

SOLID WASTE MANAGEMENT Annual Operations and Monitoring Report Golden Refuse Disposal Site MR-17006 2020

Prepared by: Ben Van Nostrand, B.Sc., P.Ag. Team Leader, Environmental Health Services

Columbia Shuswap Regional District Operations Management

Columbia Shuswap Regional District
555 Harbourfront Drive NE, PO Box 978
SALMON ARM BC V1E 4P1
T: 250.832.8194 | TF: 1.888.248.2771 | F: 250.832.1083
www.csrd.bc.ca

Executive Summary

The Golden Refuse Disposal Site (Site) is located at 350 Golden-Donald Upper Road, Golden, BC approximately 2 km northeast from the core of Golden. The legal description of the property is Subdivision 12 of Section 18, Township 27, Range 21, West of the 5th Meridian, Kootenay District. The Site is approximately 1.2 km north of the Kicking Horse River, the nearest major surface water body.

The Site has been in operation since the early 1970's as a natural attenuation landfill. In the late 1970's the permit was transferred from the Town of Golden to the Columbia Shuswap Regional District (CSRD). The property is leased to the CSRD by the Crown and covers an area of approximately 17 ha. The waste footprint currently covers an area approximately 4.4 ha. The Site was operated by Pet Eagle Holdings Ltd. under contract with the CSRD.

The Site provides solid waste disposal and residual processing services to residents, businesses, and institutions located within the municipality of Golden and the CSRD's Electoral Area A. A CSRD transfer station in Parson and a transfer station located in Field (owned and operated by Parks Canada) deliver solid wastes to the site in 50 yd containers on a regular frequency. The site is operated under an approved Design and Operations Plan (D&O Plan), in accordance with Operational Certificate 17006, issued by the Ministry of Environment on May 5, 2003 and amended on August 29, 2012.

Environmental Monitoring at the site includes groundwater sampling, analysis and reporting. All environmental monitoring and reporting is performed by contracted professionals. Data collected from the groundwater monitoring program is compared to the historical records to determine whether the site has adversely affected groundwater quality and, if so, to what extent. The qualified professional's report is included as an appendix in this report.

In 2020, the CSRD's 2019 Design, Operating, and Closure Plan (DOCP) update was approved, with conditions, by the Ministry of Environment on May 4, 2020. In 2020 the CSRD continued to implement the updated DOCP and address the conditions of approval.

This annual report includes airspace mapping, financial reporting, capacity tables and detailed diversion quantities and has been prepared to comply with Section 5.1 Annual Report of Operation Certificate No. 17006. This report will be made available to the public via the CSRD's webpage upon submission to the Ministry of Environment.

Wastes Received, Recycled and Landfilled

In 2020, approximately 6,933 tonnes of refuse and recoverable wastes were managed at the Site, representing a 206% decrease over 2019. The quantity of municipal solid waste landfilled at the Site in 2020 was 5,462 tonnes, which represents a 147% decrease over 2019. Using the most recent census date (2016) the per capita disposal rate for 2020 was .51 tonnes/person/year, based on a population of 6,856 for the service area. In 2018 and 2019, large scale clean-up projects associated with rail derailments resulted in a significant increase in materials needed to be managed and landfilled compared to previous years, however in 2020 no such projects were carried out in the Golden/Area A region. It appears from the tonnage reports for 2020 that waste landfilled at the site was more inline with historical averages of approximately 5,500 tonnes per year.

In terms of tonnes diverted from landfilling there were 1,531 tonnes of wastes were diverted to marshaling areas for recovery. This represents a significant reduction from 2018 and 2019 due in large part to the lack of clean soil being managed and diverted from the landfill.

Existing diversion programs include; hazardous waste, mattresses, asphalt shingles, concrete, propane cylinders, clean soil, wood waste, yard and garden waste, metal and reusable items. The following graph below identifies tonnes of waste managed (red) and tonnes of waste landfilled (green) between 2015 and 2020:

<u>Proposed Changes and Updates to the Design and Operation Plan (DCOP) and the Environmental Monitoring Program (EMP)</u>

In 2020 the Golden landfill's Design and Operation Plan and the Environmental Monitoring Program updates were approved by the Ministry of Environment (MoE) on May 4, 2020 with conditions. Conditions from the MoE and actions taken to address are as follows:

- 1) The Columbia Shuswap Regional District (CSRD) must provide an Implementation Schedule prepared by a Qualified Professional (QP) to the director for the design and implementation of the surface water management works identified in the Plan, Section 5.2 Surface Water Management. The Implementation Schedule must be provided to the director at or before 90 days of the commencement of the works or at the latest on December 31, 2020, whichever comes first. The CSRD must then carry out the Implementation Schedule for the surface water management works and report on implementation progress in the Annual Report required under Section 5.1 of the OC. Surface water diversion works along the south boundary of the landfill, including areas where historic landfilled waste is located, must be designed by a QP. Design of final cover must meet all final cover design objectives defined in Section 5.8 of the Landfill Criteria.
 - CSRD Actions to address:

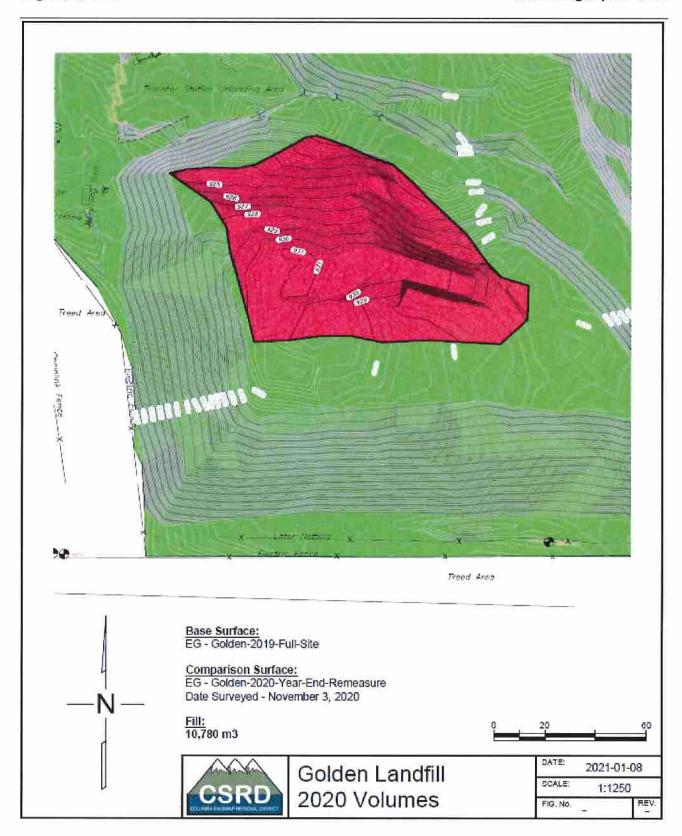
- The CSRD submitted the action plan to the MoE and has budgeted funds to implement a Surface Water Management works in 2021.
- 2) Litter fencing must be set up around the active face when waste is being deposited such that the spread of litter is minimized. Daily cover must be adequate to prevent wildlife from accessing waste near the active face, after the landfill operating hours. Intermediate cover, of at least 300 mm thickness, which may include the 150 mm required daily cover thickness, should be installed in areas not actively being filled to discourage wildlife from accessing the waste.

Should litter be spread beyond the active face, litter collection must be conducted within the landfill site boundary at least quarterly. Should litter spread beyond the landfill site boundary, litter collection must be conducted in manner and at a frequency acceptable to neighbouring property owner(s), as required under Section 3.8 of the OC. Records of litter collection efforts including photographs, must be kept on site for the past 2 years of operation. A summary of the collection efforts must also be included every year in the Annual Report required in Section 5.1 of the OC.

In addition to the above, the CSRD must immediately notify the director or designate by email at EnvironmentalCompliance@gov.bc.ca and within 30 days of such non-compliance, submit to the director a written report that is satisfactory to the director and includes, but is not necessarily limited to, the following:

- (i) all relevant observations, complaints, test results (when and if applicable) obtained by the OC holder related to the non-compliance,
- (ii) an explanation of the most probable cause(s) of the non-compliance, and
- (iii) a description of remedial action planned and/or taken by the OC holder to prevent similar non-compliance(s) in the future.
- CSRD Actions to address:
 - The CSRD continues to implement best management practices for litter control including; expanding litter fencing, increasing litter picking within the site and increased daily cover activities. Plans for 2021 include hiring extra staffing at the site to address site management issues including litter pick up, wildlife management and assessing mixed load tipping fees.
- 3) The OC holder must cause a QP to conduct and certify an assessment of the issue of wildlife habituation within the landfill site boundary and litter dispersion at this landfill by March 31, 2021. The OC holder must carry out mitigating measures to address wildlife habituation and litter dispersion, assess their effectiveness and report on findings and ongoing recommendations, as applicable, every year in the Annual Report required in Section 5.1 of the OC.
 - CSRD Actions to address:
 - The CSRD commissioned a QP to develop the "Golden Landfill Managing Wildlife Access and Litter Dispersion" plan for the facility and has budgeted funds to implement the plan in 2021.

All reports, plan updates and reviews have been submitted to the Ministry of Environment for approval and have been posted separately on the CSRD's website (www.csrd.bc.ca).


Current Topographic Map

Golden Refuse Disposal Site Annual Operations and Monitoring Report - 2020

Columbia Shuswap Regional District

The CSRD conducts a survey of the airspace consumed on an annual basis. The survey information is used to determine the amount of airspace consumed over a given year, project the amount of airspace available for future landfilling and estimate timelines for preparing closure plans. According to the results of the 2020 survey, the Site consumed 10,780 m³ of airspace, which represents an 38% decrease over 2019. This significant decrease is associated with the lack of large-scale clean-up projects in 2020.

The following details the 2020 filling of the Site:

Updated Capacity and Phase Estimates

The following table was provided by Golder Associates, through their 2019 DOCP review work, to estimate landfill capacity:

Table 2: Projected Filling Sequence from 2019 to Closure

Phase	Projected Completion Year	Approximate Available Airspace (m³)	Approximate Available Capacity (tonnes)	Progressive Closure Area (m²)	Closure Cost (2019\$)
1	2027	103,000	52,900	17,600	\$1,280,800
2	2039	147,000	75,700	8,000	\$582,200
3	2045	85,000	43,600	4,500	\$327,500
4	2067	300,000	154,000	6,300	\$458,500
5	2080	200,000	102,000	36,600	\$2,663,500

The CSRD continues to operate the landfill in accordance with the 2019 DOCP, approved by the Ministry on May 19, 2020.

Financial Statement Closure Fund Value

The CSRD manages municipal landfills in each of its four-member municipalities of the CSRD. Landfill DOCP's are developed with recommendations to develop and close/cap landfills in a phased approach and to fund closure for each of those phases. As such the CSRD does not budget for the complete closure of all landfill phases, rather, reserves are funded to ensure money is available to close phases of the landfills as they are completed.

The CSRD's 2020 Financial Statement includes the information related to the closure and post closure liability of the Site:

COLUMBIA SHUSWAP REGIONAL DISTRICT

Notes to Consolidated Financial Statements

December 31, 2020

5. Solid Waste Landfill Closure and Post-Closure Liability

The Environmental Management Act of B.C. and the Ministry of Environment of B.C. set out the landfill criteria to properly close and maintain all active and inactive landfill sites. Under the guidelines, there is a requirement for closure and post-closure care of solid waste landfill sites. Provisions are therefore made over the estimated remaining life of the Regional District landfill sites based on scalehouse records and through tipping fees.

The main components of the landfill closure plans are: final capping using an engineered cap design and the implementation of a drainage and gas management plan. The post-closure care requirements may involve: cap maintenance; groundwater monitoring; gas management system operation and maintenance; inspections; leachate treatment and monitoring; and annual reports. Post-closure care activities begin once the entire landfill site no longer accepts waste and continues on for a period of one hundred years. As the date of the site closure is unknown, management estimates the liability to begin after the closure of the current active phase, assuming another phase will not be opened. In the event another phase is opened, the start date for the liability will be adjusted to begin upon closure of the newly opened phase.

The total liability recorded for the estimated landfill closure and post-closure costs of \$34,000,000 (2019 - \$33,000,000) is \$9,411,300 (2019 - \$8,281,000). The estimated liability for the costs is based on the cumulative capacity used to date multiplied by the estimated total expenditures, expressed as discounted present values, assuming 1.57% (2019 - 1.57%) inflation and 3.57% (2019 - 3.64%) weighted-average cost of capital discount rate. The amount remaining to be recognized in future years is \$25,000,000 (2019 - \$25,000,000). The annual provision is reported as an Operating Fund expense and the accumulated provision is reported as a liability on the Consolidated Statement of Financial Position. Reserve funds totalling \$1,109,659 (2019 - \$1,766,196) have been established to provide for this liability in the Landfill Closure Special Reserve Fund.

Future events may result in significant changes to the estimated remaining useful life, estimated total expenses, total or used capacity and the estimated liability. These would be recognized prospectively as a change in estimate when applicable.

The table indicates the remaining landfill life in years and remaining capacity in cubic meters.

	Estimated Remaining Life (Years)	Total estimated Closure & ost-closure care	79	Cumulative Capacity Used (m³)	С	Total Estimated apacity (m³)	1	Used (%)	C	Remaining apacity on ecember 31, 2020
Salmon Arm	75	\$ 11,694,000		649,978		3,764,191		17.267	\$	3,114,213
Golden	61	11,202,000		639,096		1,448,416		44.124		809,320
Revelstoke	19	7,643,000		104,727		364,028		28.769		259,301
Sicamous	14	\$ 3,415,000	\$	35,752	\$	163,443	\$	21.874	\$	127,691

2020 Operational Review and 2021 Planning

The Site continues to be developed in phases, and landfilling is occurring in phase 1 as per the Design and Operation Plan (DOCP). In 2020, the CSRD received approval of the 2019 DOCP and advanced plans to comply with the approval conditions outlined by the MoE as noted in aforementioned sections. The CSRD continued to work towards reducing offsite litter issues by paying the contractor for additional staffing hours dedicated

to daily litter pick-ups. In addition, planning for wildlife management and surface water diversion works have been completed and budgets have been approved for implantation in 2021.

The Site was inspected four times in 2020 by CSRD staff and the Site contractor was directed to make a number of improvements to ensure the Site was being managed in accordance with the design and operation plan and the operational certificate. The contractor was instructed to apply more cover to waste cells as they progress to limit exposed refuse. The contractor was also instructed to ensure site perimeter litter picking was done on a regular basis and litter netting and fencing was in place and maintained. Sloping and drainage management and improvements are ongoing activities at the Site.

Plans for 2021

The CSRD intended to host an open house with MoE representatives in 2020 in order for residents of the Town of Golden to receive information regarding the updated Design, Operation and Closure Plan. The MoE indicated its willingness to participate in the open house to respond to questions regarding the approval process. Due to the Covid-19 global pandemic, this event has been postponed.

The CSRD expects in 2021 to receive from the MoE and updated Operational Certificate. The CSRD has been working with the MoE throughout 2020 to refine and finalize the updated Operational Certificate, and the Notice of Intent to issue was published in local newspapers in early 2021.

Based on the recommendations in the 2018 Western Water Ltd. Golden Landfill Hydrogeological Characterization Report, the CSRD has budgeted funds to review the data collected since the implementation of the recommendations outlined in the Report. It is expected that the results of this review will be submitted to the MoE for approval and agreed to direction for future monitoring of the Golden landfill.

Lastly, as detailed in the aforementioned DOCP/EMP update section, the CSRD has budgeted to implement the conditions of approval for the 2019 DOCP five-year update.

Wildlife

The Site continues to be an attractant to wildlife, given the nature of the material being managed at the site. The CSRD's contractor does attempt to prevent wildlife from accessing garbage at the site by using alternative daily cover (metal plates) and soil cover. The CSRD has installed thirty-foot-tall netting along the southern portion of the landfill to reduce offsite litter and to deter deer from entering the site. The CSRD continues to monitor and maintain electric fencing around the perimeter of the site in order to deter bears from accessing the site. In 2020 there were no recorded observations of medium or large carnivores at the site.

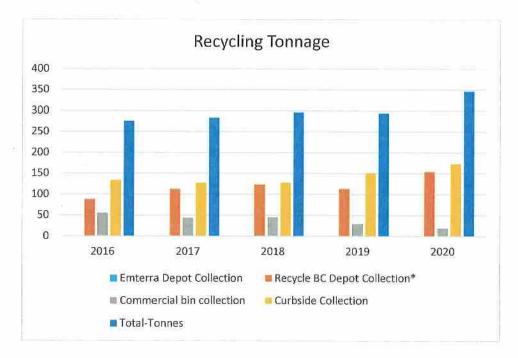
Solid Waste Stream Reduction

The CSRD has a number of programs which are aimed at reducing the regional solid waste stream being landfilled. The main objective of the Regional Solid Waste Management Plan is to work towards Zero Waste and to make efforts to turn waste into resources. The CSRD has introduced a number of programs to meet this objective over the years, including diverting materials from the landfill such as wood waste, yard and garden waste, metal, appliances, propane cylinders, concrete, mattresses, and asphalt shingles.

The CSRD supports provincial Extended Producer recycling programs at the site such as; printed paper and packaging, batteries, thermostats, refrigeration units, and appliances. In the fall of 2018, the CSRD constructed a hazardous waste storage facility to accept and store used oil, paints, and general household hazardous waste.

The following table provides an annual summary of materials received and separated for recycling or reused on the site for operational purposes:

Golden Landfill - Resource Recovery	2016	2017	2010	2010	2020
Recoverable Resource	2016	2017	2018	2019	2020
Wood Waste - Received (MT)	292	399	835	466	566
Wood Waste - Processed (m³)	2949	6262	8907	4710	6938
Yard & Garden Waste - Received (MT)	349	725	N/T	N/T	N/T
raid & Garden Waste - Neceived (IVIT)		incl.	incl.	incl.	incl.
Yard & Garden Waste <i>-</i> Processed (m³)	1155	ww	ww	WW	ww
Metal Waste - Received (MT)	127	187	N/T	N/T	N/T
Metal waste - Salvaged (MT)	171	126	385	252	389
Section 2 Control of C	99922				
Gypsum Drywall - Received (MT)	56	57	25	Refuse	Refuse
Gypsum Drywall - Salvaged (MT)	75	130	Refuse	Refuse	Refuse
Asphalt Shingles - Received (MT)	146	121	85	152	147
Asphalt Shingles - Salvaged (MT)	105	308	83	124	212
Concrete/Brick/Porcelain - Received (MT)	318	394	577	615	249
ODS Units - Received	172	181	300	195	279
ODS Units - Processed	165	216	271	398	447
Propane Tanks - Salvaged	281	202	2	1400 1400	= 3
1 lb	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1500	731
5-100lb				625	297
Auto Batteries - Salvaged	159	135	211	0	36
Mattresses - Received	501	585	654	794	776
Mattresses - Salvaged	524	371	124	1582	938
Contaminated Soil Received (MT)	1914	906	13126	1002	0
Clean Soil Received (MT)	1317	790	784	4231	474
Wood Waste Chipped Received (MT)	3	0	1	5	0
Land Clearing Waste (MT)	0	1	2	5	1
CECA** /NAT\				5 7	2.0
CESA** (MT)	-	(#)	=	2.4	3.8


MT - Metric Tonne
m³ - Cubic Metre
**CESA Canadian Electrical Stewardship
Association

Recycling - Commercial and Residential Programs

In January of 2015, the residential recycling collection changed to the MMBC (now Recycle BC) Packaging and Printed Paper collection Extended Producer Responsibility (EPR) program. Prior to the MMBC program the depot recycling program was not fully monitored which contributed to illegal dumping and inflated tonnage results.

The CSRD maintains a recycling program for commercial users, which is tracked separately. The CSRD collects fibre and containers as part of the commercial recycling program. In addition, the CSRD has been working with stewardship agencies to provide collection of used oil, antifreeze, paint, hazardous waste, smoke alarms, thermostats, cooling appliances, electronic appliances and household batteries.

The following table is an overview of tonnage collected in Golden since 2016:

Recycling - Household Hazardous Waste

The CSRD continues to operate a permanent used oil and hazardous waste drop off facility at the Golden landfill. The depot is open on Saturdays and accepts residential materials at no charge. The following table summarizes quantities collected in 2020:

HHW Depot Golden	2020		
Paint related material	180 litres		
Flammable liquids	0		
Toxic liquids	3 drums		

HHW Depot Golden	2020		
Flammable adhesives	0		
Non-regulated liquids	2 drums		
Non-regulated solids	1,000 kg		
Mercury debris	0		
Fire extinguishers	20		
Used Oil	1,935 litres		
Antifreeze	0		

^{*}Drum = 205L / Container = 20L

Environmental Monitoring Program

Environmental Monitoring in 2020 included groundwater sampling, analysis and reporting and data collected from the groundwater monitoring program has been compared to the historical record to determine whether the site has affected groundwater quality and, if so, to what extent. The 2020 Environmental Monitoring Report includes a summary of results collected from the newly installed monitoring wells at the Site. The qualified professional's report is included in this report as Appendix A.

