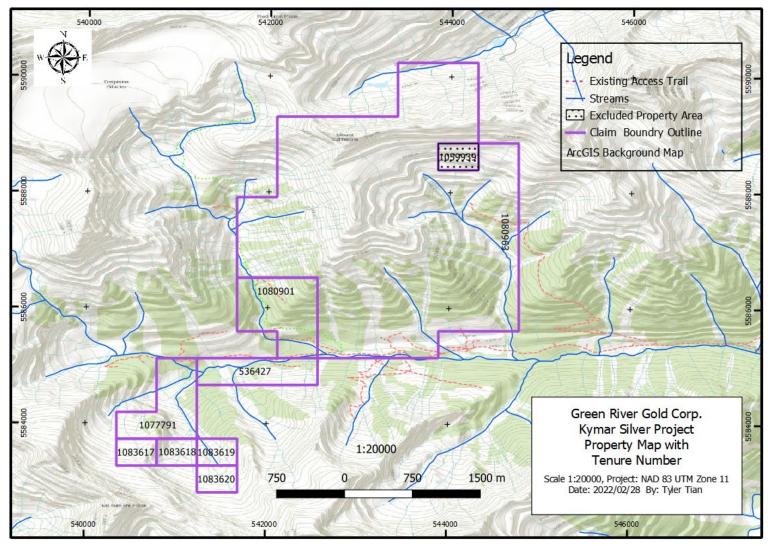


Figure 2 Property Map with Tenure Number

Exploration History

This property has a long history of mineral exploration and mining production. According to the BC Minfile record. There are eight historical mining or exploration records in this property which are shown in Figure 3.

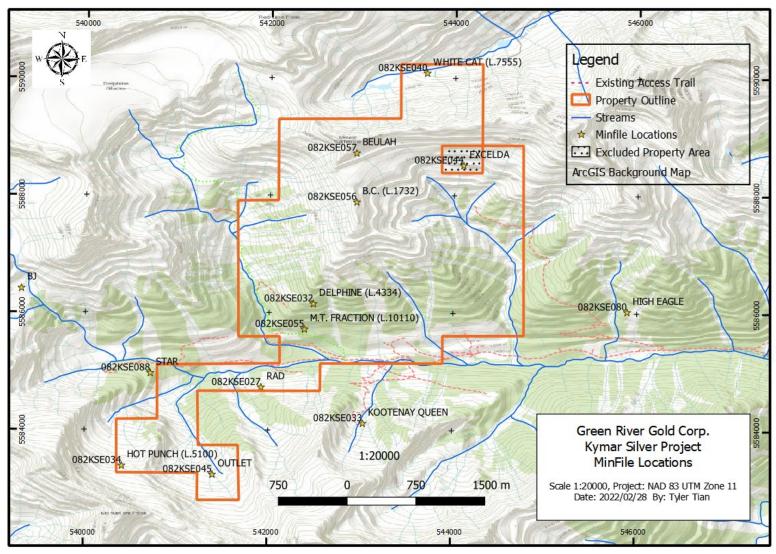


Figure 3 Minfile Records in the Property

White Cat Mine (082K SE040): The occurrence is within the middle dolomite member of the Mount Nelson Formation below a north-trending overthrust fault that separates the Mount Nelson and Dutch Creek formations (Open File 1990-26). Mineralization is associated with a quartz vein 0.6 to 2.5 metres wide that follows an open gouge zone for 75 metres along strike. The vein strikes 050 degrees and dips 70 degrees northwest. Massive galena with minor tetrahedrite occurs throughout the vein in lenses 2 to 3 metres long and 0.5 meter wide. The vein has been developed with several small adits and trenches. Limited production between 1924 and 1928 yielded 154,893 grams of silver and 80,644 kilograms of lead from 152 tonnes mined.

Beluah (082K SE057): In 1926, a 52 tonne ore bulk sample was collected from the adit and shipped to the Trail smelter. Although recovery from the bulk sample is not known, the average grade of the shipment was 2000 grams per tonne silver, 57 percent lead, 0.8 percent copper and 3.4 grams per tonne gold (Property File - Galloway, J.D. (1926): Report on Key Group).

B.C. (082K SE056): The occurrence consists of a 30 to 50 centimetre wide quartz vein containing galena and tetrahedrite within Mount Nelson dolomite (Open File 1990-26). The vein has been explored with a small, 15 meter deep shaft and a 75 meter long drift. A total of 79 tonnes were sporadically mined from the vein between 1905 and 1927. Total production yielded 198,873 grams of silver, 41,415 kilograms of lead and 427 kilograms of zinc.

Delphine (082K SE032): The Delphine mine occurrence consists of a quartz-carbonate vein 0.3 to 1 metre wide within a normal fault. The fault strikes 150 degrees, dips 78 degrees northeast and cuts the middle dolomite member of the Mount Nelson Formation. Ore minerals include galena and tetrahedrite with minor sphalerite, pyrite and chalcopyrite (Open File 1990-26, page 32). The vein, where it has been stoped for 60 metres, had an average width of 1 metre and was of solid galena (Minister of Mines Annual Report 1898). Total production from the Delphine yielded 614,315 grams of silver, 3025 kilograms of copper and 46,880 kilograms of lead from 170 tonnes mined.