The Site contains two soil gas monitoring probes situated around the landfill property. Gas probe 6 is located on the west side of the property and gas probe 7 is located in the south west corner of the property.

Each monitoring probe has two nested gas sampling probes for shallow and deep sampling indicated by an S or D in the tag. Each probe has three metres of screened pipe and nested probes are isolated by a one metre bentonite plug. Shallow probes are screened from approximately one to four metres depth and deep probes are screened approximately five to eight metres depth. The CSRD began monitoring these gas probes in 2013.

Sampling is done annually by CSRD staff using a Landtec GEM2000 portable gas analyzer. Each gas probe is purged for 10 minutes before the sample is taken. No evidence of landfill gas (methane and/or hydrogen sulphide gas) was present in either gas probe during 2020 sampling events. There are plans in 2020 to increase the gas monitoring network.

All structures on site are elevated on skids or are well vented to prevent the accumulation of migrating landfill gas. The scale house has a methane/carbon monoxide alarm. No landfill gas has been identified in any on-site buildings.

Operator Training

The current landfill contractor, who is responsible for the landfill operators and operations/maintenance of the Site, completed the Ministry of Environment's approved Landfill Operation Basics, facilitated by the Solid Waste Association of North America (SWANA). The SWANA course was delivered to landfill operators, inspectors, government staff and contractors in Kelowna and Williams Lake in the fall of 2019.

In addition, CSRD staff conducted a review of the CSRD's Operations and Maintenance Manual with the site contractor in 2020.

Qualified Professionals

This report was prepared by and is certified by a qualified professional.

Ben Van Nostrand, P.Ag

Team Leader, Environmental Health Services

Pan Von Restrand

Reviewed by:

Darcy Mooney, P.Ag

Manager of Operations, Operations Management

APPENDIX A

2020 Environmental Monitoring Report – Golden Refuse Disposal Facility (MR-17006)

2020 ENVIRONMENTAL MONITORING REPORT

GOLDEN REFUSE DISPOSAL FACILITY (OC -17006)

350 GOLDEN-DONALD UPPER ROAD, GOLDEN, BC

Prepared By: Ecoscape Environmental Consultants Ltd.

Prepared For: Columbia Shuswap Regional District April 15, 2021

2020 ENVIRONMENTAL MONITORING REPORT

GOLDEN REFUSE DISPOSAL FACILITY (OC -17006) 350 GOLDEN-DONALD UPPER ROAD, GOLDEN, BC

Prepared For:

Ben Van Nostrand, P.Ag., AScT.
Team Leader, Environmental Health Services
Columbia Shuswap Regional District
555 Harbourfront Drive NE
P.O. Box 978
Salmon Arm, BC
V1E 4P1

Prepared By:

Ecoscape Environmental Consultants Ltd. #102 – 450 Neave Court Kelowna, B.C. V1W 3A1

April 2021

Project No. 19-2850

TABLE OF CONTENTS

1.0	Ir	ntroduction	1
2.0 3.0		Background Dijective and Work Scope ite Description	1
3	.1	Climate and Biogeoclimatic Zones	3
3	.2	Topography, Drainage and Nearby Watercourses	3
	.3 E i	Regional and Local Geology and Hydrogeology	
4	.1	Historical Groundwater Monitoring and Sampling	5
4	.2	Changes to the 2020 Monitoring Program	€
4	.3	Field Observations	7
4	.4	Current Groundwater Monitoring Program	7
4	.5	Groundwater Sampling Methodology	10
4	.6	Current Landfill Gas Monitoring Program	10
	.7 R	Gas Monitoring Methodology	
5	.1	OC Requirements	12
6	.1	Site Observations	13
6	.2	Water Levels and Groundwater Flow Direction	14
6	.3	Single Well Response Tests	14
6	.4	2020 Analytical Results Relative to Applicable Standards and Guidelines	15
6	6	Water Quality Trend Analysis from 2002 to 2020	20 21
		.5.3 Electrical Conductance	
	6	.5.5 Nitrogen Compounds	23 24
	-	.5.7 Petroleum Hydrocarbons and Volatile Organic Compounds.5.8 Remaining Leachate Indicator Parameters	
6	.6	Landfill Gas Monitoring Results	
7.0	-	iper Diagram	
8.0		sotope Analyses	
9.0 10.0		Quality Assurance/Quality Control	
11.0	S	ummary and Conclusions	33
		decommendations	
		imitationslosure	
		nces	

TABLES

Table 1	Site Description
Table 2	Monitoring Wells
Table 3	Estimated K Values Based on Single Well Hydraulic Conductivity Testing
Table 4	Summary of 2020 Water Quality Exceedances
Table 5	2020 Gas Monitoring Results
Table 6	Isotope Analysis Results
Table 7	Field Duplicate Samples

FIGURES

Figure 1	Site Location
Figure 2	Site Plan and Sample Locations
Figure 3	Detailed Groundwater Flow Direction
Figure 4	Groundwater Elevation Time Series Plot
Figure 5	Chloride and Dissolved Sodium in Groundwater Time Series Plots
Figure 6	Sulfate and Electrical Conductivity in Groundwater Time Series Plots
Figure 7	Nitrate in Groundwater Time Series Plots
Figure 8	Dissolved Iron and Dissolved Manganese in Groundwater Time Series Plots
Figure 9	Piper Diagram

APPENDIX

Appendix A	Operational Certificate MR-17006
Appendix B	Well Logs
Appendix C	2020 Water Quality Data
Appendix D	Historical Water Quality Data
Appendix E	Historical Gas Monitoring Data
Appendix F	Laboratory Certificates of Analysis
Appendix G	Golder 2019 Environmental Monitoring Plan
Appendix H	Single Well Response Testing

Version Control and Revision History						
Version	Date	Prepared By	Reviewed By	Notes/Revisions		
Version A	March 19, 2021	LMM	MPS, LR	Draft for Internal Review		
Version 0	April 14, 2021	LMM, MPS, LR	BVN	Draft for Client Review		
Version 1	April 15, 2021	LMM, MPS	LR	Final Report		

ACRONYMS AND ABBREVIATIONS

BCAWQG BC Approved Water Quality Guidelines BC GWPR **BC Groundwater Protection Regulation BCWWQG BC Working Water Quality Guidelines**

CALA Canadian Association for Laboratory Accreditation

CARO Caro Analytical Services, Kelowna, BC

CaCO3 Calcium Carbonate

Canadian Council of Ministers of the Environment CCME

CFU **Colony Forming Unit**

CSR BC Contaminated Sites Regulation

CSR AW CSR Freshwater Aquatic Water numerical standard

CSR DW CSR Drinking Water numerical standard CSR IW CSR Irrigation Water numerical standard **CSRD** Columbia Shuswap Regional District

DO Dissolved Oxygen

DOC **Dissolved Organic Carbon**

DW Drinking Water numerical standard

EC **Electrical Conductivity**

EMA Environmental Management Act EMP Environmental Management Plan

ENV BC Ministry of Environment and Climate Change Strategy

GCDWQ AO Guideline for Canadian Drinking Water Quality Aesthetic Objective

GCDWQ MAC Guideline for Canadian Drinking Water Quality Maximum Acceptable Concentration

GSC Geological Survey of Canada

IDF Interior Douglas Fir LEL Lower Explosive Limit

LWMP Liquid Waste Management Plan

m asl Meters Above Sea Level Meters Below Ground Surface m bgs m btoc Meters Below Top of Casing

mg/L Milligrams per Litre MPN Most Probable Number

Ν Nitrogen

OC **Operational Certificate ORP** Oxidation-reduction Potential QA/QC Quality Assurance/Quality Control PAH Polycyclic Aromatic Hydrocarbon

RDF Refuse Disposal Facility RPD Relative Percent Difference

SD Standard Deviation

SHA **Sperling Hansen Associates**

STN ID Climate Station ID **TDS Total Dissolved Solids** TOC **Total Organic Carbon Upper Explosive Limit** UEL **US GPM US Gallons Per Minute** VOC Volatile Organic Compound WRA Water Resource Atlas WTN

WWAL Western Water Associates Ltd.

Well Tag Number

1.0 INTRODUCTION

The Columbia Shuswap Regional District (CSRD) retained Ecoscape Environmental Consultants Ltd. (Ecoscape) to carry out environmental monitoring and sampling at the Golden Refuse Disposal Facility (RDF) (the Site) and to prepare this annual monitoring report per the Site's Ministry of Environment and Climate Change Strategy (ENV) Operational Certificate (OC-17006) monitoring requirements.

This report presents a summary and analysis of groundwater monitoring data collected by Ecoscape from January 1 to December 31, 2020, and includes a discussion of the applicable regulatory context, field procedures, quality assurance/quality control measures, and recommendations for future Site monitoring. This report has been prepared for inclusion in the annual report that is submitted by the CSRD to ENV for the Site.

1.1 Background

The Golden RDF currently provides solid waste disposal services to businesses, institutions, and residents within the municipality of Golden and CSRD Electoral Area A.

The Site has operated as a natural attenuation landfill since the early 1970s. The operating permit was transferred to the CSRD in the late 1970s, and the Site now operates under Operational Certificate (OC) 17006, issued by ENV on May 5, 2003, and most recently amended on October 31, 2019. A copy of the OC is provided in Appendix A.

Previous annual environmental monitoring reports were completed by Western Water Associates Limited (WWAL), from 2014 through 2018, Summit Environmental Consultants Inc. (now Associated Environmental) from 2009 through 2013, and Sperling Hansen Associates (SHA) in 2008.

2.0 OBJECTIVE AND WORK SCOPE

The objective of this work program was to satisfy annual monitoring reporting requirements stipulated in OC 17006 by providing an evaluation of spatial and temporal trends in groundwater quality and identifying locations where water quality exceeds applicable guidelines and standards.

Key water quality questions answered in this report are:

 Does groundwater quality meet applicable guidelines and standards at and beyond the Site boundary?

- Does groundwater quality at and near the Site vary spatially between sample locations and temporally between seasons and years as a result of ongoing landfilling at the Site, and if so, describe the variances?
- If spatial and temporal trends in groundwater chemistry exists, do these trends suggest adverse effects, and is this linked to historical permitted landfill operations?

In meeting these objectives and answering these questions, Ecoscape undertook the following tasks:

- Collected representative groundwater samples from select monitoring locations on and near the Site (Figure 2) on a quarterly annual basis, as summarized in Section 4.4;
- Submitted samples to Caro Analytical Services (CARO), which is accredited by the Canadian Association for Laboratory Accreditation (CALA) for analyses;
- Entered water quality data into a database (tabulated) and compared to applicable federal and provincial guidelines and standards to determine if exceedances were observed;
- Analyzed temporal and spatial groundwater quality trends to evaluate the potential for landfill leachate impacts on water quality; and
- Prepared this annual environmental monitoring report.

3.0 SITE DESCRIPTION

The Site is located approximately 2 km northeast and upslope of Golden's city centre (Figure 1). A Site description is provided in Table 1.

Table 1: Site Description	
Topic	Details
Civic Address	350 Golden-Donald Upper Road, Golden, BC
Legal Description	Subdivision 12 of Section 18, Township 27, Range 21, West of the 5 th
	Meridian, Kootenay District
Registered Site Owner	The Province of British Columbia
Latitude and Longitude	51° 18' 31.0" N and 116° 57' 15.1" W
(of Site centre)	
Approximate Site Area	17 hectares
Current Land Use	Natural Attenuation Landfill
Site Elevation	Approximately 925 m above sea level

The Site is mainly surrounded by undeveloped, forested land to the north, west and south with several rural residences to the east on Hietala Road. The nearest privately-owned residence is within 100 m of the landfill boundary to the east at a higher elevation of 964 m

above sea level (m asl). The nearest residence downslope of the landfill is situated approximately 220 m southwest, at an elevation of 915 m asl.

3.1 Climate and Biogeoclimatic Zones

The Site is located within the Engelmann Spruce – Subalpine Fir dry cool woodland (ESSFdkw) forest subzone, where winters are typically long and cold and the summers cool and short (temperatures are above 10°C for only 0 to 2 months of the year) (Meidinger and Pojar, 1991).

Climate normal data from Environment Canada was used to complete this assessment. Based on data collected from the Golden Airport station (STN ID 1173210) between 1981 and 2010 the average annual total precipitation (rain and snow) was 466.8 mm with an average rainfall of 325.2 mm, suggested the Site climate was relatively dry. The highest precipitation typically occurred between June and August (as rain), and again in November – January (as snow). The daily average temperatures for January and July were -7.9 °C and 17.3 °C, respectively.

3.2 Topography, Drainage and Nearby Watercourses

The portion of the Site east of the active landfill area slopes southeast from a topographic high of approximately 955 m asl, and levels out at approximately 925 m above sea level (m asl) for the remainder of the Site. The nearby surrounding area generally slopes southwest, and surface drainage at and near the Site is expected to mimic topography with flow towards the southwest. During freshet and heavy precipitation events, a gulley near the northeast boundary diverts surface runoff away from the landfill area, and no known surface water drainages lead away from the Site.

An unnamed provincially mapped watercourse traverses the Site from the northeast to the southwest; however, this watercourse is ephemeral, and only contains water during freshet and following heavy precipitation events (WWAL, 2019b). A drainage ditch has been constructed along the southern Site boundary at the toe of the active landfill face to collect and direct this watercourse to high permeability soils at the southwest Site corner, allowing discharge water to seep into the ground (WWAL, 2019b).

An unnamed provincially mapped watercourse occurs approximately 180 m south of the site. This watercourse flows southwest and discharges to a catch basin near Station Avenue, approximately 850 m southwest of the Site.

Hospital Creek is situated approximately 1.2 km north to northwest of the Site and flows southwest towards the Columbia River. The Kicking Horse River is approximately 1.3 km south to southwest and downslope of the Site, at an elevation of approximately 800 m asl, and flows northwest into the Columbia River. The Columbia River flows northwest, and at its nearest point is approximately 3 km from the Site.

Nearby watercourse locations with respect to the Site are shown on Figure 1.

3.3 Regional and Local Geology and Hydrogeology

According to Geological Survey of Canada (GSC) mapping, bedrock beneath the Site comprises metamorphosed limestone, limestone conglomerates and slate of the McKay Group, formed during the Cambrian to Ordovician periods (GSC, 1980). Bedrock is visible in outcrops near the northeast Site corner, and was encountered at the following depths:

- MW09-6D (western Site boundary) –34 m below ground surface (m bgs)
- MW10-08 (northwest of Site) 15 m bgs
- MW18-10 (southern Site boundary) 24 m bgs
- MW18-11 (southwest Site corner) 116 m bgs

Based on this, the underlying bedrock surface steeply dips towards the southwest Site corner. Monitoring well locations are shown on Figure 2.

The Golden area is underlain by thick continuous glacial till blanket (GSC, 2014). Previous subsurface investigations at the Site (Kala 1995; SHA 2008; Summit 2010b and 2011; and WWAL 2019a) identified dense gravelly sand and silty ablation till along the sloped area to the east, with clean bedded sand and gravel alluvial deposits in the south central and western portions of the Site, and within the trench at the southwest Site corner. Overburden becomes increasingly thick towards the southwest, where the bedrock surface is over 115 m bgs. Exposed sediments along the west side of Golden-Donald Road (immediately west of the Site) comprise dense, well-sorted sand and gravel with traces of silt and clay, and intermittent bedding.

Overburden permeability at the Site ranges from low to moderate. Low permeability silt-dominated deposits near the eastern side of the landfill limit surface water infiltration and groundwater recharge while silty sand and gravel located in the south-central section of the landfill is generally moderately permeable (SHA 2008).

The BC ENV's Water Resources Atlas (WRA) indicated the Site was not underlain by a mapped aquifer. Sand and gravel Aquifer 456 IIB was mapped approximately 50 m southwest of the Site, extending along the east side of the Columbia River and generally spanning the Town of Golden (Figure 1). The aquifer was mapped as unconfined to semiconfined, and was classified as highly productive, moderately vulnerable to contamination from surface sources and under moderate demand from local groundwater users when mapped. Based on available well records, the geometric mean static water level was 4.8 m bgs at the time of drilling.

The aquifer is likely recharged via mountain block recharge from surrounding upland areas, in which groundwater infiltrates bedrock, migrates downward, and then flows laterally through bedrock fractures into the overburden deposits occurring along the Columbia River valley; however, some flows may also occur above and along the overburden-bedrock interface. Based on the above, regional groundwater flow direction is expected to be laterally from the valley walls towards the valley centre, and then parallel to the Kicking Horse and Columbia Rivers, towards the west and northwest. Localized groundwater flow gradients contrary to that described above may be induced by well pumping and variability in the permeability and orientation of sand and gravel deposits and bedrock fractures.

WWAL completed a hydrogeological characterization study at the Site in 2018 to provide a better understanding of Site and nearby surrounding area geology, hydrogeology, and hydrology (WWAL 2019a). Their findings are summarized below.

An unmapped bedrock aquifer is present near and below the Site, based on the presence of groundwater in the existing monitoring wells and nearby domestic supply wells. Available well logs suggest overburden is generally unsaturated at, and near, the Site and that no sand and gravel aquifers underlay the Site; however, some localized pockets of perched groundwater may occur in overburden such as that observed in MW09-6. Potentiometric surface contours generated from static water level and well elevation data from four bedrock monitoring wells (MW09-6D, MW10-8, MW18-10 and MW18-11) suggest groundwater flows from the uplands towards the southwest and Kicking Horse River. WWAL inferred that groundwater recharge is controlled by precipitation which migrates downward into bedrock fractures.

Ecoscape performed single well response tests on select monitoring wells in May 2020 to better understand hydraulic conductivity in the unmapped sand and gravel and bedrock aquifers that underlie the Site. These tests are discussed in detail in Section 6.3.

4.0 ENVIRONMENTAL MONITORING PROGRAM

4.1 Historical Groundwater Monitoring and Sampling

Kala drilled and installed four (4) monitoring wells (MW95-01 through MW95-04) in 1995 to depths ranging from 18.3 to 30.5 m bgs. No groundwater was encountered during drilling, and these wells have since been decommissioned.

Three (3) on-site monitoring wells were installed in 2009 by Summit: MW09-6S (shallow), MW09-6D (deep), and MW09-7 to replace decommissioned wells MW95-4 and MW95-3, respectively. MW09-7 has remained dry since installation and has thus never been sampled. Nested wells MW09-6S and MW09-6D are situated near the western Site boundary north of the site access. MW09-6S and MW09-6D repeatedly showed similar water chemistry, and MW09-6D sampling was discontinued in 2011 due to redundancy. It was sampled again in 2018 and 2020.

Monitoring well MW10-8 was installed by WWAL in 2010, approximately 150 m northwest and cross-gradient of the Site to evaluate potential offsite leachate migration. MW10-8 was not sampled in 2016 or 2017 but has been sampled consistently since.

Two (2) additional on-site wells were drilled by WWAL in 2018; MW18-10 and MW18-11. MW18-10 was installed on the southern Site boundary to replace MW95-02 (TH-2), which has been dry since it was installed in 1995. MW18-11 was installed immediately southwest of the Site to provide additional monitoring coverage along the Site boundary.

Domestic well DMW-1b, situated east of the Site, was introduced to the monitoring network in 2011 to replace upgradient monitoring location DMW-1, which was precluded from the monitoring network because filtration systems were installed prior to all the water outlets. DMW-4, situated east of the Site, was introduced to the monitoring network in 2013, and along with DMW-1b, provides background water quality data for the Site. Domestic well DMW-5 (approximately 740 m north of the Site) was introduced to the monitoring program in 2018; however, the well owners opted not to include their well in the 2019 program and subsequent years.

Town Wells #4 and #6 are two (2) of Golden's five (5) municipal water supply wells and are situated approximately 1.5 km and 2 km north west of the Site. Town Well #6 was sampled in spring 2018, but was not sampled in summer or fall 2018 at which time work was completed in attempt to increase the well's yield. It has been sampled twice since spring 2019, however turbidity levels have remained elevated in the well. As such, the town removed the well's pump in the fall of 2019 and deemed the Town Well #6 inoperable.

Well logs for current and past monitoring wells are provided in Appendix B.

4.2 Changes to the 2020 Monitoring Program

As per recommendations in the EMP produced by Golder (Appendix F), a winter sampling event was added to the program in 2020 for a total of four (4) monitoring events. Samples were analyzed for Volatile Organic Compounds (VOC) for all four sampling events.

The Columbia Diesel well (WTN 116561) was added to the program as DMW20-01. Details for this well are included in Table 2, water quality results are in Appendix C, and a well log from WRA is attached in Appendix B.

Ecoscape personnel surveyed on-site monitoring well elevations using RTK equipment to a $\pm~0.01~m$ vertical accuracy in June 2020 to facilitate groundwater elevation and flow direction measurements. These groundwater contours are plotted on Figure 3. Additionally, Ecoscape staff installed data loggers in monitoring wells during the winter 2020 sampling event. Loggers were set to record hourly water levels, and personnel will retrieve a first data download during the 2021 sampling events.