M.T. Fraction (082K SE055): The M.T. Fraction is hosted within the dolomite of the Mount Nelson Formation. The occurrence consists of a quartz-carbonate vein 20 to 30 centimetres wide which has been explored with a small adit. Limited production at the turn of the century yielded 254,641 grams of silver, 1655 kilograms of copper and 39 kilograms of lead. Ore minerals include galena, tetrahedrite and chalcopyrite with minor sphalerite. The vein is within a dilatant zone along a normal fault that strikes southeast and dips 80 degrees west.

RAD (082K SE027): The occurrence is hosted within the lower dolomite member of the Mount Nelson Formation and consists of narrow veins and fractures within the crest of an anticline. The veins and fractures are parallel to the axis of the anticline. Mineralization consisting of galena, sphalerite and tetrahedrite occurs in white quartz veins (Assessment Report 9983).

Hot Punch (082K SE034): The Hot Punch is hosted within dolomite of the Mount Nelson Formation and maybe, in part, also hosted within a conglomerate of the Toby Formation (Open File 1990-26). Mineralization occurs in 0.1 to 1 metre wide fissure veins in sheared dolomite. A total of 74 tonnes were mined between 1908 and 1926 to produce 108,582 grams of silver, 27,268 kilograms of lead, 904 kilograms of zinc and 62 grams of gold. Ore minerals include galena, sphalerite, tetrahedrite and minor chalcopyrite.

Regional Geology

The Canadian Cordillera can be divided into five major longitudinal morpho-geological belts of generally similar physiography and geology; from west to east there are the Insular, Coast, Intermontane, Omineca, and Foreland belts. (Panteleyev, 1996) The belts are now interpreted crustal blocks of fundamentally contrasting histories. (Monger et al, 2002). Terranes are characterized by internally continuous geology, including stratigraphy, structure, fauna, metamorphism, igneous petrology, geophysical properties, paleomagnetic record and mélanges. This project locates in the Omineca Belt, Ancestral North America terrane. The Terranesof the Canadian-Alaska Cordillera Map is shown in Figure 4.

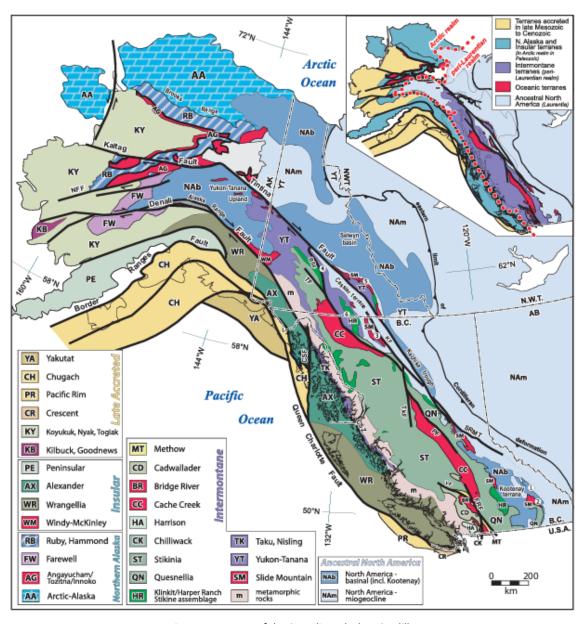


Figure 4 Terranes of the Canadian-Alaskan Cordillera

Regionally, the area is underlain by Proterozoic clastic sedimentary rocks of the Purcell and Windermere supergroups and by lower Paleozoic strata of the Beaverfoot and Mount Forster formations. The Purcell Supergroup strata include the Aldridge, Creston, Kitchener, Dutch Creek and Mount Nelson formations. The Windermere Supergroup unconformably overlies the Purcell Supergroup rocks and includes the Toby Formation and Horsethief Creek Group.

In the vicinity of the occurrence, rocks of the Kitchener and Dutch Creek formations have been further subdivided and assigned to the Van Creek and Gateway formations. The Van Creek Formation correlates with the Lower Kitchener Formation while the Gateway Formation is equivalent to the lower portion of the Dutch Creek Formation. The Mount Nelson Formation has been subdivided into seven discrete members, a lower quartzite, a lower dolomite, a middle dolomite, a purple dolomite, an upper middle dolomite, an upper quartzite, and an upper dolomite (Open File 1990-26).