In addition to the typical analytical suite, samples collected during the spring 2020 event were analyzed for Light and Heavy Extractable Petroleum Hydrocarbons (LEPH and HEPH) and Polycyclic Aromatic Hydrocarbons (PAH). Additionally, an isotope analysis was conducted on samples submitted in summer 2020; results are presented and discussed in Section 7.0, along with a Piper diagram to enrich the groundwater chemistry analysis and discussion. The isotope analysis included oxygen-18, chlorine-37, deuterium, and tritium.

Landfill gas monitoring infrastructure was augmented with two (2) newly installed nested gas probes at the eastern Site boundary GP20-01S, -02D, GP20-02S, and -02D on July 21-22, 2020. These were monitored during the summer and fall 2020 events. Ecoscape personnel also monitored existing gas probes GP-6S, -6D, GP-7S, and -7D in spring, summer, and fall of 2020. This year's results are presented in Table 5 in Section 6.6. The CSRD conducted their own landfill gas monitoring at the four (4) existing gas probes from 2013 to spring 2020; results are included in Appendix E.

4.3 Field Observations

Monitoring well conditions and accessibility of sample locations were documented during each sampling event. Ecoscape also observed vegetation near each sampling location for signs of abnormal stress (e.g., discolouration or mortality) or abundance potentially linked to landfill leachate, and for signs of liquid flowing from or along the site surface, which could indicate leachate breakout.

4.4 Current Groundwater Monitoring Program

The current monitoring network consists of four (4) groundwater monitoring wells, three (3) domestic supply wells and two (2) Town of Golden supply wells, as follows:

- Monitoring wells MW09-6S, -6D, MW10-8, MW18-10 and MW18-11
- Domestic supply wells DMW-1b, DMW-4, and DMW20-01; and
- Town Well #4 and Town Well #6.

Although not part of the monitoring program, Ecoscape collected and analyzed water quality results from the Town of Golden's supply well MW15-01. This well serves as a sentry well for the Town of Golden Town Well #4, and the Town of Golden has permitted the use of its water quality data.

Table 2 below summarizes the monitoring network, and monitoring locations are shown on Figure 2.

Ecoscape noticed a discrepancy in sampling locations DMW-1b and DMW-4. Namely, these sampling locations were (likely by accident) swapped on site figures in annual monitoring

reports completed by prior consultants from 2015 to 2016. We believe that the map locations for DMW-1b and DMW-4 were accurate in figures up to 2015, and directly swapped for each other thereafter. Ecoscape continues to use this convention, and it should be noted that Figures 2 and 3 in this assessment shows these monitoring locations as they match to laboratory certificates, water quality data presented in Appendix C, and time-series plots for data collected in 2020.

A name swap in samples submitted to the lab is believed to have occurred during the summer 2017 sampling event, and from 2019 onwards. In Section 6.5 *Water Quality Trend Analysis*, where select parameters are discussed, water quality results reported for DMW-1b are actually representative of water quality at DMW-4 for these sampling events and are discussed accordingly. Likewise, water quality results reported for DMW-4 are actually representative of water quality at DMW-1b for these sampling events and are discussed accordingly. Moving forward, sampling at these locations will be conducted according to their original and actual locations as presented on maps in reports prior to 2016.

This discrepancy does not impact Table 2: Summary of Golden RDF Monitoring Network below, Table 4: Summary of 2020 Water Quality Exceedances, or well logs in Appendix B. As in, Table 2, Table 4, and Appendix B contain the appropriate information for wells DMW-1b and DMW-4.

Water at the DMW-4 residence was shut-off during the Fall sampling event, and as such a sample was not collected at that time. Town Well #6 was only sampled during the summer and fall 2020 sampling events.

Ongoing BC Contaminated Sites Regulation (CSR) Schedule 2 activities, including but not limited to welding and machine shops (C.6), appliance, equipment or engine repair (E.1), road salt storage (Activity E.7), petroleum product storage in above ground or underground tanks (Activity F.7), automotive, truck or other motor vehicle repair, salvage or wrecking (Activity G.2), and wood, pulp and paper products and related industries and activities (Activity I), likely occur near and in some cases upgradient of the Town of Golden supply wells and the Columbia Diesel well (DMW20-01). These potentially contaminating activities should be considered when evaluating groundwater chemistry in Town Well #4, Town Well #6 and DMW20-01.

Table 2: Summary of Golden RDF Monitoring Network							
Monitoring ID	Location	Rationale	Well Depth (m btoc)	Top of Casing elevation (m asl) ¹	Ground Surface Elevation (m asl) ¹	Lithology	
Landfill Monitoring Wells							
MW09-6S / -6D	West Site boundary, downgradient of the landfill.	Monitor potential offsite migration of leachate to the west	35.3	917.06 / 917.00	916.23	Gravel	
MW10-08	300 m northwest and cross- to upgradient of the landfill	Monitor potential offsite migration of leachate to the northwest	26.3	919.60	919.70 (flush mount)	Bedrock	
MW18-10	South Site boundary, cross- to downgradient of the landfill	Monitor potential offsite migration of leachate to the south	35.6	914.84	914.08	Bedrock	
MW18-11	20 m southwest and downgradient of the Site	Monitor potential offsite migration of leachate to the southwest	146.3	908.53	907.73	Bedrock	
		Private	Domestic Well	ls			
DMW-1b	Located approximately 200 m east and upgradient of the Site	Monitor background water quality	60	n/a	965²	Bedrock	
DMW-4	130 m east and upgradient of the Site.	Monitor background water quality	120	n/a	970²	Presumably bedrock	
DMW20-01	1.2 km west and downgradient of the Site	Monitor general downgradient impacts	26	n/a	790²	overburden	
	Town of Golden Supply Wells						
Town Well #4	1.5 km northwest and downgradient of the Site	Monitor general downgradient impacts	Unknown	n/a	800²	Unknown – presumably overburden	
Town Well #6	2 km northwest and downgradient of the Site	Monitor general downgradient impacts	Unknown	n/a	Unknown	Unknown – presumably overburden	

Notes:

¹ = Elevations of ground surface and top of monitoring well casings were surveyed by Ecoscape in 2020 with a vertical accuracy of \pm 0.01 m.

^{2 =} Approximate ground surface elevations from Google Earth

4.5 Groundwater Sampling Methodology

Ecoscape personnel collected groundwater samples in general accordance with BC ENV's British Columbia Field Sampling Manual (2013) and BC ENV Technical Guidance on Contaminated Sites 8 (ENV 2017), and the sampling program meets the intent of the OC.

Ecoscape completed the following procedures during each groundwater sampling event:

- Measured static water level off a permanent marking on the top of each well riser using a decontaminated electric water level meter;
- Purged monitoring wells using a submersible well pump or Waterra™ Hydrolift II pump connected to dedicated high-density polyethylene (HDPE) Waterra™ tubing outfitted with an inertia foot valve until temperature, pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), and electrical conductivity readings were stabilized (+/-10%)
 - Typically purged three (3) to five (5) well volumes from each well, unless the well was purged dry. Wells purged dry were left to recover to half its prepurging level prior to sampling;
- Purged domestic wells using a hydrogen peroxide rinsed hose to direct purge water away from the water outlet/sampling port;
- Noted visual and olfactory groundwater observations, including sheen, colour, turbidity and odour;
- Collected groundwater samples directly into clean, new laboratory-supplied containers, and field filtered (0.45 μ m) and preserved them as required for each analytical parameter; and
- Stored sample bottles in ice-chilled coolers for transport to CARO for chemical analysis.

Ecoscape personnel followed proper chain-of-custody procedures during sample transport, and ensured regular communication was maintained between Ecoscape and CARO.

4.6 Current Landfill Gas Monitoring Program

The CSRD conducted landfill gas monitoring at gas probes GP-6S, -6D, GP-7S, and -7D once annually from 2013 to 2020. Historical data is included in Appendix E. Ecoscape expanded the gas monitoring program with the installation of two (2) nested gas probes at the eastern Site boundary GP20-01S, -02D, GP20-02S, and -02D on July 21-22, 2020. These newly installed probes were monitored in the summer and fall of 2020. Ecoscape personnel also monitored existing gas probes GP-6S, -6D, GP-7S, and -7D in spring, summer, and fall of 2020. Results are presented in Section 6.6 *Landfill Gas Monitoring Results*, and probe logs are included in Appendix B. Future landfill gas monitoring will continue to be conducted triannually at all gas probes.

To protect personnel on Site, the CSRD Operations Manager Mr. Isaac Walker has confirmed that methane and carbon monoxide detectors (equipped with an alarm) were installed inside the scale house of each CSRD landfill. Plans are also underway to install extra vents in the re-use centers at each landfill as an added safety measure. These safety measures will help to monitor and ensure that combustible gas concentrations will not exceed 20% of the Lower Explosive Limit (LEL) of methane (1% by volume) as recommended by the BC ENV Landfill Criteria for Municipal Solid Waste, 2nd Edition (June 2016), and section 5.31 in WorkSafe BC's OHS Regulation Part 5: Chemical Agents and Biological Agents (WorkSafe BC 2021).

Per Section 2.8 Landfill Gas Management in the OC, if landfill methane concentrations exceed the LEL criteria of 5% by volume at the Site boundary, a qualified professional should be retained to evaluate the exceedance and provide recommendations regarding appropriate next steps and mitigation strategies. These could include verification monitoring or the installation of passive or active gas controls.

4.7 Gas Monitoring Methodology

Ecoscape personnel conducted gas monitoring on a tri-annual basis using a portable Landtec GEM 5000 Plus Landfill Gas Monitor (GEM 5000), which was calibrated by Pine Environmental before each monitoring event. The instrument measured five (5) landfill gases of interest by percent (%) volume: methane (CH₄), carbon dioxide (CO₂), oxygen (O₂), hydrogen sulfide (H₂S), and carbon monoxide (CO).

When not being sampled, gas probes are equipped with a switch lock on the sampling port to remove influence from atmospheric air and to ensure there is no gas loss from the probe. Prior to sampling, the GEM 5000 gas monitor was turned on and run for about five minutes to pull in ambient air and stabilize the instrument. The GEM 5000 was then attached to the sampling port and used to purge at least one (1) probe volume of stagnant air from the probe. This process generally took about four (4) minutes. The probe was then allowed to equilibrate for two minutes before gas concentration readings were recorded.

5.0

REGULATORY FRAMEWORK

The Site currently operates under OC MR-17006 issued by ENV under the provisions of the *Environmental Management Act* (EMA; SBC 2003, Chapter 53 assented October 23, 2003, current to March 17, 2021).

The CSR is the primary regulatory document that describes the EMA's requirements for contaminated sites management in BC. The CSR first came into effect in 1997 and was amended most recently in January 2019 (includes amendments up to B.C. Reg. 13/2019, January 24, 2019). Schedule 3.2 of the CSR provides numerical standards for various

contaminant concentrations in water for the following uses: aquatic life (AW), irrigation (IW), livestock watering (LW), and drinking water (DW).

BC ENV also recognizes that background groundwater concentrations of some inorganic parameters exceed the above-listed numerical standards in some regions throughout BC. As such, the BC ENV established *Protocol 9 – Establishing Local Background Concentrations in Groundwater* (2021b), which lists regional background groundwater concentrations for select inorganic substances for three regions in British Columbia. Concentrations of a water quality parameter in a groundwater sample that exceeds applicable numerical water quality standards but is below a background concentration at the site is not considered contaminated under the CSR. BC ENV-established background concentrations cannot be applied to the Site, as it falls outside of the geographic boundaries of regions included in Protocol 9; however, the province-wide background cobalt concentration of 0.02 mg/L has been applied to this assessment.

The Federal-Provincial-Territorial Committee on Drinking Water (CDW) has established *Guidelines for Canadian Drinking Water Quality* (GCDWQ), most recently updated in 2019 (Health Canada 2019), to protect drinking water quality.

Given the above, the following standards and guidelines are applied to address Section 4 of the OC in order to protect current and potential future nearby domestic water supply sources:

- Guidelines for Canadian Drinking Water Quality Maximum Acceptable Concentration (health-based guideline) (GCDWQ MAC) and Aesthetic Objective (based on aesthetic considerations) (GCDWQ AO); and
- BC CSR Drinking Water (CSR DW) numerical standards.

Contrary to previous annual monitoring reports, Ecoscape only applied the *Guidelines for Canadian Drinking Water Quality* (GCDWQ) MAC and AO to domestic wells in this assessment, as the GCDWQ do not apply to groundwater samples collected from monitoring wells.

5.1 OC Requirements

Per Section 4 of the OC, the ENV Landfill Criteria for Municipal Solid Waste, 2nd Edition (June 2016) also provides guidance for Site monitoring and water quality data interpretation. A Design, Operations, and Closure Plan Update (DOCP) was developed following this guidance by Golder Associates Ltd. in 2019 (Golder 2019a), which includes groundwater monitoring requirements for the Site. Golder also prepared the Golden Landfill Environmental Monitoring Plan (EMP) for the Site (Golder 2019b) (Appendix G), which is further discussed in Section 9.0. Although not yet approved by ENV at this time, the monitoring requirements in the 2019 DOCP EMP documents will be

followed as they reflect the most current environmental standards. Golder recommended that the EMP be reviewed and updated every five (5) years, as applicable. The CSRD currently has an environmental monitoring program in place at the Golden Landfill that is updated annually and as required. The CSRD continues to meet the monitoring requirements of the OC, the DOCP and EMP, and has engaged Ecoscape to execute the monitoring program recommended in the 2018 Environmental Monitoring Report (WWAL, 2019) and prepare this annual monitoring report. Monitoring in 2021 will be completed following the recommendations in Golder's EMP (2019) and those provided in this report.

6.0

MONITORING PROGRAM RESULTS

The 2020 Site observations, water level measurements, groundwater quality exceedances, water quality trends, and landfill gas monitoring results are discussed in this section. The 2020 water quality results are summarized in Appendix C, and historical water quality and landfill gas data are provided in Appendix D and E, respectively. Laboratory certificates of analysis are attached in Appendix F.

6.1

Site Observations

Monitoring well locations were readily accessible and in good condition in 2020. All wells exhibited reasonably good recharge rates and provided sufficient water to sample.

In May 2019, Mr. Glen Furey of Kicking Horse Water Services installed a permanent pump in the newly drilled MW18-11 to facilitate sampling. According to Mr. Furey MW18-11 was not properly developed after it was drilled and installed in 2018, and the December 2018 sample was collected from a slurry of drill cuttings. The purpose of well development was to purge the well of residual fines and materials left in the well following drilling, and to restore natural groundwater flow and chemistry in and around the well. Based on this, the 2018 sample collected from MW18-11 was likely not representative of actual groundwater conditions near the well.

Ecoscape endeavoured to develop the MW18-11 during the 2019 sampling events; however, the well routinely ran dry after approximately one (1) well volume of water was purged. Water samples were collected after the well recovered to half a well volume, and we expect any residual fines and drilling-related materials to be removed from the well with continued purging during future sampling events.

Ecoscape staff did not observe signs of stressed vegetation, leachate breakout or ponding water at or near any of the monitoring locations during the 2020 sampling events. Additionally, Ecoscape did not observe wildlife (including medium and large carnivores) at the Site in 2020.

6.2 Water Levels and Groundwater Flow Direction

Ecoscape recorded static water levels within each monitoring well on March 24, May 20, August 24 and November 3, and summarized the results in Appendix C. Historical water levels measured between 2009 and 2019 are provided in Appendix D.

Ecoscape installed electronic data loggers in the near-Site monitoring wells on March 24 to help better understand groundwater fluctuations at the Site. Data from these loggers will be downloaded during the winter 2021 sampling event, and will be discussed in the 2021 Updated Hydrogeological Characterization Report.

In 2020 measured water levels remained consistent with previous years, with minimal (<0.2 m) seasonal fluctuations observed at MW09-6S, MW09-6D, MW10-08 and MW18-10. Water levels at MW18-11 rose by 0.84 m between March and May, and then fluctuated by <0.1 m for the remainder of 2020 (Figure 4).

Ecoscape surveyed monitoring well elevations to a ± 0.01 m vertical accuracy in June 2020 to facilitate groundwater elevation and flow direction measurements at the Site. Groundwater level contours and inferred groundwater flow direction for May 2020 are shown on Figure 3. Groundwater elevations are highest at upgradient well MW10-08, and, following topography, decrease towards the southwest with lower groundwater elevations at MW09-6D, -6S, and MW18-10, followed by the lowest groundwater elevations observed at MW18-11 situated at the southwest corner of the landfill. Groundwater levels in MW18-11 are similar to those measured in the valley-bottom sand and gravel aquifer. Based on this, groundwater flow through the unmapped bedrock aquifer below the Site is towards the southwest and Kicking Horse River, with an estimated hydraulic gradient of 0.5 m/m near the landfill.

Elevations of the piezometric surface were consistently higher at MW09-6S compared to MW09-6D for all sampling events in 2020 with the exception of March. Groundwater elevations in this nested well typically differed by 0.01 to 0.1 m, indicating a slight downward hydraulic gradient between the sand and gravel water-bearing unit and unmapped bedrock aquifer at this location.

6.3 Single Well Response Tests

On May 19, 2020, Ecoscape performed single-well response tests (i.e., slug tests) at monitoring wells MW09-6S, -6D, MW10-08 and MW18-11 to obtain horizontal saturated hydraulic conductivity values (K), which are a measurement of the ability for water to flow through sediments or bedrock fractures.

Rising and/or falling head tests were conducted by inserting and/or removing a solid PVC slug of known volume into the monitoring wells and monitoring recovery response. MW18-11, which is outfitted with a built-in pump, was tested by drawing down the water to the

pump intake and measuring the recovery. Manual water level measurements were collected during each test using an electric water tape, and electronic data loggers were installed in each well to record water levels at a 1 second interval. The level logger malfunctioned during the test completed at MW09-6D; however, manual measurements provide a reasonable estimate of the well's response during the slug test.

Water level response data was analyzed using the Hvorslev (1951) method and estimated K values are summarized in Table 3 below.

Table 3: Estimated K Values Based on Single Well Hydraulic Conductivity Testing						
Monitoring Well	Aquifer Material	Geometric Mean K (m/sec)	Geometric Mean K (m/day)			
MW09-6S	Sand and Gravel	3.98 x 10⁻⁵	0.057			
MW09-6D	Bedrock	2.58 x 10 ⁻⁸	3.71 x 10 ⁻⁵			
MW10-08	Bedrock	9.21 x 10 ⁻⁸	1.33 x 10 ⁻⁴			
MW18-11	Bedrock	5.85 x 10 ⁻⁷	8.42 x 10 ⁻⁴			

As expected, the estimated K-value for the sand and gravel unit at MW09-6S was several orders of magnitude higher than those measured in the bedrock aquifer and estimates of K in bedrock were similar between the three (3) remaining wells. Importantly, estimated K-values were consistent with the typical K-values for sand and gravel and bedrock (Freeze and Cherry, 1979).

The single well response test results are summarized and plotted in Appendix H.

6.4 2020 Analytical Results Relative to Applicable Standards and Guidelines

Ecoscape collected groundwater samples on March 24, May 20, August 24 and November 3, 2020.

During each sampling event, personnel collected samples from wells with sufficient groundwater for sampling and submitted them to Caro in Kelowna, BC for chemical analysis of the following parameters:

- Total Alkalinity (total as CaCO3);
- Anions (chloride, fluoride and sulfate);
- Electrical conductivity and pH;
- Dissolved Metals;
- Total Hardness (as CaCO3);

- Nutrients (Nitrate (as N), Nitrite (as N), and Ammonia (as N));
- Total Dissolved Solids (TDS);
- Turbidity;
- Volatile Organic Compounds (VOCs);
- Light and Heavy Extractable Petroleum Hydrocarbons (LEPH and HEPH) (May only);
 and
- Polycyclic Aromatic Hydrocarbons (PAH) (May only).

In addition, Ecoscape recorded pH, temperature, DO, ORP and specific conductance in the field.

2020 groundwater chemistry results are provided in detail in Appendix C following the text, with exceedances from the quarterly sampling events summarized in Table 4 below.

Table 4: Summary of 2020 Water Quality Exceedances				
Monitoring Location	Guideline or Standard	Exceeding Parameter		
DMW-4	CSR DW	Lithium (dissolved), Strontium (dissolved)		
	GCDWQ AO	Total dissolved solids		
	CSR DW	Arsenic (dissolved) Lithium (dissolved)		
DMW-1b	GCDWQ AO	Iron (dissolved), Total dissolved solids		
	GCDWQ MAC	Arsenic (dissolved)		
MW09-6S /-6D	CSR DW	Lithium (dissolved), Sodium(dissolved), Chloride, Nitrate (as N), Sulfate		
MW10-8	CSR DW	Lithium (dissolved), Sodium(dissolved), Chloride, Tungsten (dissolved),		
MW18-10	CSR DW	Lithium(dissolved), Sodium(dissolved), Chloride, Nitrate (as N)		
MW18-11	CSR DW	Lithium (dissolved), Arsenic (dissolved)		
Town Well #4	GCDWQ AO	Total dissolved solids		

All other parameters analyzed by the laboratory were found at concentrations less than applicable guidelines and standards for the Site.

Dissolved lithium concentrations exceeded the BC CSR DW standard of 0.008 mg/L in samples from nearly all monitoring locations in 2020. However, ENV protocol 9 stipulates a background concentration of 0.096 mg/L in the Thompson-Okanagan region. While the Site is not within this mapped region, on-site lithium concentrations are below this value and are likely naturally elevated in the area given nearly monitoring network-wide exceedances of the CSR DW standard.

Background Water Quality

Background groundwater quality at the Site is represented by samples collected from domestic wells DMW-1b and DMW-4.

Consistent with previous years, dissolved arsenic exceeded the GCDWQ MAC guideline and CSR DW standard of 0.01 mg/L in all 2020 samples collected from DMW-1b, with concentrations of 0.047 mg/L (March), 0.0533 mg/L (May), and 0.0525 mg/L (August). Dissolved arsenic concentrations are orders of magnitude lower at remaining monitoring locations (with the exception of concentrations of approximately 0.02 mg/L in MW18-11 samples), with many concentrations at or below the laboratory detection limit.

Dissolved strontium concentrations in samples from DMW-4 once again exceeded the CSR DW standard of 2.5 mg/L, ranging from 3.96 mg/L (May) to 5.33 mg/L (August) in 2020. Dissolved strontium has historically exceeded water quality criteria at this location.

Dissolved lithium exceeded the CSR DW standard of 0.008 mg/L in all 2020 samples collected from both DMW-1b and DMW-4, with maximum concentrations of 0.0254 mg/L and 0.0532 mg/L in May 2020, respectively. Given nearly monitoring network-wide exceedances, and a BC ENV background concentration of 0.096 mg/L in other regions of the province, it is likely that dissolved lithium is naturally elevated in the area.

Dissolved iron (Figure 8) was detected above GCDWQ AO guideline of 0.3 mg/L in all 2020 samples from DMW-1b, most recently measured at 0.776 mg/L (August 2020), which may be attributable to erosion and weathering of soil and minerals near the well.

Finally, total dissolved solids exceeded the GCDWQ AO concentration of 500 mg/L in all 2020 samples from domestic wells DMW-1b and DMW-4. Samples from DMW-4 had TDS concentrations ranging from 727 mg/L (May) to 804 mg/L (August), while samples from DMW-1b had TDS concentrations ranging from 712 mg/L (May) to 739 mg/L (August).

Based on the above, elevated arsenic, iron, lithium and strontium concentrations likely occur naturally in groundwater at and near the Site, and are not necessarily attributable to ongoing landfilling activities.

Onsite and Near Site Monitoring Wells

Monitoring wells MW09-6S, -6D, MW18-10 and MW18-11 are situated on or immediately adjacent to the Site, cross- to downgradient of the landfill, and are thus used to monitor potential offsite migration of leachate-impacted groundwater.

Similar to 2019, the following parameters exceeded applicable standards on and immediately adjacent to the Site in 2020: chloride (Figure 5) dissolved sodium (Figure 5), sulfate (Figure 6), nitrate (Figure 7), and dissolved lithium. Additionally, dissolved arsenic

exceeded in samples from MW18-11 in 2020. As discussed above dissolved lithium and arsenic may be naturally occurring in the area, based on measured background groundwater chemistry.

Downgradient wells MW09-6S and -6D continued to exhibit the greatest number of exceedances compared to remaining monitoring locations, suggesting ongoing leachate impacts at the western Site boundary. Chloride, nitrate, sulfate, dissolved lithium, and dissolved sodium concentrations exceeded provincial standards in 2020, with sulfate in samples from MW09-6S and -6D being the highest observed concentrations on and near the Site. Nitrate in samples from MW09-6S and -6D were also the highest observed on Site, until November 2020 when nitrate in the sample from MW18-10 rose to 67.9 mg/L (from 24.4 mg/L in August 2020), above the MW09-6S and -6D sample concentrations of 34.2 mg/L and 34.6 mg/L, respectively. MW09-6D (bedrock) was screened 30 m deeper than -6S (overburden-bedrock interface), which infers leachate may have migrated 30+ m into bedrock at this location.

Groundwater samples from cross- to downgradient monitoring well MW18-10 exceeded applicable standards for chloride, nitrate, dissolved lithium and dissolved sodium concentrations, while dissolved lithium and dissolved arsenic concentrations exceeded in samples from downgradient monitoring well MW18-11.

Offsite Monitoring Wells

Monitoring well MW10-08, DMW20-01, and Town Wells #4 and #6 are situated well beyond the Site boundary.

Groundwater samples from cross- to upgradient monitoring well MW10-08 exceeded applicable standards for chloride (Figure 5), dissolved lithium, dissolved sodium (Figure 5), and dissolved tungsten during three or more sampling events, with chloride and sodium concentrations being the highest measured concentrations at any well in 2020. Dissolved tungsten concentrations have only been elevated in samples from MW10-08 since 2018, and samples from remaining monitoring locations have never shown a dissolved tungsten concentration above water quality criteria. Dissolved tungsten concentrations appear to have decreased in samples from MW10-08, exceeding the CSR standard of 0.003 mg/L in fall 2018 with a concentration of 0.006 mg/L, and decreasing to 0.0052 mg/L in August 2020, and below the standard in November 2020 at 0.0018 mg/L.

Samples from Town Well #4 were found to exceed the GCDWQ AO total dissolved solids (TDS) guideline of 500 mg/L during all four sampling events in 2020. Concentrations ranged from a high of 607 mg/L in March 2020, reducing to near guideline at 559 mg/L in November 2020. Ecoscape understands that there may have been pump work done on this well in 2020, which could have temporarily increased TDS concentrations via disturbance. With further pumping of this well it is expected that the TDS concentrations will likely decrease.

Domestic monitoring well DMW20-01, added to the monitoring program in 2020 to monitor general downgradient impacts, had no exceedances of applicable guidelines and standards in its 2020 samples.

Concentrations of remaining analyzed parameters were less than applicable guidelines and standards in groundwater collected from Town Wells #4 and #6 in 2020.

6.5 Water Quality Trend Analysis from 2002 to 2020

Analyses and discussion of spatial and temporal trends in landfill leachate indicator parameter concentrations at and near the Site are discussed in this section.

Landfill leachate indicator parameters are those which are typically present at concentrations above natural, background concentrations in leachate-impacted groundwater. The chemical composition of landfill leachate can vary, and largely depends on waste composition, climatic conditions, and the age and degradation rate of the solid waste (Bulc 2006); however, indicator parameters generally include, but are not limited to, alkalinity, chloride, electrical conductivity, sulfate, sodium, ammonia, iron, manganese, and heavy metals cadmium, chromium, copper, nickel and zinc (Christensen et al. 2001). Furthermore, calcium and hardness are often elevated at the leading edge of a leachate-impacted groundwater plume, a phenomenon sometimes referred to as a hardness halo (Griffen et al. 1976), as a result of ion exchange between calcium and/or magnesium ions bound to sediments and various cations present in the leachate.

Ecoscape plotted time-series graphs of select leachate indicator parameters, displaying changes in concentration over time between 2002 and 2020. These are shown in Figures 5 through 8 as follows:

- Chloride and Dissolved Sodium (Figure 5);
- Electrical Conductivity and Sulfate (Figure 6);
- Nitrate (Figure 7); and
- Dissolved Iron and Dissolved Manganese (Figure 8).

Groundwater quality data from 2002 to 2020 are summarized in Appendix D.

Like previous years, leachate parameter concentrations, including chloride, nitrate, ammonia, sodium, sulfate, hardness, alkalinity, select dissolved metals, including boron, calcium, magnesium, potassium, and sulfur and electrical conductivity are generally highest in samples from MW09-6S and -6D compared to remaining monitoring locations; however, most of these parameters appear to be stable or decreasing with time. Some indicator parameters were also elevated in samples from MW18-10, MW18-11 and MW10-08, but to a lesser degree than MW09-6S, and -6D, with the exception of sodium and chloride being highest in samples from MW10-08.

Remaining monitoring locations exhibit similar groundwater chemistry to that observed at background monitoring locations DMW-1b and DMW-4.

Individual discussions for select parameters follow.

6.5.1 Chloride

Chloride concentrations are typically elevated in leachate due to degradation of food waste and paper products; however, chloride also naturally occurs in groundwater, and may come from external sources such as road salt. Because chloride is conservative (non-reactive) in the environment, it is often found at the leading edge of a landfill leachate plume and is thus useful in evaluating the plume's extent.

Like previous years, chloride concentrations remained above the CSR DW standard of 250 mg/L in samples collected from MW09-6S, -6D, MW10-08, and MW18-10. Concentrations at remaining monitoring locations were below applicable standards in 2020.

Concentrations continued to be highest in samples from cross- to upgradient well MW10-08, decreasing from 629 mg/L in March 2020 to 558 mg/L in November 2020 (Figure 5). MW10-08 was not sampled between 2015 and 2017; prior to then concentrations nearly doubled from just over 500 mg/L in 2010 to almost 1,000 mg/L in 2012, and then decreased to 666 mg/L by May 2015.

Chloride concentrations in samples from MW09-6S and -6D also continued to be elevated above background, but have shown a steady decrease since 2012. Highest concentrations at this location were observed in February 2010 at around 715 mg/L. March 2020 concentrations in MW09-6S and -6D samples were slightly higher at 380 mg/L and 399 mg/L, respectively, compared to November 2020 concentrations at 366 mg/L and 371 mg/L, respectively.

MW18-10 was drilled in June 2018. Since installment chloride concentrations in samples from MW18-10 appeared to have increased somewhat from a minimum of 299 mg/L (May 2019) to a maximum of 376 mg/L (November 2020). MW18-11 was also drilled in 2018, and chloride concentrations in samples from the well increased from 23.2 mg/L in December 2018 to 113 mg/L in March 2020. Chloride concentrations then decreased to 60.6 mg/L in May 2020 and increased again to 84.1 mg/L in the November 2020 sample.

Background chloride concentrations measured in samples from DMW-1b and DMW-4 have been historically stable with concentrations generally less than 50 mg/L. Concentrations were lower in samples from DMW4 than DMW-1b, with recent concentrations of 8.98 mg/L (November 2020) and 42.2 mg/L (August 2020), respectively. Concentrations in samples from Town Well #4 were above background in 2020, ranging from 99 mg/L (March) to 92.5 mg/L (November) while concentrations in Town Well #6 samples were near or below

background at 60.2 mg/L (November) and concentrations in samples from newly added domestic monitoring well DMW20-01 were also below background at 38.8 mg/L (August 2020).

No observable seasonal trends are noted in chloride concentrations, with annual maximum concentrations varying between spring, summer and fall from year to year.

6.5.2 Sodium

Sodium is often the dominant cation in leachate; however, various geochemical processes, including dissolution, precipitation, and cation exchange may affect concentrations during groundwater transport.

Sodium concentrations continued to exceed the CSR DW standard of 200 mg/L in samples from MW09-6S, -6D and MW10-08, while concentrations in MW18-10 samples exceeded for the first time in October 2019 and again in November 2020. MW18-11 exceeded once in the December 2018 sample. Remaining monitoring locations were below applicable standards in 2020.

Like chloride, sodium concentrations were highest in samples from MW09-6S, -6D and MW10-08. Sodium concentrations in samples from these locations followed a similar trend in the past and increased from approximately 300 mg/L in 2011 to about 450 mg/L sometime between 2012 (MW10-08) and 2013 (MW09-6S). Concentrations dropped to 297 mg/L in the October 2018 sample from MW09-6S and 370 mg/L in the December 2018 sample from MW10-08. Since then, concentrations have stabilized around 300 mg/L (with the exception of a temporary increase to 431 mg/L in the MW10-08 October 2019 sample). Sodium concentrations in samples from MW10-08, MW09-6S, and -6D, were 334 mg/L, 286 mg/L, and 286 mg/L in November 2020, respectively (Figure 5).

Sodium concentrations were also elevated in samples from monitoring wells MW18-10 and MW18-11. Concentrations in MW18-10 samples increased from 168 mg/L in June 2018 to 206 mg/L in October 2019, decreased to 127 mg/L in May 2020 and increased once again to 239 mg/L in November 2020. Conversely, concentrations in MW18-11 samples decreased from 270 mg/L in December 2018 to 81.1 mg/L in May 2019, and have since increased to 113 mg/L in November 2020.

Concentrations in samples from remaining monitoring locations continued to remain low and stable, generally below 50 mg/L.

No observable seasonal trends were noted in sodium, annual maximum values varied between spring, summer and fall from year to year.

6.5.3 Electrical Conductance

There are no applicable guidelines or standards for electrical conductance (typically called conductivity); however, electrical conductivity is useful in monitoring landfill leachate impacts because it is a measure of the total dissolved minerals within groundwater.

Similar to sodium and chloride, electrical conductivity remained highest in samples from MW09-6S and -6D followed by MW10-08 and MW18-10 (Figure 6). Conductivity in MW09-6S samples has historically fluctuated between 4,000 and 5,200 μ S/cm, and had a decreasing trend from November 2013 to October 2019, reaching a historical low of 3,920 μ S/cm. Concentrations have since stabilized and were most recently measured at 3,970 μ S/cm in November 2020. Concentrations in 2020 samples from MW10-08 ranged from 2,590 μ S/cm (May) to 2,880 μ S/cm (November), and were consistent with historical values, which varied between approximately 2,500 and 3,500 μ S/cm since 2010.

Electrical conductivity was also elevated above background levels in MW18-10 samples, with values slightly increasing from 2,390 μ S/cm in June 2018 to 2,650 μ S/cm in October 2019, followed by somewhat variable concentrations in 2020 with a low of 2,420 μ S/cm (May) and high of 3,240 μ S/cm (November).

Background electrical conductivity is quite high at the Site compared to other CSRD landfill sites, likely due to dissolution of bedrock minerals during groundwater transport. Values have been stable at DMW-1b and DMW-4, ranging from 1,060 to 1,230 μ S/cm at both locations in 2020. Values at remaining monitoring locations are near or below background.

No observable seasonal trends were noted in electrical conductivity, with annual maximum values varying between spring, summer and fall from year to year.

6.5.4 Sulfate

Sulfate is often generated in landfill leachate during the decomposition of organic matter and soluble waste.

Sulfate concentrations were below the CSR DW standard of 500 mg/L at all monitoring locations in 2020 except MW09-6S and -6D samples which have exceeded the standard since start of monitoring at this location in 2009 (Figure 6).

Sulfate concentrations in groundwater continued to be highest at MW09-6S and -6D ranging from 611 mg/L (May) to 690 mg/L (March) in 2020. Concentrations in MW09-6S samples have been historically variable since it was first sampled in 2009, remaining between 600 mg/L and 1,000 mg/L and showing no seasonal trends.

Concentrations at background wells DMW-1b and DMW-4 were the next highest at the Site, but still below guidelines. Sulfate in samples from DMW-1b have remained relatively stable around 125 mg/L, with 2020 concentrations of 110 mg/L (March), 127 mg/L (May), and 128 mg/L (August). Concentrations at DMW-4 were somewhat higher and more

variable, and fluctuated around 250 mg/L, 2020 concentrations ranged from 213 mg/L (May) to 251 mg/L (August).

Sulfate concentrations at remaining monitoring locations continued to be well below background (i.e., less than half). No observable seasonal trends were noted in sulfate, with annual maximum values varying between spring, summer and fall from year to year.

6.5.5 Nitrogen Compounds

Garden and food waste, and biosolids generally contribute to organic nitrogen within the landfill mass. Over time, waste decomposition can deplete oxygen, resulting in anaerobic conditions favourable for ammonification, during which nitrogen is converted to ammonia by heterotrophic bacteria. When ammonia in groundwater encounters appropriate aerobic conditions, ammonium is oxidized by microorganisms to nitrate (i.e., nitrification), with nitrite as an intermediary product.

Nitrate concentrations continued to exceed the CSR DW standard of 10 mg/L in samples from MW09-6S, -6D and MW18-10, while concentrations at remaining monitoring locations remained below 2 mg/L.

Concentrations in MW09-6S and -6D samples have historically trended downwards from about 70 mg/L in 2010 to about 30 mg/L in 2018. Since then, concentrations have been somewhat variable. Highs of 45 mg/L and 43.4 mg/L were observed in May 2020 samples at MW09-6S and -6D, respectively, with lows of 32.7 mg/L and 30.6 mg/L observed in March 2020, respectively.

Nitrate in samples collected from MW18-10 have also been elevated, with an initial concentration of 12.9 mg/L in June 2018, marginally exceeding the standard of 10 mg/L. Concentrations have since been variable, with 2020 concentrations decreasing from 40 mg/L (March) to 21.3 mg/L (May), followed by a Site -wide maximum concentration of 67.9 mg/L (November).

Background nitrate concentrations measured in groundwater at DMW-1b and DMW-4 have remained below 1 mg/L, ranging from <0.10 mg/L in DMW-1b samples (all three sampling events in 2020) to 0.666 mg/L in the May 2020 sample from DMW-4. Concentrations in DMW-1b samples were generally <0.10 mg/L with the exception of a few increases in 2014 and 2018, but no higher than 0.4 mg/L. While concentrations in DMW-4 samples have been variable, but consistently less than 1 mg/L.

Nitrate concentrations at Town Wells #4 and #6 remained slightly above background. Concentrations appeared to gradually increase at both wells from 2012 to 2019, but were slightly lower in 2020 samples at 1.5 mg/L (May) and 1.03 mg/L (November) at Town Wells #4 and #6, respectively.

Ammonia concentrations were slightly elevated in samples from MW09-6S, -6D and MW18-10 compared to other monitoring wells, with maximum concentrations of 1.9 mg/L and 2.6 mg/L in November 2020 samples from MW09-6D and MW18-10, respectively.

6.5.6 Iron and Manganese

Decomposition of organic matter in leachate can deplete oxygen, creating reducing conditions (and generating organic acids). Under reducing conditions, iron and manganese oxides (both naturally occurring and anthropogenically produced) are generally reduced to more soluble forms, mobilizing dissolved iron and manganese in groundwater.

Dissolved iron exceeded the GCDWQ AO guideline of 0.3 mg/L in all 2020 samples from background monitoring well DMW-1b, with a maximum concentration of 0.776 mg/L in August. Concentrations at remaining monitoring locations were below applicable guidelines and standards in 2020.

Concentrations in samples from background monitoring well DMW-4 were typically at or near laboratory detection limits (<0.010 mg/L), with a location maximum of 0.122 mg/L (May 2019), and 2020 concentrations below laboratory detection limits for all sampling events except for a concentration of 0.014 mg/L in August 2020.

Dissolved iron concentrations have been variable in MW18-11 samples since 2019, with 2020 concentrations ranging from 0.052 mg/L (March) to 2.28 mg/L (May). Similar to 2019, concentrations then decreased to 0.64 mg/L (November).

Consistent with most previous sampling events, iron concentrations at remaining monitoring locations were near or below background concentrations in 2020. Concentrations have intermittently spiked in the past at MW09-6S, MW10-08 and Town Well #4; however, given the typically low concentrations in samples from the leachate-impacted monitoring wells MW09-6S and MW09-6D, iron concentrations are likely naturally elevated at DMW-1b and MW18-11.

There were no dissolved manganese exceedances in 2020. Manganese concentrations were consistently elevated above background concentrations in samples from downgradient monitoring wells MW09-6S, -6D, MW18-10 and MW18-11 since start of monitoring. This phenomenon is consistent with manganese being mobilized due to anaerobic and reducing conditions in leachate impacted groundwater below and near the landfill, with concentrations being lower in more oxidizing conditions upgradient, cross-gradient and further downgradient of the Site.

Manganese concentrations have been consistently highest in samples from MW18-10 since it was first sampled in June 2018 and ranged from 0.126 mg/L (September 2018) and 0.231 mg/L (May 2019), with a most recent concentration of 0.198 mg/L (November 2020).

Manganese concentrations in samples from MW18-11 appeared to have trended downwards from 0.294 mg/L (December 2018) to 0.0286 mg/L (November 2020).

Manganese concentrations in samples from Town Well #6 were consistently below background until 2020, when an increase occurred to 0.043 mg/L (November 2020). Concentrations in MW09-6S samples were first measured at 0.518 mg/L in 2009 followed by a decrease to 0.0882 mg/L in 2012 (Figure 8), and have fluctuated around 0.1 mg/L since then, with a most recent concentration of 0.0968 mg/L (November 2020).

Manganese concentrations at remaining monitoring locations have remained stable and near or below measured background concentrations.

6.5.7 Petroleum Hydrocarbons and Volatile Organic Compounds

Samples collected during winter, spring, summer, and fall of 2020 were analyzed for volatile organic compounds (VOCs) and Light and Heavy Extractable Petroleum Hydrocarbons (LEPH and HEPH). Samples were also analyzed for Polycyclic Aromatic Hydrocarbons (PAHs) at all monitoring locations in May 2020 except for at Town Well #6.