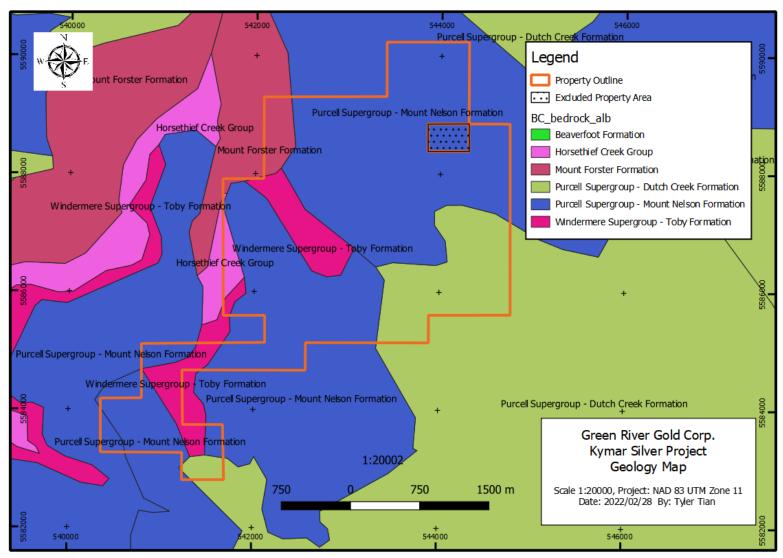


Figure 5 Property Geology Map

Rocks of the Horsethief Creek Group, Beaverfoot and Mount Forster formations are folded and overthrust by rocks of the upper portion of the Dutch Creek Formation and the lower members of the Mount Nelson Formation. The sedimentary rocks have undergone regional metamorphism to at least greenschist facies.

In Kymar Silver property, there are six main types of geological formations, which are Beaverfoot formation, Horsethief Creek group, Mount Forster formation, Dutch Creek formation, Mount Nelsom formation and Toby formation. The local geology map has been included in Figure 5.

Geochemistry Sampling Program

Eight rock samples were planned to take, however, due to weather conditions, only 6 samples have been taken during the 2021 exploration program. All rock samples have been sent to ALS assaying laboratory in North Vancouver for 33 elements tracing level test with four acid ICP-AES method, fire assaying ICP-AES method was chosen for gold diagnosis.

The sampling locations have been marked in the following map. None of the rocks returned anomalous values in gold, silver or copper. Sample #1 and #7 have the highest 15 ppm of copper; sample #8 has 41 ppm of lead and 100 ppm of zinc.

Crew Member:

Project geologist: Andrew J. Ramcharan

Field assistant: Darcy Skow

Ground support: Perry Little

GIS mapping and reporting: Tyler Y. Tian

The sampling program was carried out from 11th to 14th October 2021, the fieldwork led by Andrew J. Ramcharan.

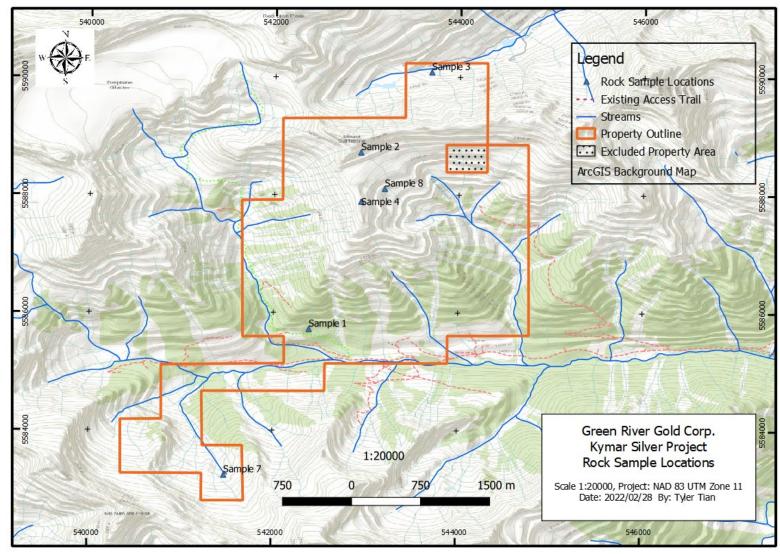


Figure 6 Rock Sample Locations

The coordinates of the sampling locations have been summarized in the following table:

Table 2 Coordinates of Sample Locations

Sample ID	Easting	Northing
Sample 1	542386	5585716
Sample 2	542934	5588717
Sample 3	543692	5590082
Sample 4	542940	5587883
Sample 7	541478	5583238
Sample 8	543195	5588101

The coordinate format is NAD 83 UTM Zone 11. The assaying results of the six rock samples have been included in appendix 1.

Conclusion

Due to the weather conditions, the 2021 geochemistry sampling program was limited in scale. Although there are no anomalous values returned from the assay lab, this property remains an attractive exploration target and further work is recommended.

Recommendation

Two phases of mineral exploration activities are recommended.

Phase One:

- Review all the previous ARIS reports and minfile and use GIS mapping software to mark all the old adit and shaft locations.
- Large-scale UAV-Magnetic drone surveying is highly recommended to lock down the high magnetic anomaly targeting area.
- Large scale soil/rock sampling program is highly recommended.

Phase Two:

- Induced polarization geophysics surveying is recommended.
- The diamond drilling program consists of a 1000 m diamond-drilling program. The drilling should be directed toward evaluating the source of the largest geochemical anomalies and defining structural controls on mineralization.

Reference

Atkinson, S.J. (1975): Surface Geology of the Paradise Basin. in Geology in British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, pp. 7-12.