L/HEPH and PAHs were below the laboratory detection limits at all locations except for HEPH, which marginally exceeded detection limits at MW18-11 (313 ug/L vs 250 ug/L laboratory detection limit). There are no BC CSR DW standards for HEPH.

All VOCs concentrations were less than the reported detection limit at all sampling locations in 2020 except for Toluene during the winter sampling event at MW18-11. Toluene previously exceeded the CSR DW standard of 60 μ g/L in MW18-11 samples with a concentration of 150 μ g/L in May 2019 and decreased by an order of magnitude to 12.8 μ g/L in October 2019. Toluene concentration was at 8.8 μ g/L in March 2020 and below detection limits for the remainder of 2020.

Toluene historically marginally exceeded the 60 $\mu g/L$ CSR DW standard in the September 2018 sample from cross- to upgradient well MW10-08 with a concentration of 60.2 $\mu g/L$. Toluene concentrations have also been detected in MW09-6S samples (6.6 $\mu g/L$ in April 2017) and in MW18-10 samples (10.8 $\mu g/L$ to 16.2 $\mu g/L$ in 2018); these concentrations were below the CSR DW standard. Persistently elevated toluene concentrations have not been observed at any monitoring location.

We understand that Section 3.4 of the OC was recently amended (October 2019) by ENV such that the Golden RDF can no longer accept hydrocarbon-impacted soil (concentrations of substances less than "hazardous waste" but exceeding the CSR Industrial (IL) numerical standards). Although not explicitly stated in the OC amendment, we understand this decision was largely based on elevated toluene concentrations in groundwater at downgradient monitoring well MW18-11.

Toluene is added to gasoline along with benzene and xylene and is often present in hydrocarbon-impacted soil. Considering the Site's high-volume and ongoing acceptance of hydrocarbon-impacted soil, we would expect persistently elevated toluene concentrations in groundwater if this were a concern, particularly at leachate impacted monitoring wells MW09-6S and -6D. However, toluene concentrations have varied both spatially and temporally, with no obvious long-term trends. Furthermore, we would expect to see detectable concentrations of L/HEPH, PAHs, benzene, ethylbenzene and xylenes (i.e., remaining BTEX parameters typically included in gasoline mixtures) in downgradient monitoring wells. However, these parameters have not been detected in downgradient groundwater to date. Toluene and HEPH may have been introduced to MW18-11 during drilling activities in 2018.

6.5.8 Remaining Leachate Indicator Parameters

Similar to the above-discussed leachate indicator parameters, alkalinity, hardness, and some dissolved metals, including boron, calcium, potassium and sulfur were elevated in samples from MW09-6S and -6D and to a lesser degree MW18-10 compared to the other monitoring locations and were likely associated with leachate impacts; however, these parameters remain below applicable standards for the Site.

6.6 Landfill Gas Monitoring Results

Landfill gas is generated by the biodegradation of organic material in landfills, and typically comprises equal parts of methane (CH_4) and carbon dioxide (CO_2). Other gases are also generated within a landfill mass including oxygen (O_2) and nitrogen (N_2), and trace volumes of other gases such as hydrogen sulfide (H_2S) and carbon monoxide (CO). Landfill gas constituent concentrations are contingent on volume and composition of waste material, decomposition rates of waste material, and the degree of atmospheric exchange occurring within the landfill cell.

Methane (CH₄) is the most critical landfill gas constituent, as it becomes explosive at concentrations between approximately 5 and 15 % by volume in air (CRA 2010). The lower end of this range (5 %) is commonly referred to as the lower explosive limit (LEL), while the upper end is referred to as the upper explosive limit (UEL).

Carbon dioxide (CO_2) is denser than air and may displace oxygen from subsurface structures such as wells and manholes, potentially resulting in asphyxiation for personnel entering a subsurface structure without properly monitoring conditions beforehand.

Hydrogen sulfide (H_2S) becomes highly toxic at concentrations above 50 ppm, but is generally smelled at 0.05 ppm and presents a conspicuous rotten egg-like odour by 3 ppm. As such, H_2S is generally identified by on-site personnel prior to reaching highly toxic levels. Nonetheless, monitoring H_2S is important because concentrations above 10 ppm can cause headaches and nausea.

Carbon monoxide (CO) is an odourless gas that mixes freely with air and is typically produced by the incomplete combustion of fossil fuels (Technical Safety BC, 2020). It has an LEL of 12.5 % (at which point it requires a temperature of 609 °C to ignite) and UEL of 74 %.

The CSRD operations team conducted landfill gas monitoring once annually since 2013; results are presented in Appendix E. Ecoscape commenced tri-annual landfill gas monitoring in 2020; results are presented in Table 5 below. Gas probes GP20-01 through GP20-02 were installed in July 2020, and hence were only sampled for the summer and fall events.

Table 5: 2020 Gas Monitoring Results						
		Methane (% CH ₄)	Carbon dioxide (% CO ₂)	Oxygen (% O ₂)	Hydrogen sulfide (% H ₂ S)	Carbon monoxide (% CO)
	19-May-20	0	3.1	16.9	0	0
GP-6S	24-Aug-20	0.1	2.4	18.2	0	0
	3-Nov-20	0.1	2	19.2	0	0
	19-May-20	0.1	6.1	12.8	0	1
GP-6D	24-Aug-20	0.1	1.5	19.5	0	1
	3-Nov-20	0	2.4	18.8	0	0
	19-May-20	0.1	1.4	11.7	0	0
GP-7S	24-Aug-20	0	0.1	20	0	1
	2-Nov-20	0	0.9	16.7	0	0
	19-May-20	0.1	1.6	13	0	0
GP-7D	24-Aug-20	0	0.1	20	0	1
	2-Nov-20	0	1.7	16.4	0	0
0000 046	24-Aug-20	0	0.1	20.3	0	0
GP20-01S	3-Nov-20	0	2.4	18.6	0	0
CD20 015	24-Aug-20	0	0.1	20.2	0	0
GP20-01D	3-Nov-20	0	1.9	18.9	0	0
CD20 025	24-Aug-20	0	0.1	20.4	0	0
GP20-02S	3-Nov-20	0	1.5	20.1	0	0
6020 025	24-Aug-20	0	0.2	20.5	0	0
GP20-02D	3-Nov-20	0	1.8	17.9	0	0

No concerning results were found in historical data, with a maximum methane (CH_4) concentration of 0.2%, well below the LEL of 5%. Carbon dioxide (CO_2) was consistently between 0.5 and 6%, and oxygen (O_2) between 11 and 20% in probes GP6D, -6S, GP7D, and -7S.

Similarly, there were no concerning results in the 2020 data. Gas probes GP-6S, -6D, GP-7S, and -7D had maximum methane and carbon monoxide readings of 0.1% and 1%, respectively. These were well below the LELs of 5% and 12.5%, respectively. Remaining gas probes GP20-01S, -1D, GP20-02S, and -02D had readings of 0% methane and 0% carbon monoxide for all 2020 events. All gas probes showed readings of 0% hydrogen sulfide for all 2020 events.

7.0 PIPER DIAGRAM

A Piper diagram is a useful tool for characterizing groundwater chemistry and serves as a visual aid in differentiating between distinct water chemistry signatures and how these compare across monitoring locations. A Piper diagram shows relative percent of anions and cations in two ternary plots, which are then projected onto a central diamond plot. The major ions include Na⁺, Ca⁺, Mg⁺, K⁺, HCO₃⁻, CO₃²⁻, SO₄⁻ and Cl⁻, which typically account for the vast majority of the total dissolved solids present in natural groundwater. This central diamond plot is where monitoring locations can be visually grouped into distinct hydrogeochemical categories commonly referred to as facies. We produced a Piper plot using the average results from the 2020 sampling data and present it in Figure 9.

Potable water sources including Town Wells #4 and #6, and domestic wells DMW-1b, DMW-4, and DMW20-01 plotted close to one another in the magnesium bicarbonate type. Monitoring wells MW18-10 and MW18-11 (at southern boundary of the Site) also plotted as magnesium bicarbonate type, however slightly further from the potable water sources. Downgradient well MW18-10 was almost on the border of the mixed type which included monitoring wells MW09-6S and -6D known to be impacted by leachate, indicating it was potentially impacted by landfill activity. MW18-11 was more offset from this mixed type zone, suggesting it may have had little to no impact from landfill leachate. The isotope analysis discussed in Section 8 provided additional detail regarding groundwater chemistry at MW18-11. Upgradient well MW10-08 plotted on the border of the mixed type and sodium chloride type. Chloride and sodium were consistently elevated at this location since 2009, and since it was somewhat further on the piper diagram from impacted wells MW09-6S and -6D (which plotted right on top of each other), we suspect the source of ions was different from the leachate chemistry signature (likely road salt).

8.0 ISOTOPE ANALYSES

Ecoscape submitted samples for an isotope analysis suite in August 2020 on Oxygen-18 (¹⁸O), Chlorine-37 (³⁷Cl), deuterium (²H), and tritium (³H). ¹⁸O and ²H are indicators of groundwater origin, ³H is a leachate indicator parameter, and ³⁷Cl is useful in elucidating chloride sources. This concept is discussed in more detail below.

When expressed as ratios between two isotopes of a given element, the delta symbol is used. For example, δ^{18} O is calculated based on the ratio between the more common

Oxygen-16 isotope and less common Oxygen-18 isotope. $\delta^{18}O$ and $\delta^{2}H$ are useful in differentiating between different water source-types: as these elements pass through the hydrologic cycle, they undergo unique fractionation through hydrologic processes such as precipitation and evaporation, wherein the characteristics of the environment for each process (such as moisture content, vapour pressure, humidity, temperature, and altitude) influence the fractionation process. In shallow groundwater regimes, $\delta^{18}O$ and $\delta^{2}H$ serve as tracers because their concentrations are determined by their unique fractionation developed during precipitation and by the amount of evaporation that occurs before the water penetrates the subsurface (Freeze & Cherry. 1979). Thus, different isotopic ratios are found in different water sources, making $\delta^{18}O$ and $\delta^{2}H$ useful tracers to determine source waters (University of Arizona, SAHRA).

Hydrogen has two stable isotopes, ¹H and ²H (deuterium), and one radioactive isotope, ³H (tritium). Large concentrations of tritium were created in the 1950's and 1960's due to atmospheric testing of nuclear weapons, which resulted in tritium entering groundwater systems via recharge due to the infiltration of precipitation. Thus, groundwater with concentrations of tritium higher than 5 to 10 tritium units, is modern (or bomb tritium) water (Freeze and Cherry 1979). Thus, tritium concentrations can be used to roughly age groundwater as pre- or post-1954.

Tritium concentrations are also often elevated in municipal solid waste leachate, largely owing to gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains (Mutch and Mahoney, 2008). Tritium is useful for studying leachate impacts as it is not significantly affected by reactions in the environment other than radioactive decay (Freeze & Cherry 1979).

Samples for the isotope analysis were taken August 24 and 25, 2020 and results are presented in Table 6 below. DUP A is a duplicate of the sample from MW09-6S. RPD values are less than 1% for each analyte except for chlorine-37, for which the duplicate value (-0.20) is significantly different than the original (0.34). A description of RPDs and how they are calculated is included in Section 9.0 Quality Assurance/Quality Control.

Table 6: Isotope Analysis Results					
Analyte	Oxygen- 18 δ ¹⁸ Ο	Chlorine-37 δ ³⁷ Cl	Deuterium δ²H	Tritium δ³H	Tritium δ³H
Units	per mil ¹		per mil	TU ²	pCi/L
DMW-1b	-19.88	0.31	-154.7	3.2	10.31
DMW-4	-20.15	0.11	-156.6	1.4	4.51
DMW20-01	-19.85	-0.16	-150.4	4.2	13.53
Town Well #4	-19.92	0.45	-152.5	1.9	6.12
Town Well #6	-19.77	0.22	-152.0	4.8	15.46
MW10-08	-19.23	0.43	-148.6	3.4	10.95
MW09-6D	-18.94	0.02	-150.1	157.6	507.63
MW09-6S	-19.04	0.34	-150.1	31.7	102.11
DUP A	-18.95	-0.20	-150.4	31.7	102.11
MW18-10	-19.22	0.02	-148.3	70.6	227.40
MW18-11	-20.72	0.20	-160.9	15.8	50.89

Notes:

The oxygen-18 and deuterium results across all sampling locations indicated that all monitored locations were recharged by the same groundwater system, validating the conceptual understanding that the unmapped bedrock aquifer below the Site discharges to the valley-bottom sand and gravel Aquifer 456 IIB

Potable water supply wells including the three (3) domestic wells and two (2) town wells all had low tritium concentrations, ranging from 1 to 5 TU. These tritium results were consistent with the measured low concentrations of leachate-indicator parameters at these wells, and indicated that they are not impacted by landfill activity.

The highest concentrations of tritium were found at MW09-6D at 157.6 TU, thought to be the most leachate-impacted monitoring well along with MW09-06S. For the most part, groundwater chemistry at MW09-6S has been nearly identical to that measured in MW09-6D; however, tritium at MW09-6S was notably lower (31.7 TU). As discussed, MW09-6D was screened approximately 30 m below MW09-6S. As such, the elevated tritium in MW09-6D may have resulted from older groundwater that has not migrated through the flow system as quickly as the shallower groundwater, or deeper groundwater more impacted by leachate. The tritium concentrations also infer the leachate plume has migrated vertically downwards and has exited the landfill, consistent with the steep downward hydraulic gradient measured between the nested wells.

MW18-10 had a relatively high tritium concentration of 70.6 TU, which was congruent with its position on the Piper plot (Figure 9) as on the border of the mixed type (where leachate-impacted wells were found) and magnesium bicarbonate (potable water sources) facies. MW18-10 was likely somewhat impacted by landfill leachate, though not as much as

^{1 =} per mil is ‰, or per thousand

^{2 =} Tritium Units. 1 TU = 1 molecule of ³H per 10¹⁸ molecules of ¹H

MW09-6D. This was consistent with most other leachate-associated parameters, as highlighted in Figures 5 through 8. Tritium at MW18-11 was slightly elevated (15.8 TU) above background, suggesting it could be mildly impacted by landfill leachate, but not as much as MW09-6D and MW18-10.

Importantly, tritium concentrations were relatively low at MW10-08, which supported the notion that elevated chloride, sodium and electrical conductivity values at this well are not attributable to fracture-controlled leachate migration, but rather road salting.

No obvious spatial trends in chlorine-37 results were observed. For example, similar concentrations were observed at background well DMW-1b (0.31) and downgradient well MW09-06S (0.34).

While the Piper diagram provides us with a visual of groundwater chemistry signatures based on chemistry alone, the isotope analysis provides more insight into the source of groundwater recharge age and degree of leachate-related contamination at monitored locations.

9.0 QUALITY ASSURANCE/QUALITY CONTROL

Ecoscape implemented a standardized Quality Assurance/Quality Control (QA/QC) program during this assessment to ensure representative samples were collected and that representative analytical data were reported by the laboratory. Ecoscape performed the following procedures as part of the QA/QC program:

- Recorded field notes during all stages of the investigation, together with a photographic record;
- Donned clean, new nitrile gloves at each sampling location;
- Collected samples using dedicated plastic bailers or tubing to preclude crosscontamination;
- Cleaned non-dedicated sampling equipment (e.g., electric water level) by washing with an Alconox™ (or equivalent)/potable water mixture before initial use and between uses to minimize the potential for cross-contamination; and
- Submitted one (1) field duplicate for laboratory analysis during each sampling event.

The duplicate sample analysis ensures laboratory quality control as well as reproducibility of field sampling procedures. Duplicates and their associated sample location are summarized in Table 7.

Table 7: Field Duplicate Samples				
Date	Sample ID	Duplicate ID		
May 2020	MW09-6S	DUP A		
August 2020	MW09-6S	DUP A		
November 2020	MW09-6S	DUP A		
March 2020	MW09-6S	DUP A		

The reproducibility of field sampling techniques is quantified by a parameter referred to as the relative percent difference (RPD). RPD is calculated using the following formula:

$$RPD = \frac{S - D}{0.5(S + D)} \times 100\%$$

Where: RPD= relative percent difference

S = sample value

D = duplicate value

RPD values greater than 25% generally suggest further review is required. However, analytical error generally increases near the method reporting limit (MRL); therefore, the RPD calculation should not be applied unless the concentration of both samples is greater than 5 times the reported detection limit.

RPD values were less than 25% or were not calculable (due to concentrations less than 5 times the detection limit), except for Turbidity in May 2020, which had an RPD of 26%; however, given that only one RPD value was greater than 25%, this RPD is likely an anomaly suggesting that the sample and duplicate results are reproducible and reliable.

As a conservative measure, the highest concentration of a given parameter in field duplicate sample set is used for comparison against the applicable standard or guideline.

Samples submitted to CARO are subject to five laboratory QA/QC procedures (i.e., method blanks, laboratory control samples, lab duplicates, surrogate recoveries, and reference materials), which are documented in the laboratory certificates of analysis provided in Appendix F.

10.0 DISCUSSION

We understand that ENV raised concerns in November 2019 regarding the location, depth, and groundwater chemistry measured in monitoring wells MW18-10 and MW18-11, fearing that these wells may not provide a definitive understanding of the magnitude and potential risk that landfill leachate might pose to nearby aquifers.

In their 2018 Hydrogeological Assessment Report (WWAL 2019b), WWAL recommended that two years of water level and aquifer geochemical data be collected from these wells to better understand potential offsite migration of leachate from the Site. Two years' worth of data has now been collected from these wells, so the CSRD has retained Ecoscape to complete an updated hydrogeological characterization of the Site and review groundwater and leachate characterization data collected since 2018. This assessment will be completed by the summer of 2021.

If, based on this review, the additional data suggests offsite leachate impacts, one or more monitoring wells may be installed to assess the leachate plume extent. The decision to install additional offsite monitoring wells will be based on an approved Water Quality Improvement Plan, signed off by the BC ENV. Should additional groundwater samples collected from additional monitoring wells identify a potential threat to downgradient receptors as a result of landfilling activities, mitigative measures will be determined by the BC ENV based on consultation with the CSRD and its Qualified Environmental Professional consultants. Potential mitigative measures may include a Human Health and Ecological Risk Assessment to assess potential impacts, design and implementation of landfill engineering control systems, or other measures recommended by the BC ENV.

11.0 SUMMARY AND CONCLUSIONS

In accordance with the OC requirements, Ecoscape conducted groundwater sampling events in the winter, spring, summer, and fall of 2020. The samples were analyzed for analytical parameters intended to illustrate potential groundwater effects from landfilling activities. Based on the sampling and analytical program findings, the following conclusions are made:

- Concentrations of leachate indicator parameters, including but not limited to nitrate, sulfate, chloride, sodium, conductivity, alkalinity, hardness, and dissolved boron are elevated in samples from MW09-6D and -6S and to a lesser degree MW18-10 compared to other monitoring locations, suggesting leachate-impacted groundwater at and beyond the west and south Site boundaries. Samples from these three (3) monitoring wells also had elevated concentrations of tritium, which is an isotope indicative of landfill leachate impacts.
- Nitrate concentrations at MW09-6S steadily trended downward from 2013 to 2019, with 2020 concentrations of 43.4 mg/L (May) and 34.2 mg/L (November) slightly elevated from 2019, approximately half of those recorded in 2009 (> 60 mg/L). Chloride and sodium concentrations have also decreased over the last 6 to 8 years at MW09-6S, suggesting some natural attenuation has occurred.
- Chloride, sodium, tungsten and conductivity concentrations/values were also elevated in cross- to upgradient well MW10-08 samples; however, unlike samples from leachate impacted monitoring wells MW09-6S and -6D, concentrations of

nitrate, sulfate and other leachate indicator parameters were at or near background at MW10-08. Furthermore, the tungsten exceedance was unique to MW10-08, and was not detected at leachate impacted monitoring wells. This, combined with low tritium values at MW10-08 (comparable to those at domestic monitoring wells and town wells in the program) indicate that leachate impacts are unlikely at MW10-08. Given the well's adjacency to a roadway, elevated chloride, sodium and conductivity may be due to road salting.

- Similar ¹⁸O and deuterium isotope results across all sampling locations indicated that all monitored locations were recharged by the same groundwater system. This validated the conceptual understanding that the unmapped bedrock aquifer below the Site discharges to the valley-bottom sand and gravel Aquifer 456 IIB.
- Except for tritium, leachate indicator parameter concentrations were at or near background at monitoring well MW18-11. Tritium concentrations were slightly elevated above background, which means leachate impacts at this well cannot be ruled out.
- Fluoride, arsenic, iron, lithium and strontium concentrations are likely naturally elevated at and near the Site based on groundwater data collected from background wells DMW-1b and DMW-4.

12.0 RECOMMENDATIONS

Based on the annual monitoring program results and conclusions, the following recommendations are provided:

- Groundwater quality samples should continue to be collected from locations sampled in 2020 to better understand temporal water quality trends. If leachate indicator parameters persist at monitoring wells MW09-6S, -6D and MW18-10, an additional downgradient bedrock monitoring well may be necessary to help delineate the extent of the leachate plume. The drilling location previously recommended by WWAL (2019) at Pine Road and Golden Donald Upper Road would meet this objective, if permission is granted.
- Exploring and delineating the extent of impacted groundwater contained in overburden (i.e., at MW09-6S) may also be necessary if saturated overburden is identified in future drilling efforts; however, available hydrostratigraphic data suggests groundwater primarily flows through bedrock at and near the Site, with a localized overburden water-bearing unit perched above bedrock along the western Site boundary (i.e., near MW09-6S).

- Any recommendations for future monitoring well installations, including target stratigraphic units and location, will be established based on consultation with ENV.
- Isotope analyses conducted in 2020 helped better understand leachate impacts in groundwater near the Site. Tritium should be analyzed during the spring sampling event in 2021 to help substantiate the inferences made from this year's isotope results.

13.0 LIMITATIONS

This report has been prepared by Ecoscape Environmental Consultants Ltd. (Ecoscape) for Columbia Shuswap Regional District (CSRD) and is intended for the sole and exclusive use of the CSRD. With the exception of the CSRD, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of Ecoscape.

Nothing in this report is intended to constitute or provide a legal opinion. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions and recommendations in this report may be necessary.

This report has been prepared for specific application to the Site and Site conditions present at the time work was completed. The conclusions and recommendations provided herein are based solely upon our professional judgment and the availability of information pertaining to environmental conditions and historic and present land use at the site with time available to consider data. Ecoscape has relied fully upon information provided or collected by other parties, and does not warranty data collected from third party sources used in this report.

This report has been prepared with the understanding that all available information on the past, present, and proposed conditions of the Site have been disclosed. If additional information becomes available that is inconsistent with the information provided herein Ecoscape should be contacted to reassess the conclusions provided in this report.

14.0 CLOSURE

We trust that this report satisfies your present requirements. Should you have any questions or comments, please contact the undersigned at your convenience.

Respectfully Submitted Ecoscape Environmental Consultants Ltd.,

Written By:

Reviewed By:

Laura Maclaren, B.Sc., GIT Environmental Scientist

Direct Line: 778-721-5442

Mike Schutten, M.A.Sc. Environmental Scientist

Direct Line: 778-940-1964

Reviewed By:

Lee Ringham, M.Sc., P.Geo Principal, Senior Hydrogeologist

Chinook Arch Geoscience Inc.

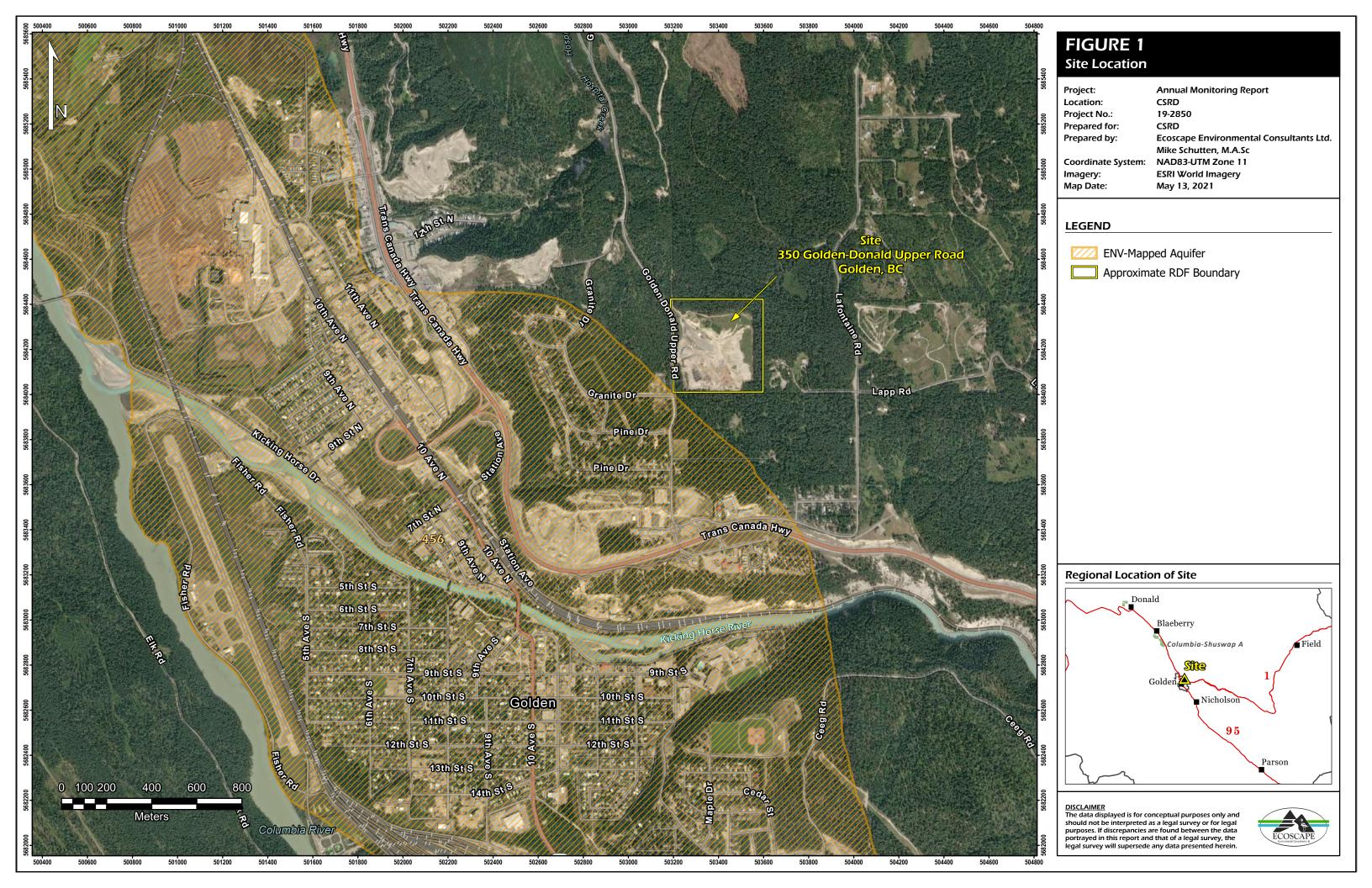
Direct Line: (403) 860-2925

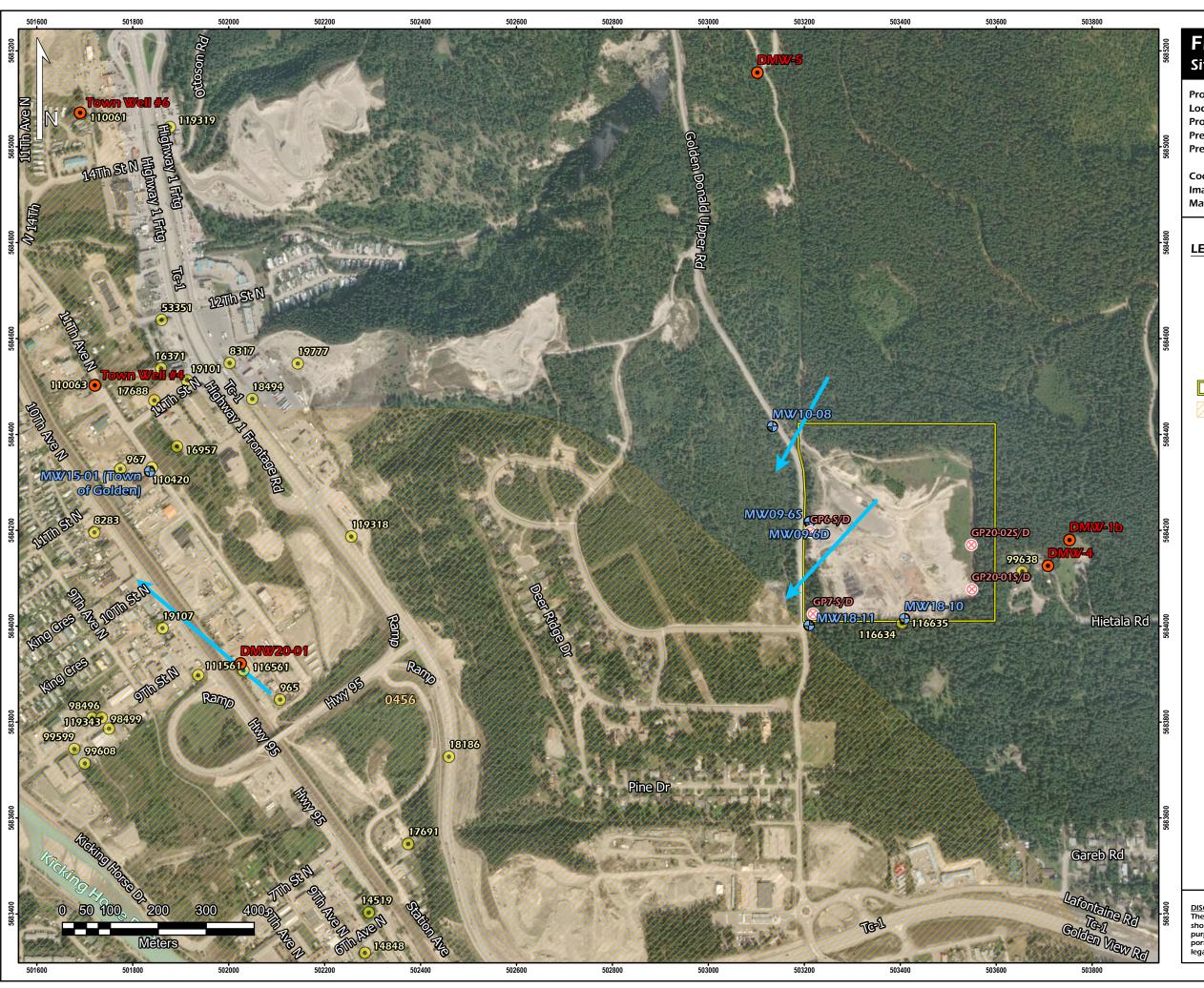
Attachments: Figures

Appendices

REFERENCES

- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 1997. Contaminated Sites Regulation. Effective April 1, 1997, latest amendment January 24, 2019. B.C. Reg. 13/2019 Queen's Printer Victoria British Columbia. http://www.bclaws.ca/EPLibraries/bclaws new/document/ID/freeside/375 96 00
- British Columbia Ministry of Environment, Lands and Parks (MoE). 1998. Guidelines for Interpreting Water Quality Data Version 1. Prepared for the Land Use Task Force Resources Inventory Committee. https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nr-laws-policy/risc/guidlines for interpreting water quality data.pdf
- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 2012. Operational Certificate MR-17006.
- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 2013. British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples. 2013 Edition. https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-field-sampling-manual
- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 2016. Groundwater Protection Regulation. Effective February 29, 2016, latest amendment June 10, 2016. B.C. Reg. 152/2016 Queen's Printer Victoria British Columbia. http://www.bclaws.ca/civix/document/id/complete/statreg/39 2016
- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 2016. Landfill Criteria for Municipal Solid Waste, Second Edition. June 2016.
- British Columbia Ministry of Environment and Climate Change Strategy (ENV) 2017. Technical Guidance on Contaminated Sites 8– *Groundwater Investigation and Characterization*, effective November 1, 2017.
- British Columbia Ministry of Environment and Climate Change Strategy (ENV) 2019a. Technical Bulletin for Contaminated Sites 3 *Regional Background Concentrations for Select Inorganic Substances in Groundwater*, effective July 31, 2019.
- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 2019b. BC Water Resources Atlas. http://www.env.gov.bc.ca/wsd/data searches/wrbc/
- British Columbia Ministry of Environment and Climate Change Strategy (ENV) 2021. Protocol 9 for Contaminated Sites *Establishing Local Background Concentrations in Groundwater*, Version 2 effective February 1, 2021.
- Bulc T.G., 2006. Long term performance of a constructed wetland for landfill leachate treatment. Ecol. Eng. 26: 365-374.
- Christensen T.H., P. Kjeldsen, P.L. Bjerg, D.L., Jense, J.B. Christensen, A. Baun, H. Albrechtsen, G. Heron. 2001. Biochemistry of landfill leachate plumes. Applied Geochemistry. 16(659-718).
- Environment Canada. 2019. Canadian Climate Normals. Available online: http://climate.weather.gc.ca/climate normals/index e.html. Accessed: November 2019.


- Environment Canada. 2018. Water Survey, accessed on-line at: http://www.wsc.ec.gc.ca.
- Freeze, R.A. and Cheery J.A. 1979. Groundwater. Prentice-Hall, New Jersey, 604 p.
- Gade, M.B. 2014. Assessing landfill contamination in Wyoming. Theses ALL. 23. Accessed online at: https://surface.syr.edu/thesis/23
- Geological Survey of Canada (GSC). 1980. Balkwi, H.R., et. al. Geology of Golden West Half. Map No. 1497A. Crown Copyright.
- Geological Survey of Canada (GSC). 2014. Surficial geology of Canada; Geological Survey of Canada, Canadian Geoscience Map 195 (preliminary, Surficial Data Model v. 2.0 conversion of Map 1880A), Scale 1:5 000 000. doi: 10.4095/295462.
- Golder Associates Ltd. (Golder). 2006. Conceptual Model, Preliminary Numerical Model and Contaminant Inventory. Town of Golden, B.C. Aquifer Protection Plan.
- Golder Associates Ltd. (Golder). 2019a. Golden Landfill Design, Operations and Closure Plan Update. Golden, BC. Prepared for the CSRD.
- Golder Associates Ltd. (Golder). 2019b. Golden Landfill Environmental Monitoring Plan. Golden, BC. Prepared for the CSRD.
- Health Canada. 2019. Guidelines for Canadian Drinking Water Quality Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario. Accessed online at: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html
- Jones, A.G. 1959. Geological Survey of Canada. Geology, Vernon, Kamloops, Osoyoos and Kootenay Districts, British Columbia. Map 1059, scale 1:253,440
- Kala Groundwater Consulting Ltd. (Kala). 1995. Hydrogeological Assessment, Columbia Shuswap Regional District Sanitary Landfill Golden, B.C., Report Prepared for Reid Crother & Partners Ltd. Kelowna BC, Reference No. KG095.-05 7
- Massey, N.W.D., MacIntyre, D.G., Desjardin, P.J., and Cooney, R. T. 2005. Geology of British Columbia. Geological Survey of Canada, Geoscience Map 2005-3, scale 1:1 000 000.
- Meidinger, D. and J. Pojar. 1991. Ecosystems of British Columbia. Ministry of Forests. Victoria, BC. 330pp.
- Mutch. R.D and J.D Mahony. 2008. A study of tritium in municipal solid waste leachate and gas. Fusion Science and Technology
- Piteau and Associates Engineering Ltd, 1990. Preliminary Hydrogeological and Geotechnical Study. Prepared for the CSRD.
- Meidinger, D. and J. Pojar. 1991. Ecosystems of British Columbia. Ministry of Forests. Victoria, BC. 330pp.
- Sperling Hansen Associates (SHA). 2008. Golden Landfill Water Quality Report 2007. Prepared for CSRD. Reference No. SHA PRJ8007.



- Summit Environmental Consultants Inc. (Summit). 2010a. Statistical assessment in support of reducing the number of annual groundwater samples required at the Columbia Shuswap Regional District Refuse and Disposal Sites. Prepared for Columbia Shuswap Regional District.
- Summit Environmental Consultants Inc. (Summit). 2010b. 2009 Annual Environmental Monitoring Report Golden Refuse Disposal Site, Golden, BC. Report prepared for the CSRD.
- Summit Environmental Consultants Inc. (Summit). 2011. 2010 Annual Environmental Monitoring Report Golden Refuse Disposal Site, Golden, BC. Report prepared for the CSRD.
- Summit Environmental Consultants Inc. (Summit). 2012. 2011 Annual Environmental Monitoring Report Golden Refuse Disposal Site, Golden, BC. Report prepared for the CSRD.
- Summit Environmental Consultants Inc. (Summit). 2013. 2012 Annual Environmental Monitoring Report Golden Refuse Disposal Site, Golden, BC. Report prepared for the CSRD.
- Summit Environmental Consultants Inc. (Summit). 2014. 2013 Annual Environmental Monitoring Report, Golden Refuse Disposal Site, Golden, B.C. File. 2013-8054.000. Report prepared for the CSRD.
- Technical Safety BC. 2020. Guidelines for the Gas Service Industry: Carbon Monoxide. Accessed online at: https://www.technicalsafetybc.ca/guidelines-gas-service-industry-carbon-monoxide#attributes of carbon monoxide
- University of Arizona, SAHRA Dept. of Hydrology and Water Resources. Accessed online at: http://web.sahra.arizona.edu/programs/isotopes/oxygen.html
- Western Water Associates Ltd. (WWAL). 2013. Brief Hydrogeological Assessment of the Golden Landfill (OC 17006) at Golden, B.C. Report 13-050-01, prepared for CSRD. November 2013.
- Western Water Associates Ltd. (WWAL). 2015. 2014 Environmental Monitoring Report, Golden Refuse Disposal Site, Golden, B.C. Report 14-024-16, prepared for the CSRD April 2015.
- Western Water Associates Ltd. (WWAL). 2016. 2015 Environmental Monitoring Report, Golden Refuse Disposal Site, Golden, B.C. Report 14-024-16, prepared for the CSRD April 2016.
- Western Water Associates Ltd. (WWAL). 2017. 2016 Environmental Monitoring Report, Golden Refuse Disposal Site, Golden, B.C. Report 14-024-16, prepared for the CSRD April 2017.
- Western Water Associates Ltd. (WWAL). 2018. 2017 Environmental Monitoring Report, Golden Refuse Disposal Site, Golden, B.C. Report 14-024-16, prepared for the CSRD April 2018.
- Western Water Associates Ltd. (WWAL). 2019a. 2018 Environmental Monitoring Report, Golden Refuse Disposal Site, Golden, B.C. Report 14-024-16, prepared for the CSRD April 2019.
- Western Water Associates Ltd. (WWAL). 2019b. 2018 Hydrogeological Assessment of the Golden Landfill (OC 17006) at Golden, B.C. Report 14-024-21, prepared for CSRD April 2019.
- WorkSafe BC. 2021. OHS Regulation Part 5: Chemical Agents and Biological Agents. Accessed online at: https://www.worksafebc.com/en/law-policy/occupational-health-safety/searchable-ohs-regulation/ohs-regulation/part-05-chemical-and-biological-substances#SectionNumber:5.31