Downie, C. and Betker, M. (1996): Geological Report for the Hot Punch Property. BCEMPR Assessment Report

Fyles, J. T. (1967) Geology of the Windermere Supergroup in the Kaslo Area, Southeastern British Columbia, BCMMPR Bulletin #53.

Fyles, J.T. and Hewlett, C.G. (1959) Stratigraphy and Structure of the Salmo Lead-Zinc Area; British Columbia, Dept. of Mines, Bulletin # 41

Hoy, T. and Carter, G. (1988): Geology of the Fernie W1/2 Map Sheet (and Part of Nelson E1/2), Open File Map No. 1988-14

Monger Jim, Price Ray (2002) The Canadian Cordillera: Geology and Technic Evolution, CSEG Record, February 2002, Page 17

Panteleyev, A., Bailey, D.G., Bloodgood, M.A. and Hancock, K.D.(1996): Geology and mineral deposits of the Quesnel River -Horsefly map area, central Quesnel Trough, British Columbia; British Columbia Ministry of Employment and Investment, Bulletin 97

Pope, A.J. 1990. The geology and mineral deposits of the Toby-Horsethief Creek map area, northern Purcell Mountains, southeastern British Columbia (82K). British Columbia Ministry of Energy, Mines and Petroleum Resources, Open File 1990-26, 54p.

Pope, A.J. and Thirlwall, M.F. 1992. Tectonic setting, age, and regional correlation of ultrabasic ultra potassic dykes in the northern Purcell Mountains, southeast British Columbia. Canadian Journal of Earth Sciences, Vol. 29, pp. 523-530.

Reesor, J.E. 1973. Geology of the Lardeau Map-Area, East-Half, British Columbia, Geological Survey of Canada, Memoir 369.

Root, K.G. 1985. Reinterpretation of the age of a succession of Paleozoic strata, Delphine Creek, southeastern British Columbia, in Geological Survey of Canada, Current Research, Part A, Paper 85-1A, pp. 727-730.

Root, K.G. 1983. Upper Proterozoic and Paleozoic stratigraphy, Delphine Creek area, southeastern British Columbia; Implications for the Purcell Arch, in Geological Survey of Canada, Current Research, Part B, Paper 83-1B, pp. 377-380.

Statement of Qualifications

Tyler Ye Tian, Mining Engineer, Director for Fargo Exploration Ltd, registered in EGCB as Engineer in Training.

Address: 50-10489 Delsom Cres, Delta, BC, Canada, V4C 0B9

Tel: 778-319-9997 Email: tyler@fargoexploration.com

Work Experience

Worked as a mining engineer in Zenith Mineral Resource Ltd since 2014;

Pit Testing and Sampling in Little Swift River NI43-101 Report exploration Project in 2015 and 2016;

Pit Testing and Sampling in Downey Pass NI43-101 Report exploration Project in 2016 and 2017;

Worked as a contracted mining engineer for Green River Gold Corp. and Jaxon Mining Inc. in 2021.

Education

Bachelor Degree of Engineering, Hubei Polytechnic University, China;

Mineral Resources and Mining Engineering Degree in British Columbia Institute of Technology, Canada.

I have interpreted the data and prepared this report entitled "Geochemical Assessment Report on Kymar Silver Project, Golden Mining Division, Southeastern, BC" for assessment credit.

Tyler Ye Tian

Statement of Costs

	_	_			
xploration Work type: Geochemical	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Andrew Ramcharan - Geologist	Oct 11 to 14	4	\$600.00	\$2,400.00	
Darcy Skow - Field Assistant	Oct 11 to 15	4	\$300.00	\$1,200.00	
Perry Little - Coordinator	Oct 11 to 16	4	\$400.00	\$1,600.00	
Devon Zanussi - Helicopter Pilot	Oct 11 and 14	2	\$0.00	\$0.00	
·			\$0.00	\$0.00	
			\$0.00	\$0.00	
				\$5,200.00	\$5,200.00
Office Studies	List Personnel (note - Office of	nly, do no	t include fie	eld days	
Literature search	Tyler Y. Tian (\$84 per hour)	0.1	\$672.00	\$67.20	
Database compilation			\$0.00	\$0.00	
Computer modelling			\$0.00	\$0.00	
Reprocessing of data	Tyler Y. Tian	0.1	\$672.00	\$67.20	
General research	Tyler Y. Tian	0.1	\$672.00	\$67.20	
Report preparation	Tyler Y. Tian	2.0	\$672.00	\$1,344.00	
Other (specify)			\$0.00	\$0.00	
				\$1,545.60	\$1,545.60
Airborne Exploration Surveys	Line Kilometres / Enter total inv amount	voiced			
Aeromagnetics			\$0.00	\$0.00	
Radiometrics			\$0.00	\$0.00	
Electromagnetics			\$0.00	\$0.00	
Gravity			\$0.00	\$0.00	
Digital terrain modelling			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Remote Sensing	Area in Hectares / Enter total inv	voiced am	ount or list	personnel	
Aerial photography			\$0.00	\$0.00	
LANDSAT			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Ground Exploration Surveys	Area in Hectares/List Personnel				
Geological mapping					
Regional			e: expenditui		
Reconnaissance			be captured i		
Prospect		field	d expenditure	s above	
Underground	Define by length and width				
Trenches	Define by length and width			\$0.00	\$0.00
Ground geophysics	Line Kilometres / Enter total am	ount invo	iced list		
Radiometrics					
Magnetics					
Gravity					
Digital terrain modelling					
Electromagnetics	note: expenditures for your crew in t	the field			
SP/AP/EP	should be captured above in Perso				
IP	field expenditures above				
AMT/CSAMT					
Resistivity					

Well logging Geophysical interpretation	Define by total length				
Petrophysics					
Other (specify)					
отист (эреспу)				\$0.00	\$0.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	Ψ σ.σσ
Drill (cuttings, core, etc.)			\$0.00	\$0.00	
Stream sediment			\$0.00	\$0.00	
Soil			\$0.00	\$0.00	
Rock	8 rock samples	8.0	\$51.06	\$408.48	
Water			\$0.00	\$0.00	
Biogeochemistry			\$0.00	\$0.00	
Whole rock			\$0.00	\$0.00	
Petrology			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$408.48	\$408.4
Drilling	No. of Holes, Size of Core and Metres	No.	Rate	Subtotal	
Diamond			\$0.00	\$0.00	
Reverse circulation (RC)			\$0.00	\$0.00	
Rotary air blast (RAB)			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Other Operations	Clarify	No.	Rate	Subtotal	
Trenching			\$0.00	\$0.00	
Bulk sampling			\$0.00	\$0.00	
Underground development			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	+0.00
Dodowskien	Clavit	N.	Data	\$0.00	\$0.00
Reclamation	Clarify	No.	Rate	Subtotal	
After drilling Monitoring			\$0.00 \$0.00	\$0.00 \$0.00	
Other (specify)			\$0.00	\$0.00	
Other (specify)			\$0.00	φυ.υυ	
Transportation		No.	Rate	Subtotal	
Airfare			\$0.00	\$0.00	
Taxi			\$0.00	\$0.00	
truck rental	Truck Rental	4.00	\$175.00	\$700.00	
kilometers			\$0.00	\$0.00	
ATV			\$0.00	\$0.00	
fuel	1362 kilometers driving	1362.00	\$0.65	\$885.30	
Helicopter (hours)	6.6 hour flight	6.6	\$1,443.75	\$9,528.75	
Fuel (litres/hour)	379.5 per day for 2 days	759.00	\$1.55	\$1,179.49	
Other	Landing Fee	2.00	\$21.00	\$42.00	412.22=
				\$12,335.54	\$12,335
	Rates per dav		1		
Accommodation & Food Hotel	Rates per day Four workers for four nights	16.00	\$137.58	\$2,201.28	
Accommodation & Food	Rates per day Four workers for four nights	16.00	\$137.58 \$0.00	\$2,201.28 \$0.00	
Accommodation & Food Hotel	Four workers for four nights	16.00	\$0.00	\$0.00	
Accommodation & Food Hotel Camp					\$2,755
Accommodation & Food Hotel Camp	Four workers for four nights		\$0.00	\$0.00 \$554.28	\$2,755.!

Equipment Rentals			
Field Gear (Specify)	\$0.00	\$0.00	
Other (Specify)			
		\$0.00	\$0.00
Freight, rock samples			
	\$0.00	\$0.00	
	\$0.00	\$0.00	
		\$0.00	\$0.00
TOTAL Expenditures			\$22,245.18

Appendix 1. Assaying Result

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

CERTIFICATE KL21286662

Project: Kymar Silver Project

This report is for 6 samples of Rock submitted to our lab in Kamloops, BC, Canada on 22-OCT-2021.

The following have access to data associated with this certificate:

KYLE TOWNSEND

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-22	Sample login - Rcd w/o BarCode						
CRU-QC	Crushing QC Test						
PUL-QC	Pulverizing QC Test						
CRU-31	Fine crushing - 70% < 2mm						
SPL-21	Split sample – riffle splitter						
PUL-31	Pulverize up to 250g 85% <75 um						

ANALYTICAL PROCEDURES							
ALS CODE	DESCRIPTION	INSTRUMENT					
ME-ICP61	33 element four acid ICP-AES	ICP-AES					
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES					

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

(, , , , , , , , , , , , , , , , , , ,									(ERTIF	CATE O	F ANAL	YSIS	KL212	36662	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
Sample 1 Sample 2 Sample 3 Sample 4 Sample 7		17.61 6.24 12.74 11.54 5.94	<0.001 <0.001 <0.001 <0.001 <0.001	<0.5 <0.5 <0.5 <0.5 <0.5	1.25 2.74 2.86 1.31 7.61	<5 5 <5 6 13	70 170 4810 1350 420	0.5 <0.5 <0.5 <0.5 2.6	<2 <2 <2 <2 <2 <2	16.95 8.42 9.71 12.80 0.18	<0.5 <0.5 <0.5 <0.5 <0.5	3 6 5 3 9	24 21 16 15 48	15 10 6 13 15	1.06 1.20 1.26 1.31 3.18	<10 10 10 <10 20
Sample 8		9.29	<0.001	<0.5	3.94	10	220	0.9	<2	7.82	<0.5	5	37	6	2.16	10