FIGURES

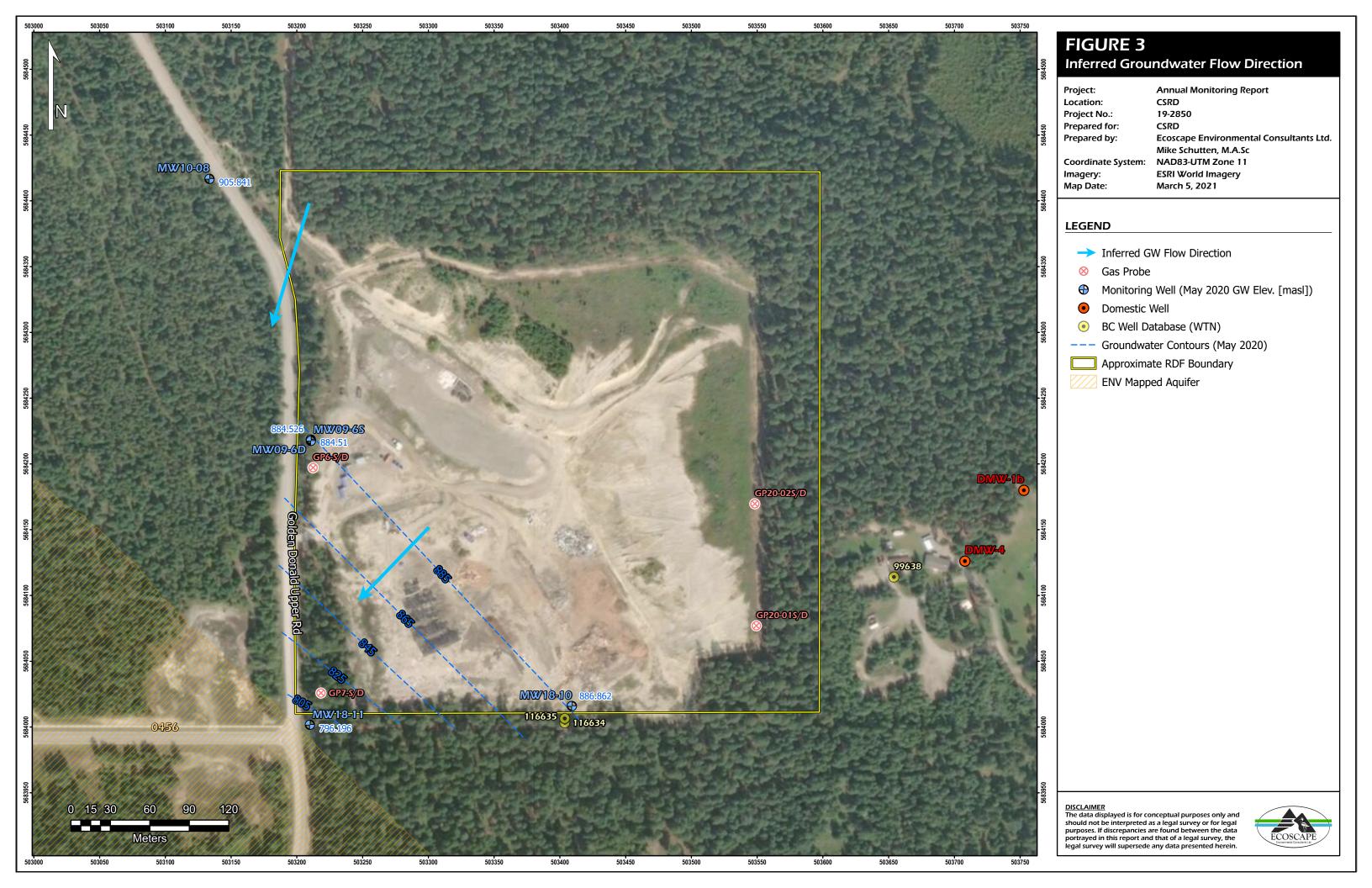
FIGURE 2

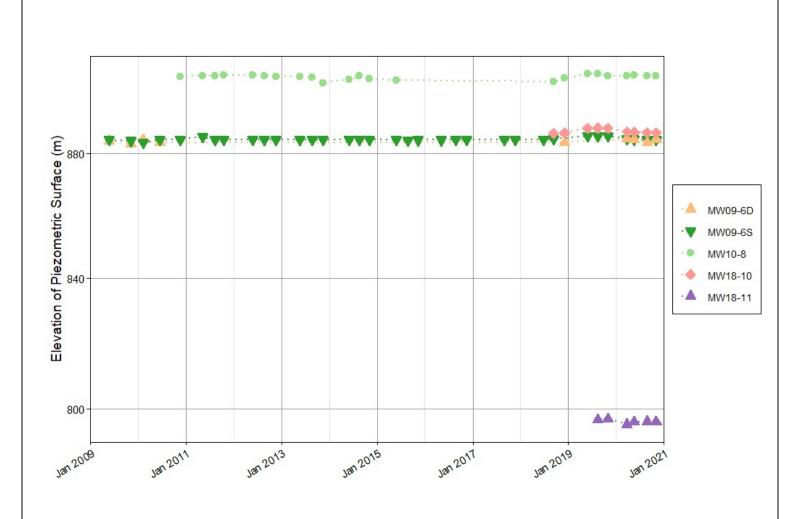
Site Plan and Sample Locations

Annual Monitoring Report Project:

CSRD Location: Project No.: 19-2850 Prepared for: CSRD

Ecoscape Environmental Consultants Ltd. Prepared by:


Mike Schutten, M.A.Sc Coordinate System: NAD83-UTM Zone 11 ESRI World Imagery Imagery: Map Date: March 5, 2021


LEGEND

- ⊗ Gas Probe
- Monitoring Well
- Domestic Well
- BC Well Database (WTN)
- → Inferred GW Flow Direction
- Approximate RDF Boundary
- **ENV Mapped Aquifer**

DISCLAIMER
The data displayed is for conceptual purposes only and should not be interpreted as a legal survey or for legal purposes. If discrepancies are found between the data portrayed in this report and that of a legal survey, the legal survey will supersede any data presented herein.

	Figure 4:	Groundwate	er Elevation	Time Series	Plo	t
--	-----------	------------	--------------	-------------	-----	---

Project: 2020 Environmental Monitoring Report

Client: Columbia Shuswap Regional District

Location: Golden RDF File No: 19-2850

Date: March 5, 2021 Dwn by: LMM Ckd by: MPS Scale: N/A

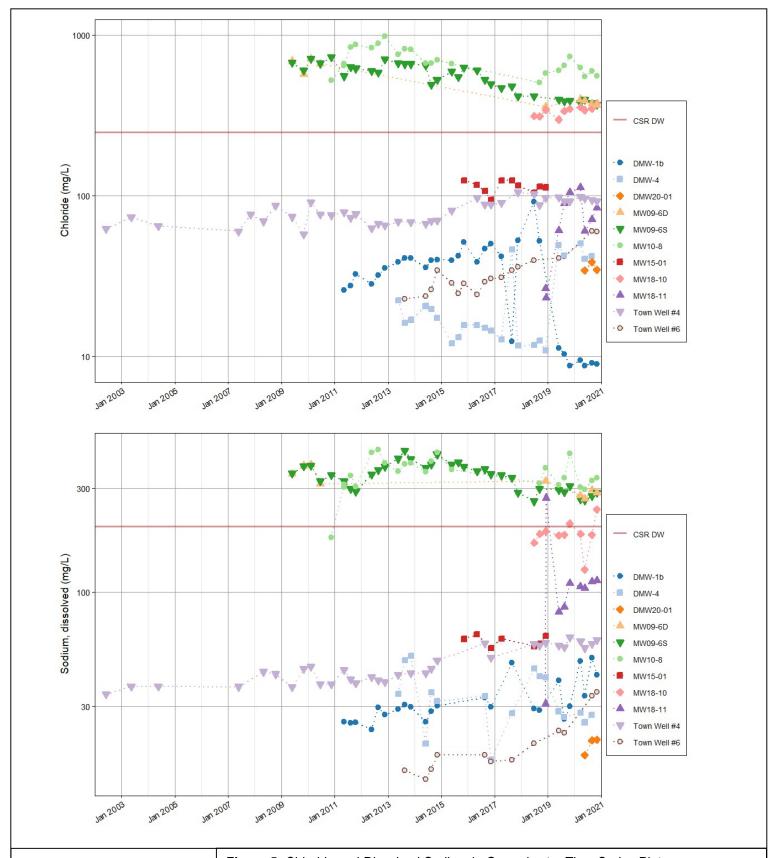


Figure 5: Chloride and Dissolved Sodium in Groundwater Time Series Plot

	Project: 2020 Environmental Monitoring Report				
7	Client: Columbia Shuswap Regional District				
	Location: Golden RDF			File No: 19-2850	
	Date: March 5, 2021	Dwn by: LMM	Ckd by: MPS	Scale: N/A	

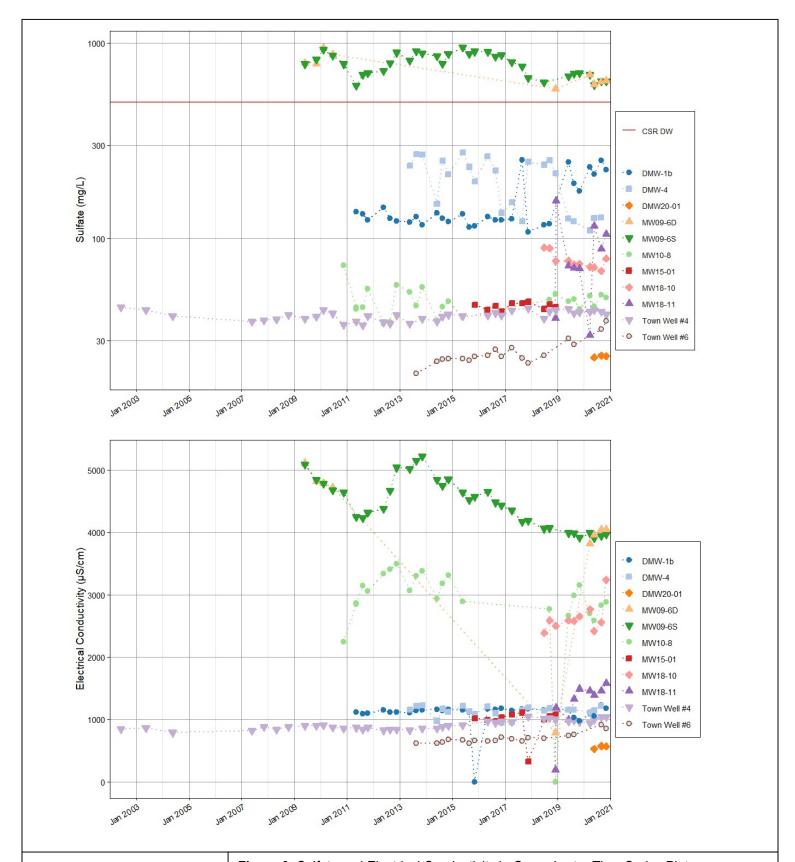


Figure 6: Sulfate and Electrical Conductivity in Groundwater Time Series Plot

Project: 2020 Environmental Monitoring Report

Client: Columbia Shuswap Regional District

Location: Golden RDF

File No: 19-2850

Date: March 5, 2021

Dwn by: LMM

Ckd by: MPS

Scale: N/A

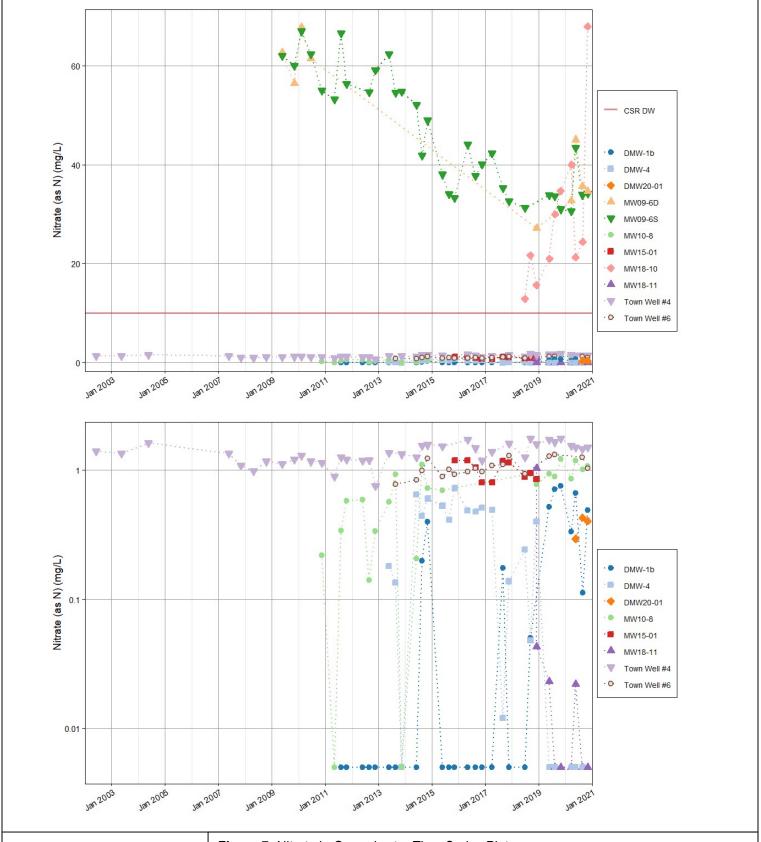
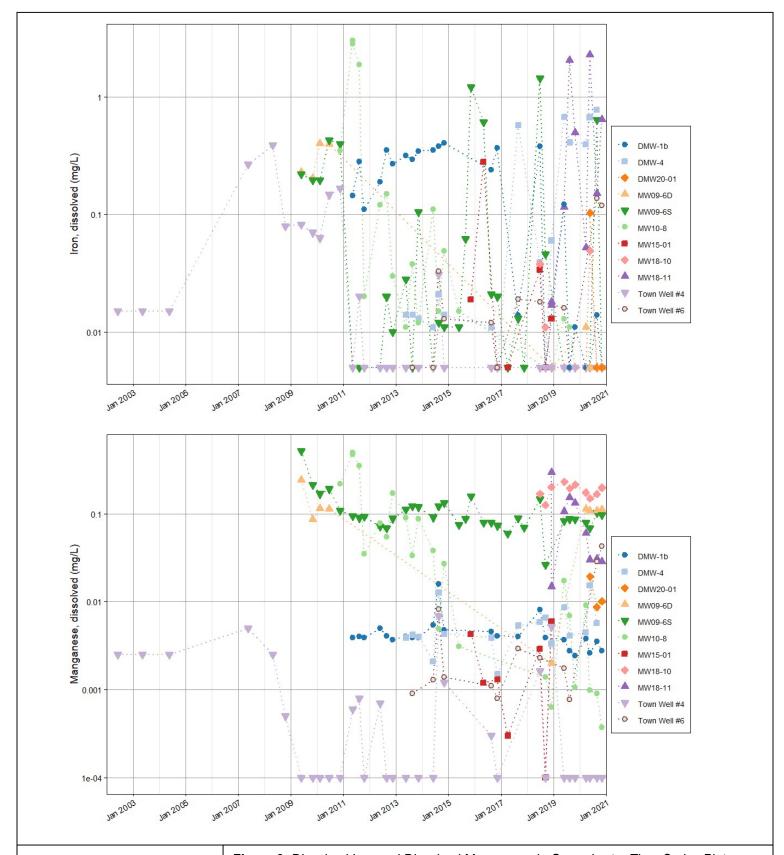


Figure 7: Nitrate in Groundwater Time Series Plot

Project: 2020 Environmental Monitoring Report

Client: Columbia Shuswap Regional District


Date: March 5, 2021

Location: Golden RDF File No: 19-2850

Ckd by: MPS

Scale: N/A

Dwn by: LMM

Date: March 5, 2021

Figure 8: Dissolved Iron and Dissolved Manganese in Groundwater Time Series Plot

Dwn by: LMM

Project: 2020 Environmental Monitoring Report

Client: Columbia Shuswap Regional District

Location: Golden RDF

File No: 19-2850

Ckd by: MPS

Scale: N/A

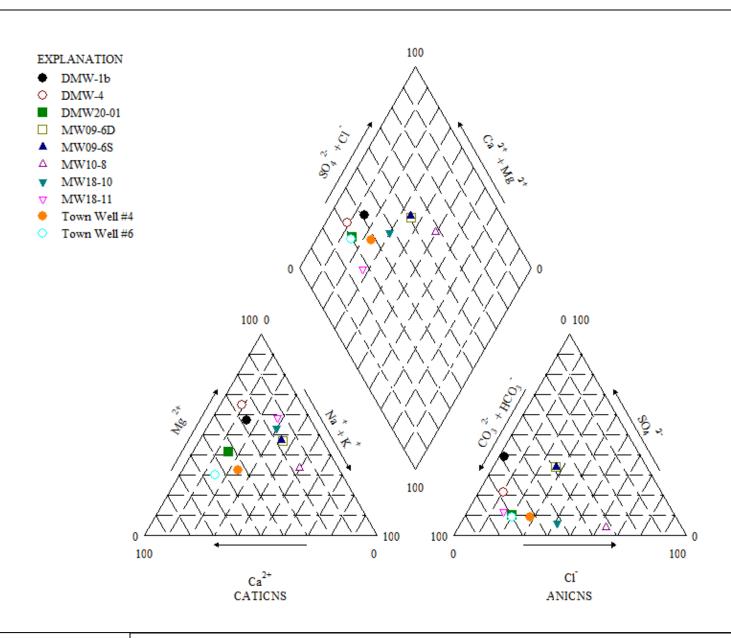


Figure 9: Piper Diagram

Project: 2020 Environmental Monitoring Report

Client: Columbia Shuswap Regional District

Location: Golden RDF File No: 19-2850

Date: March 8, 2021 Dwn by: LMM Ckd by: MPS Scale: N/A

APPENDIX A OPERATIONAL CERTIFICATE

October 31, 2019

Tracking Number: n/a Authorization Number: 17006

Columbia Shuswap Regional District Box 978 555 Harbourfront Drive NE Salmon Arm, BC V1E 4P1

Dear Operational Certificate Holder,

Operational Certificate 17006 Amendment, Section 3.4 Contaminated Soils, under the *Environmental Management Act*

Further to the discussion with the Columbia Shuswap Regional District (CSRD) Team Leader, Environmental Health Services, Ben Van Nostrand, and considering technical information available to me including recent compliance inspections conducted at the site, and pursuant to Section 16 of the *Environmental Management Act*, effective November 18, 2019, operational certificate 17006, dated August 29, 2012, is hereby amended as follows:

Subsection 3.4 – Contaminated Soil is amended from:

Soil that contains contaminants in concentrations less than "hazardous waste" as defined by the Hazardous Waste Regulation may be disposed of at the landfill site. Disposal includes monofilling, co-disposal with other wastes, use as a refuse cell berm material and use as a refuse cell cover material. Disposal does not include use as final cover material.

to:

Soil in which the concentrations of all substances are less than the lowest applicable industrial land use standard specified for those substances in

- (i) the generic numerical soil standards,
- (ii) the matrix numerical soil standards, or
- (iii) a director's interim standard for soil, referred to in section 41(1)(a) of the Contaminated Sites Regulation, B.C. Reg. 375/96

may be disposed of at the landfill site. Disposal includes monofilling, co-disposal with other wastes, use as a refuse cell berm material and use as a refuse cell cover material. Disposal does not include use as final cover material.

This amendment acknowledges that the CSRD is currently preparing a Design, Operational and Closure Plan update for review and approval by the ministry. It also acknowledges that the ministry is currently reviewing the 2018 Hydrogeology Characterization Report, dated April 2019, prepared by Western Water Associates Ltd. for the CSRD and that preliminary review information suggests that the receipt of

contaminated soils at the landfill, as previously authorized under Section 3.4 of the operational certificate, needs to be carefully re-evaluated to ensure the ongoing protection of human health and the environment.

2

All other terms and conditions of the operational certificate remain in full force and effect.

Please note that although a revised operational certificate document has not been produced at this time a copy of this letter is being placed on the operational certificate file, as an addendum to the operational certificate, to formally reflect the amendments.

This operational certificate does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority rests with the operational certificate holder. This operational certificate is issued pursuant to the provisions of the *Environmental Management Act* to ensure compliance with Section 120(3) of that statute, which makes it an offence to discharge waste, from a prescribed industry or activity, without proper authorization. It is also the responsibility of the operational certificate holder to ensure that all activities conducted under this authorization are carried out with regard to the rights of third parties, and comply with other applicable legislation that may be in force.

This decision may be appealed to the Environmental Appeal Board in accordance with Part 8 of the *Environmental Management Act*. An appeal must be delivered within 30 days from the date that notice of this decision is given. For further information, please contact the Environmental Appeal Board at (250) 387-3464.

Administration of this operational certificate will be carried out by staff from the Environmental Protection Division's Regional Operations Branch. Documents pertinent to the operational certificate are to be submitted by email or electronic transfer to the Director, in accordance with the ministry Data & Report Submissions website at: http://www2.gov.bc.ca/gov/content/environment/waste-management/waste-discharge-authorization/data-and-report-submissions, or as further instructed. If you have any questions or concerns, please contact Authorizations - South at Authorizations.South@gov.bc.ca.

Yours truly,

Luc Lachance, P.Eng for Director, *Environmental Management Act*

ENCL: Operational Certificate 17006, dated August 29, 2012

August 29, 2012 Tracking Number: 243578 Authorization Number: 17006

REGISTERED MAIL

Columbia Shuswap Regional District Box 978 781 Marine Park Drive NE Salmon Arm, BC V1E 4P1

Dear Operational Certificate Holder:

Enclosed is Amended Operational Certificate 17006 issued under the provisions of the Environmental Management Act. Your attention is respectfully directed to the terms and conditions outlined in the operational certificate. An annual fee will be determined according to the Permit Fees Regulation.

This operational certificate does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority rests with the operational certificate holder. It is also the responsibility of the operational certificate holder to ensure that all activities conducted under this authorization are carried out with regard to the rights of third parties, and comply with other applicable legislation that may be in force.

This decision may be appealed to the Environmental Appeal Board in accordance with Part 8 of the *Environmental Management Act*. An appeal must be delivered within 30 days from the date that notice of this decision is given. For further information, please contact the Environmental Appeal Board at (250) 387-3464.

Southern Interior Region - Kootenay Telephone: (250) 354-6333

Facsimile: (250) 354-6332

Administration of this operational certificate will be carried out by staff from the Southern Interior Region - Kootenay. Plans, data and reports pertinent to the operational certificate are to be submitted to the Regional Manager, Environmental Protection, at Ministry of Environment, Regional Operations, Southern Interior Region - Kootenay, 401 - 333 Victoria St., Nelson, BC V1L 4K3.

Yours truly,

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

Enclosure

cc: Environment Canada

MINISTRY OF ENVIRONMENT OPERATIONAL CERTIFICATE

17006

Under the Provisions of the Environmental Management Act

Columbia Shuswap Regional District

Box 978 781 Marine Park Drive NE Salmon Arm, BC V1E 4P1

is authorized to manage waste and recyclable material from the Columbia Shuswap Regional District and environs at the Columbia Shuswap Regional District in Golden landfill located near Golden, British Columbia, subject to the conditions listed below. Contravention of any of these conditions is a violation of the *Environmental Management Act* and may result in prosecution.

This Operational Certificate supersedes all previous versions of the Operational Certificate MR-17006 issued under the authority of the *Environmental Management Act*.