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

(703)									(ERTIFI	CATE O	F ANAL	YSIS	KL2128	86662	
Sample Description	Method Analyte Units LOD	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01
Sample 1 Sample 2 Sample 3 Sample 4 Sample 7		1.51 3.03 2.96 1.32 3.84	10 20 10 10 40	10.55 5.11 6.18 7.62 0.45	502 205 280 341 268	1 1 1 1 2	0.03 0.04 0.06 0.04 0.49	3 9 8 4 16	50 140 130 180 310	11 12 7 19 19	0.02 0.16 0.20 0.11 0.02	8 <5 <5 <5 <5	4 4 4 2 12	648 100 120 158 38	<20 <20 <20 <20 20	0.08 0.11 0.11 0.04 0.23
Sample 7 Sample 8		3.94	10	4.66	453	<1	0.49	11	240	41	0.02	<5 <5	8	223	<20	0.23

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

	,						· · · · · · · · · · · · · · · · · · ·
(ALS							CERTIFICATE OF ANALYSIS KL21286662
Sample Description	Method Analyte Units LOD	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
Sample 1 Sample 2 Sample 3 Sample 4 Sample 7		<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	23 24 17 10 72	<10 <10 <10 <10 <10	26 12 18 17 52	
Sample 8		<10	<10	73	<10	100	

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 29-NOV-2021 Account: GRGCANED

CERTIFICATE OF ANALYSIS	KL21286662
-------------------------	------------

		CERTIFICATE COMMENTS		
Applies to Method:	Processed at ALS Kamloops located at CRU-31 PUL-QC	LABORATORY AD 2953 Shuswap Drive, Kamloops, BC, CRU-QC SPL-21		PUL-31
Applies to Method:	Processed at ALS Vancouver located at Au–ICP21	2103 Dollarton Hwy, North Vancouv ME-ICP61	er, BC, Canada.	

Appendix 2. QC Assaying Result

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsqlobal.com/qeochemistry

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

OC CERTIFICATE KL21286662

Project: Kymar Silver Project

This report is for 6 samples of Rock submitted to our lab in Kamloops, BC, Canada on 22-OCT-2021.

The following have access to data associated with this certificate:

KYLE TOWNSEND

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% < 2mm	
SPL-21	Split sample – riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	

	ANALYTICAL PROCEDURE	:S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP-AES	ICP-AES
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 2 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

)							1.05		Silver Fi						
								QC	CERTI	FICATE	OF AN	ALYSIS	KL21	286662	2
Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	ME-ICP61 K % 0.01
						STAN	DARDS								
Bound Round	0.687 0.638 0.722														
Bound Bound		68.9 60.4 75.0	4.79 4.18 5.13	614 517 643	500 310 440	1.8 0.7 2.9	6 <2 10	1.96 1.72 2.12	20.2 17.7 22.7	772 685 839	58 49 62	8460 7740 8910	4.95 4.42 5.42	10 <10 30	1.69 1.49 1.85
Bound Bound	2.49 2.28 2.58														
Bound Bound		4.2 3.2 5.6	7.24 6.64 8.14	34 21 45	1060 930 1280	3.2 2.2 4.6	<2 <2 5	2.64 2.36 2.90	2.3 1.1 3.3	20 17 23	95 82 102	612 586 676	3.82 3.55 4.37	20 <10 40	3.12 2.79 3.43
Bound Bound	0.247 0.232 0.264	0.5	7.40	00	0700		-	0.04	0.5	45		4555		-00	0.07
Bound Bound	0.000	<0.5 <0.5 1.5	6.67 8.17	23 46	2280 3110	1.9 4.2	<2 10	0.51 0.52 0.66	<0.5 <0.5 1.4	12 18	16 22	1425 1640	3.66 4.50	<10 50	2.97 2.58 3.18
Bound Bound	0.038 0.044	-0.5	7 02	10	340	10	-2	0.14	-0.5	00	626	764	10.10	20	0.20
Bound Bound		<0.5 1.2	7.18 8.80	6 28	270 390	<0.5 2.1	<2 4	0.14 0.11 0.16	<0.5 1.0	78 98	541 663	712 822	17.55 21.5	<10 40	0.17 0.24
						BLA	ANKS								
Bound Bound	0.001 <0.001 0.002														
Bound Bound		<0.5 <0.5 <0.5 1.0	<0.01 <0.01 <0.01 0.02	<5 <5 <5 10	<10 <10 <10 20	<0.5 <0.5 <0.5 1.0	<2 2 <2 4	<0.01 <0.01 <0.01 0.02	<0.5 <0.5 <0.5 1.0	<1 <1 <1 2	<1 <1 <1 2	<1 <1 <1 2	<0.01 <0.01 <0.01 0.02	<10 <10 <10 20	<0.01 <0.01 <0.01 0.02
	Method Analyte Units LOD Bound	Method Analyte Units Au	Method Au-ICP21 Au Ag Ag ppm ppm 0.001 0.5 Bound 0.687 Bound 0.638 Bound 0.722 68.9 Bound 0.697 Bound 0.638 Bound 0.722 88 Bound 0.722 88 Bound 0.728 Bound 0.729	Method Analyte Units Au ppm ppm ppm % NE-ICP61 ME-ICP61 Ag ppm % NE-ICP61 NE-ICP61 Ag ppm % NE-ICP61 NE-ICP61 NE-ICP61 Ag ppm % NE-ICP61 NE-ICP61	Method Analyte Units Units LOD Au - ICP21 Au ppm ppm ppm ymppm	Method Analyte Units Units LOD Au ICP21 Au Ag ppm ppm ympm ympm ympm ympm ympm ympm	Method Analyte Units Au Ag Al As Ba Be Be Ppm Ppm	Method Analyte Units LOD	Method Au	Method Analyte Units December Method Analyte Units December Method Analyte Units December Decemb	Method Analyte Units LOD	Method Analyte Me-ICPS1	Method Analyte Au	Method Au-ICP2 ME-ICP6 ME-ICP6	Method Au-ICP21 ME-ICP61 ME-ICP61

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

Project: Kymar Silver Project

QC CERTIFICATE OF ANALYSIS KL21286662

									4.	CLICIT	ICAIL	01 / 111/	(21313	1112	200002	
Sample Description	Method Analyte Units LOD	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10
							STAN	DARDS								
AMIS0231																
Target Range - Lower	Bound Bound															
EMOG-17	bound	20	0.97	746	1070	1.12	7740	820	7250	3.27	798	8	209	<20	0.33	<10
Target Range - Lower	Bound Bound	<10 40	0.86 1.08	670 830	996 1220	0.99 1.23	6820 8330	700 880	6570 8030	2.91 3.57	638 874	6 10	184 227	<20 50	0.28 0.36	<10 20
KIP-19																
Target Range - Lower Upper	Bound Bound															
MRGeo08		30	1.29	550	13	1.94	691	1050	1045	0.29	5	11	301	20	0.48	<10
	Bound Bound	20 60	1.17 1.45	497 619	12 18	1.76 2.18	621 761	930 1150	970 1190	0.27 0.35	<5 16	9 15	276 340	<20 60	0.44 0.56	<10 20
OREAS 684 Target Range – Lower	Bound Bound															
OREAS 905	Dound	40	0.27	377	3	2.44	10	280	31	0.07	5	5	156	20	0.12	<10
Target Range - Lower Upper	Bound Bound	20 70	0.24 0.31	333 418	<1 5	2.15 2.65	7 12	240 320	25 36	0.04 0.09	<5 12	3 7	140 174	<20 60	0.10 0.15	<10 20
OREAS-45h																
	Bound Bound				_						_					
OREAS-45h		10	0.23	376	2	0.09	427	220 200	13	0.04	<5	53	27	<20	0.85	<10
Target Range – Lower Upper	Bound Bound	<10 30	0.20 0.27	337 423	<1 4	0.07 0.11	380 466	260	7 16	<0.01 0.06	<5 11	50 64	23 31	<20 50	0.78 0.98	<10 20
							BLA	ANKS								
	Bound Bound			_							_					
BLANK BLANK		<10 <10	<0.01 <0.01	<5 <5	<1 <1	<0.01 <0.01	<1 1	<10 <10	<2 <2	<0.01 <0.01	<5 <5	<1 <1	<1 <1	<20 <20	<0.01 <0.01	<10 <10
Target Range - Lower	Bound Bound	<10 <10 20	<0.01 <0.01 0.02	<5 10	<1 2	<0.01 <0.01 0.02	<1 2	<10 <10 20	<2 4	<0.01 <0.01 0.02	<5 10	<1 2	<1 2	<20 <20 40	<0.01 <0.01 0.02	<10 <10 20
Эррег	evilla.															

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

Method Analysis Method Ana									-	
Sample Description	(, ()								QC CERTIFICATE OF ANALYSI	S KL21286662
AMISO231 Target Range - Lower Bound Upper Bound Upper Bound Vpper Bound Wiper	1	Analyte Units	U ppm	V ppm	W ppm	Zn ppm				
Target Range - Lower Bound Upper Bound Cl0							STANDAR	DS		
Target Range - Lower Bound Upper Bound	AMIS0231									
According to the property of	Target Range – Lower Bo									
Upper Bound 20 84 20 8320										
Target Range - Lower Bound Upper Bound U				67 84	<10 20					
MRGe08 Care										
Target Range - Lower Bound Upper Bound 30 121 30 886	Upper Bo	ound ound								
Upper Bound 30 121 30 886										
Target Range - Lower Bound Upper Bound OREAS 905	Upper Bo		30	121		886				
Upper Bound CREAS 905										
Target Range - Lower Bound Upper Bound U	Upper Bo		40	40	10	440				
Upper Bound 30 13 20 154		d								
Target Range - Lower Bound Upper Bound OREAS-45h Target Range - Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound BLANK Target Range - Lower Bound Upper Bound BLANK ELANK Target Range - Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound SELANK Target Range - Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound SELANK Target Range - Lower Bound Upper Bound Upp	Upper Bo		30	13						
Upper Bound CREAS-45h C10 255 C10 39 Career Bound										
CREAS-45h										
Upper Bound 20 290 20 46										
BLANK Target Range - Lower Bound										
Target Range - Lower Bound Upper Bound BLANK <10 <1 <10 <2 BLANK <10 <1 <10 <2 Target Range - Lower Bound <10 <1 <10 <2 Target Range - Lower Bound <10 <1 <10 <2							BLANK	5		
Target Range - Lower Bound Upper Bound BLANK <10	BLANK									
BLANK	Target Range - Lower Bo									
Target Range – Lower Bound <10 <1 <10 <2										
Upper sound										
	оррег во	, dilic								

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 3 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

(/									QC	CERTI	FICATE	OF AN	ALYSIS	KL21	286662	2
Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	ME-ICP61 K % 0.01
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Upper			7.2 6.9 6.2 7.9	5.96 5.87 5.61 6.22	280 275 259 296	650 660 600 710	1.1 1.1 <0.5 1.7	<2 <2 <2 4	2.69 2.64 2.52 2.81	0.6 0.6 <0.5 1.0	11 10 9 12	32 31 29 34	40 38 37 41	3.26 3.19 3.05 3.40	10 10 <10 20	2.95 2.87 2.75 3.07
ORIGINAL DUP Target Range – Lower Upper		0.112 0.093 0.096 0.109														
ORIGINAL DUP Target Range - Lower Upper		<0.001 <0.001 <0.001 0.002														
Sample 8 DUP Target Range – Lower Upper		<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range – Lower Upper			<0.5 <0.5 <0.5 1.0	7.31 7.33 6.94 7.70	<5 <5 <5 10	1060 1070 980 1150	1.2 1.2 0.6 1.8	<2 <2 <2 4	4.53 4.56 4.31 4.78	<0.5 <0.5 <0.5 1.0	23 23 21 25	85 84 79 90	1 1 <1 2	4.44 4.49 4.23 4.70	20 20 <10 30	1.64 1.66 1.56 1.74

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 3 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

									QC	CERTI	FICATE	OF AN	ALYSIS	KL21	286662	2
A Sample Description	fethod inalyte Units LOD	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10
							DUPL	ICATES								
ORIGINAL DUP Target Range – Lower Bou Upper Bou		10 10 <10 20	0.41 0.41 0.38 0.44	656 640 611 685	5 4 3 6	0.05 0.05 0.04 0.06	26 24 23 27	820 810 760 870	61 57 54 64	3.22 3.18 3.03 3.37	22 20 14 28	10 10 9 12	88 87 82 93	<20 <20 <20 40	0.22 0.21 0.19 0.24	10 <10 <10 20
ORIGINAL DUP Target Range – Lower Bou Upper Bou																
ORIGINAL DUP Target Range – Lower Bou Upper Bou	und ind															
Sample 8 DUP Target Range – Lower Bou Upper Bou																
ORIGINAL DUP Target Range - Lower Bou Upper Bou		20 20 <10 30	3.02 3.04 2.87 3.19	634 638 599 673	<1 <1 <1 2	3.30 3.37 3.16 3.51	40 39 37 42	1930 1940 1830 2040	13 13 10 16	0.07 0.07 0.06 0.08	<5 8 <5 10	21 21 19 23	1305 1320 1245 1380	<20 <20 <20 40	0.29 0.29 0.27 0.31	<10 <10 <10 20

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: 3 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-NOV-2021 Account: GRGCANED

								,		
(ALS)								QC CERTIFICA	TE OF ANALYSIS	KL21286662
Ana Sample Description Ur	llyte nits P	ICP61 M U Ippm 10	IE-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2					
						DUPLICA	TES			
ORIGINAL DUP Target Range – Lower Bound Upper Bound	d <	<10 <10 <10 20	90 88 84 94	<10 <10 <10 20	70 69 64 75					
ORIGINAL DUP Target Range – Lower Bound Upper Bound	d i									
ORIGINAL DUP Target Range – Lower Bound Upper Bound	d i									
Sample 8 DUP Target Range – Lower Bound Upper Bound										
ORIGINAL DUP Target Range – Lower Bound Upper Bound	d <	<10 <10 <10 20	196 196 185 207	<10 <10 <10 20	53 53 48 58					

To: GREEN RIVER GOLD CORP 3650 HWY 97 N QUESNEL BC V2J 5Z1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 29-NOV-2021 Account: GRGCANED

OC	CERTIFICAT	E OF ANALYSIS	KL21286662

		CERTIFICATE COM	MENTS	
			ATORY ADDRESSES	
Applies to Method:	Processed at ALS Kamloops CRU-31 PUL-QC	located at 2953 Shuswap Drive, Kai CRU-QC SPL-21	nloops, BC, Canada. LOG-22 WEI-21	PUL-31
Applies to Method:	Processed at ALS Vancouver Au–ICP21	located at 2103 Dollarton Hwy, No ME-ICP61	rth Vancouver, BC, Canada.	

Appendix 3. Rock Sample Photos