1. <u>AUTHORIZED DISCHARGE</u>

This section applies to the discharge of refuse from municipal, commercial and light industrial sources to a sanitary landfill known as the GOLDEN LANDFILL. The site reference number for this discharge is E246600.

1.1 The authorized works are a sanitary landfill and related appurtenances approximately located as shown on the attached location map.

Date issued:
Date amended:

May 5, 2003 August 29, 2012

(most recent)

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

- 1.2 The maximum quantity of waste discharges must not exceed the design capacity of the landfill as specified in the approved Design and Operations Plan. The final footprint and profile of the discharged waste must be within that specified in the Design and Operations Plan, and approximately as shown on the attached location map.
- 1.3 The authorized discharge is municipal solid waste as defined in the *Environmental Management Act* and other waste as may be authorized by the Director.
- 1.4 The legal description of the location of the authorized landfill facility is Subdivision 12 of Section 18, Township 27, Range 21, West of the 5th Meridian, Kootenay District.
- 1.5 The site is located approximately 2 kilometres travelling northeast on Highway 1 as shown on the location map.

2. <u>DESIGN AND PERFORMANCE REQUIREMENTS</u>

2.1 **Design and Operating Plan**

The Operational Certificate holder must prepare and maintain a current Design and Operations Plan prepared by a qualified professional. The Plan must be reviewed and updated as needed at least once every five years. The next update must be undertaken and completed in 2013. The Plan must address, but not be limited to, each of the subsections in the Landfill Criteria for Municipal Solid Waste including performance, siting, design, operational, closure and post-closure criteria. The facilities must be developed, operated and closed in accordance with the Plan. Should there be any inconsistency between this Operational Certificate and the Plan, this Operational Certificate must take precedence.

Written authorization from the Director must be obtained prior to implementing any changes to the approved plans. Based on any information obtained in connection with this facility, the Director may require revision of, or addition to, the design, operating and closure plans.

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

2.2 **Qualified Professionals**

All facilities and information, including works, plans, assessments, monitoring, investigations, surveys, programs and reports, must be certified by Qualified Professionals.

2.3 Maintenance of Works and Emergency Procedures

The authorized works must be inspected regularly and maintained in good working order. In the event of an emergency or condition beyond the control of the Columbia Shuswap Regional District including, but not limited to, unauthorized fires arising from spontaneous combustion or other causes, or detection of surfacing leachate on the property, the Columbia Shuswap Regional District must take appropriate remedial action and notify the Regional Office. The Director may reduce or suspend operations to protect the environment until the authorized works has been restored, and/or corrective steps taken to prevent unauthorized discharges.

2.4 Additional Facilities or Works

The Director may require investigations, surveys, and the construction of additional facilities or works. The Director may also amend any information requirements of this Operational Certificate including plans, programs, monitoring, assessments and reports.

2.5 Public Health, Safety and Nuisance

The landfill must be operated in a manner such that it will not create a public nuisance or become a significant threat to public health or safety with respect to landfill gas, unauthorized access, roads, traffic, airport activity, noise, dust, litter, vectors, or wildlife attraction.

2.6 Ground and Surface Water Quality Impairment

The landfill must be operated in a manner such that ground or surface water quality does not decrease beyond that specified by the British Columbia Water Quality Guidelines, or other appropriate criteria as may be specified by the Director, at or beyond the landfill property boundary.

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

The certificate holder must take all reasonable measures to ensure that BCWQG are met at or beyond the property boundary. These measures include but are not limited to:

- a) Prohibiting the discharge of municipal solid waste into water.
- b) Ensuring that no new waste is landfilled within 1.2 m of the highest groundwater level.
- c) Ensuring that adequate surface water and groundwater diversion works are constructed and maintained to minimize surface water run-off and groundwater seepage from entering the landfill.
- d) Ensuring that the management systems for surface water that has not come in contact with waste are hydraulically separate from those for managing impacted surface water.
- e) Ensuring that the landfill is operated in a manner that prevents the exceedance in surface water and groundwater of anticipated leachate indicators or parameters distinctive of leachate or those specified by the Director at the landfill boundary.
- f) Ensuring that the indicators in e) above, at specified groundwater monitoring wells within the property boundary are in accordance with those predicted by design and that suitable measures are taken to address the cause of any exceedances above the trigger levels identified in the most current Design and Operations Plan.
- g) Ensuring that the landfill is operated in accordance with a Design & Operations Plan which specifies measures to prevent decreases in groundwater and surface water quality at and beyond the property boundary.

If exceedances to the specified water quality criteria occur as a result of landfill operations, the Director may require that leachate management control measures or works be undertaken. Terms of reference for any leachate management study and/or design work must be submitted to the Director for review prior to conducting the work.

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

2.7 Landfill Gas Management

The Landfill must not cause combustible gas concentrations to exceed the lower explosive limit in soils at the property boundary or 25% of the lower explosive limit at or in on-site or off-site structures.

The Operational Certificate holder must ensure that the facility is in compliance with the requirements of the Landfill Gas Management Regulation under the *Greenhouse Gas Reduction (Emissions Standards) Statutes Amendment Act*, 2008 on or before applicable dates specified in the regulation. The requirements of the regulation and its guideline documents must be incorporated by the Operational Certificate holder into the Design and Operation Plan revisions as they come into effect and as applicable.

2.8 **Buffer Zone**

No material must be landfilled within 50 metres of the property boundary.

3. OPERATIONAL REQUIREMENTS

3.1 Waste Compaction and Coverage

The Operational Certificate holder must ensure that waste deposition and compaction meets or exceeds the requirements of the BC Landfill Criteria or its most current version for daily, intermediate and final cover. Control must be exercised to ensure keeping freshly deposited refuse in a well defined and small / manageable working face.

3.2 **Prohibited Wastes**

The disposal of the following types of wastes is strictly prohibited:

- (a) Hazardous Wastes other than those specifically approved for disposal to authorized landfills in the Hazardous Waste Regulation under the *Environmental Management Act*.
- (b) Biomedical wastes as defined in the <u>Guidelines for the Management of Biomedical Wastes in Canada</u> (Canadian Council of Ministers of the Environment, February 1992),

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

- (c) Bulk liquids and semi-solid wastes, which contain free liquids, as determined by US EPA Method 90954 Paint Filter Liquids Test, Test Methods for Evaluating Solid Wastes-Physical/Chemical Methods (EPA Publication No. Sw-846),
- (d) Release of ozone depleting substances from the storage, handling and disposal of used appliances, equipment, or any material containing ozone depleting substances is prohibited in accordance with the requirements of the Ozone Depleting Substances Regulation. Onsite removal or evacuation of Ozone Depleting Substances (ODS) from appliances and the subsequent storage of appliances on site is permitted subject to both activities being in compliance with the Ozone Depleting Substances Regulation.

3.3 Waste Asbestos

Waste asbestos is authorized for disposal subject to compliance with the requirements of section 40 of the Hazardous Waste Regulation and the following conditions:

- (a) The asbestos waste may not be mixed with any other hazardous waste.
- (b) The Regional District must approve the disposal before disposal takes place.
- (c) All other applicable requirements of the Hazardous Waste Regulation, including but not limited to manifesting and waste record keeping, must also be complied with.

3.4 Contaminated Soil

Soil that contains contaminants in concentrations less than "hazardous waste" as defined by the Hazardous Waste Regulation may be disposed of at the landfill site. Disposal includes monofilling, co-disposal with other wastes, use as a refuse cell berm material and use as a refuse cell cover material. Disposal does not include use as final cover material.

3.5 Wildlife and Vector Control

Vectors (carriers capable of transmitting a pathogen from one organism to another including, but not limited to flies and other insects, rodents, and birds) must be controlled by the application of cover material at the required frequency or by such additional methods as specified by the Director. Wildlife control fencing must be maintained around the perimeter of the landfill site and must be

Date issued: Date amended: May 5, 2003 August 29, 2012

(most recent)

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

electrified for at least the active bear season of each year.

This landfill must be operated so as to minimize the attraction of wildlife such as bears and birds by applying cover at required frequencies and instituting a good housekeeping program.

3.6 **Site Access and Supervision**

A landfill operator that has received BC Qualified Landfill Operator training, is familiar with the requirements of the Operational Certificate and the specifications of the Design and Operations Plan, must be present at all times during operating hours.

Locking gates must be maintained at all access routes to the landfill site. Gates, perimeter fencing and/or barriers must be installed where necessary to prevent unauthorized access to the site by vehicles. Gates must be locked during nonoperating hours.

3.7 **Dust Control**

Dust created within the landfill property must be controlled, using methods and materials acceptable to the Director, such that it does not cause a public nuisance.

Litter Control 3.8

The best practical means must be used to prevent the scatter of litter. Any litter scattered into the neighbouring property, along access roads, in drainage ditches, along litter-control fences, into surrounding trees or elsewhere on the landfill site must be cleaned up. The frequency of clean up and other additional requirements for refuse scatter control must be determined by the Director.

3.9 **Waste Reduction and Alternate Disposal**

The Provincial Government has developed policies to promote the reduction, reuse and recycling of wastes. The Operational Certificate holder is encouraged to segregate for recycling and reuse, where possible, materials destined for disposal at this site.

Public scavenging must not be permitted at the landfill. The controlled salvaging of waste by the landfill operator or persons authorized by the

Date issued: Date amended: (most recent)

May 5, 2003

August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

Operational Certificate holder is encouraged if areas or facilities for separation and storage of recyclable or reusable materials are provided.

In certain landfill environments, some construction and demolition debris or other wastes may create specific air and water quality concerns. If problems arise at this site that are attributable to specific wastes, the Director may require that alternate disposal/storage procedures be implemented.

3.10 Operations and Maintenance Manual

The Operational Certificate holder must prepare an Operations and Maintenance Manual to be reviewed and updated as necessary on at least an annual basis.

4. MONITORING AND REPORTING REQUIREMENTS

4.1 **Landfill Monitoring**

A monitoring program must be developed by a Qualified Professional and identify potential environmental impacts of the authorized facility and must address but not be limited to the Landfill Criteria for Municipal Solid Waste and Guidelines for Environmental Monitoring. The monitoring program must be updated every five years and submitted to the satisfaction of the Director. The next monitoring plan update is required to be undertaken and completed in 2013. Monitoring must be conducted in accordance with the monitoring program.

The program must be designed to assess and identify:

- The design performance of the landfill as per the Design & Operations Plan including but not limited to compliance with water quality performance standards at the landfill boundary.
- Landfill leachate as a contaminant source.
- Residential well water quality.
- Surface water quality.

The monitoring program must address, but not be limited to relevant sections of the Landfill Criteria for Municipal Solid Waste and the Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills. The Environmental Monitoring Program must take into consideration results from previous monitoring programs and any other investigations conducted at the site to ensure that early detection of potential impacts is possible.

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

4.2 **Sampling Techniques**

Sampling must be carried out in accordance with the procedures described in the most recent edition of the "British Columbia Field Sampling Manual for Continuous Monitoring Plus the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples", or by suitable alternative procedures as authorized by the Director. A copy of the above manual may be purchased from the Queen's Printer Publications Centre, P.O. Box 9452, Stn. Prov. Gov't., Victoria, British Columbia, V8W 9V7 (1-800-663-6105 or (250) 387-6409).

4.3 Analysis

Analyses must be carried out in accordance with procedures described in the most recent edition of the "British Columbia Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials", or by suitable alternative procedures as authorized by the Director. A copy of the above manual may be purchased from the Queen's Printer Publication Centre.

4.4 **Quality Assurance**

The Operational Certificate holder must produce, within 60 days on the request of the Regional Manager Environmental Protection, 'Field and Laboratory Quality Protocols and Quality Assurance Criteria' acceptable to the Director. The 'Laboratory Quality Protocols' must include the procedures used to assess precision, accuracy and blank quality, including frequency of application of those procedures, the procedures for sampling, handling (e.g. preservation, hold times) and corrective measures to be initiated when deficiencies are indicated. The 'Quality Assurance Criteria' must include the acceptance criteria for accuracy (based on recoveries for reference samples/spikes), for precision (based on deviation in field and lab duplicates) and method blanks (designed to indicate false positives).

5. LANDFILL REPORTING

5.1 **Annual Report**

The Operation Certificate Holder must submit an Annual Report to the Director on or before April 30th each year for the previous calendar year. The report must contain at least the following information:

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

- (a) an executive summary;
- (b) the type and tonnage of waste received, recycled, stored on-site and discharged / landfilled for the year;
- (c) Any proposed changes to the Design and Operations Plan and the environmental monitoring program (EMP), with rationale for the changes; a description of unanticipated occurrences and any changes to the closure or post-closure plans and funds;
- (d) A review of the preceding year of operation or an operations update which summarizes landfill development work completed in the subject reporting year and work planned for the subsequent year. A summary of any new information or changes to the facilities and plans, assessments, surveys, programs and reports;
- (e) Occurrences or observations of wildlife (medium and large carnivores) at the facility;
- (f) A statement regarding the facility's progress in reducing the regional solid waste stream being landfilled and the objectives of the Regional Solid Waste Management Plan;
- (g) An outline of the current Environmental Monitoring Program and a compendium of all environmental monitoring data in accordance with requirements specified in the most recent version of Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills and Landfill Criteria for Municipal Solid Waste. The annual report must document any effect of the discharge on the quality of the receiving environment using appropriate statistical and graphical analysis. Trend analyses, as well as an evaluation of the impacts of the discharges on the receiving environment must be included:
- (h) A list of training programs completed for landfill operators during the previous year; and
- (i) Any additional information requested by the Director.

All reports must be submitted, suitably formatted and tabulated in both print and electronic format (portable document format).

Date issued: Date amended: May 5, 2003 August 29, 2012

(most recent)

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

5.2 Five Year Report

The Operation Certificate Holder must submit a Five Year Report to the Director on or before April 30th on the five year anniversary of the last submission. The next report is due by the end of 2013. The report must contain at least the following information:

- (a) An executive summary;
- (b) An updated Design and Operations Plan;
- (c) A detailed hydrogeological assessment;
- (d) The type and tonnage of waste received, recycled, stored on-site and discharged / landfilled for the year;
- (e) A current topographic map detailing airspace consumption, on-site borrow pit changes and future developments;
- (f) Volume and density analysis or an in-place material summary, updated estimates for the remaining capacity, site life, revised closure date for the current phase or sequence and revised closure date for the current landfill footprint;
- (g) An outline of the current Environmental Monitoring Program and a compendium of all environmental monitoring data in accordance with requirements specified in the most recent version of Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills and Landfill Criteria for Municipal Solid Waste. The annual report must document any effect of the discharge on the quality of the receiving environment using appropriate statistical and graphical analysis. Trend analyses, as well as an evaluation of the impacts of the discharges on the receiving environment must be included;
- (h) An update on the financial assurance mechanism including a statement of the current dollar value of the Closure Fund and the amount earmarked for the Landfill site; and
- (i) Any additional information requested by the Director.

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

6. LANDFILL CLOSURE PLAN

6.1 Closure Plan and Post Closure

The Operational Certificate holder must perform closure and post-closure care in accordance with all applicable requirements of the BC Landfill Criteria for Municipal Solid Waste. This Operational Certificate is issued on the condition that a Closure Plan and Final Cover Design that meets or exceeds the requirements of the criteria will be submitted to the Director during the operating life of the landfill. The Closure Plan must be reviewed every five years throughout the operating life of the landfill.

A certification by a Qualified Professional attesting that all closure works have been completed in accordance with the Closure Plan and Final Cover Design is to be submitted to the Director no later than 60 days after the implementation of the Final Cover Design.

The Operational Certificate Holder must submit a Post Closure or Aftercare Plan to the Ministry at least two years prior to the anticipated closure date of the landfill.

6.2 Closure Fund

The Operational Certificate holder must provide for the funding of progressive closure operations, final closure and operations beyond closure by maintaining a closure fund. The value of the closure fund must meet or exceed the estimated closure and post-closure costs as established in the approved Design and Operations Plan and updated in the annual report, plus a reasonable contingency for any remediation which may be required. Reported costs must be adjusted for inflation annually. Alternately, a closure and post-closure financial security acceptable to the Director may be built over time.

The Operational Certificate holder must determine and ensure that the closure fund is adequate by preparing annually a financial statement of the fund which must be made available to the Director upon request. The financial statement must report the accrued capital, interest and additions to the fund for the previous year and review the sufficiency of the fund and the rate of accrual in consideration of the projected costs of closure and post-closure obligations.

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

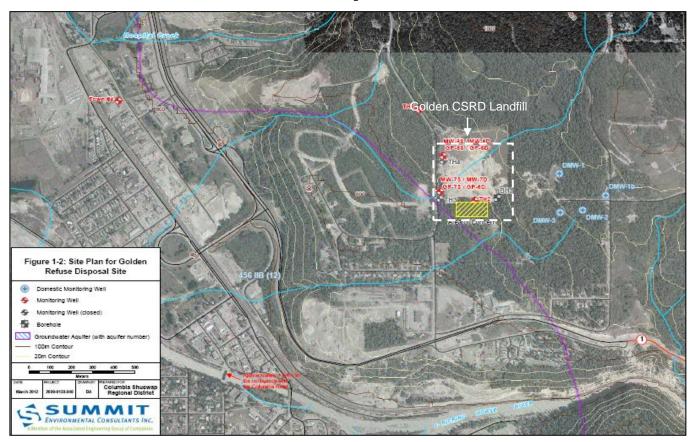
6.3 **Site Decommissioning**

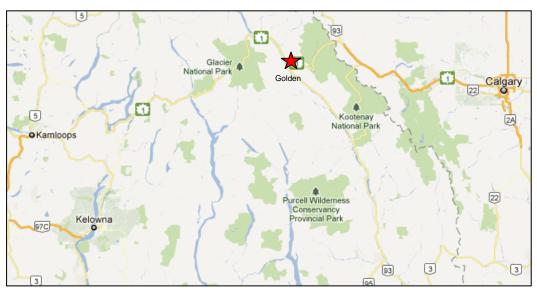
In accordance with Section 40 of the *Environmental Management Act* and Part 2 of the Contaminated Sites Regulation, the Operational Certificate holder must submit a site profile to the manager at least ten days prior to decommissioning the facilities authorized in Section 1.

6.4 **Declaration of Landfill**

Landfills sited on titled land must register a covenant that the property was used for the purpose of waste disposal as a charge against the title to the property as provided for under Section 215.1 of the *Land Title Act*. Landfills located on crown land are to have a "notation on file" registered that the property was used for the purpose of waste disposal.

The Operational Certificate holder must, upon closure of the landfill, register a charge against the property title, or provide other legal notification acceptable to the Director that the property described in Section 1 was used for the purpose of waste disposal. The Director must be notified of the charge or legal notification.


Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012


Chris Stroich, M.Sc., P.Ag.

for Director, Environmental Management Act

Southern Interior Region - Kootenay

Location Map

Date issued: Date amended: (most recent) May 5, 2003 August 29, 2012

(m)

Chris Stroich, M.Sc., P.Ag. for Director, *Environmental Management Act* Southern Interior Region - Kootenay

APPENDIX B WELL LOGS

	MAJOR	DIVISIÓN	GROUP SYMBOL	GRAPH SYMBO			TYPIC	AL (DESCR	IPTIO	N		CLA		TORY ATION	ł
	35.7	CLEAN GRAVELS	GW	0,5	RED	WEL	L GRAD	ED GR	VELS, 1	ITTLE C	R NO	$C_{U} = \frac{D_{0}}{D}$	io >1	Cc =	(D30)	= 1 to 3
l Sateri	VELS MALF COA PGER THA SIEVE	(LITTLE OR NO FINES)	GP	0000	C REO	POO SAN	POORLY GRADED GRAVELS, AND GRAVELSAND MIXTURES, LITTLE OR NO FINES				NOT MEETING ABOVE REQUIREMENTS			·		
JED SOILS LARGER THAN 200 SIEVE;	GRAVELS MORE THAN MALF COMPSE GRAINS LARGER THAN NO 4 SIEVE	DIRTY GRAVELS	GM		YELLOW	SILTY	GRAV	ELS, GR	AVEL-SA	ND-SILY		CONTENT OF FINES		ATTERBERG LIMITS BELOW "A" LINE OR P.I. LESS THAN 4		
NNED SC	. 3	(WITH SOME FINES)	сс		YELLOW	CLA	CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES				15.W EXCEED2	DS 🗀	ATTERBERG LIMITS. ABOVE "A" LINE P.I. MORE THAN 7			
COARSE-GRAINED THAN HALF BY WEIGHT LAR	75	CLEAN SANDS	sw		RED	WEL	GRADI	O SAN	DS, GRA	VELLY S	ANDS,	$c_0 = \frac{c_0}{c_0}$	10 >6	C¢ ≈ D	(D ₃₀) ²	= 1 fa ;
	VDS HALF FOR MILER THE SIEVE	(LITTLE OR NO TINES)	SP		RED	POO FINE	RLY GR. S	ADED S	ANDS,	ITTLE C	R NO	NOT MEETING ABOVE REQUIREMENTS				
1 3HOMI	SANDS MORE THAN HALF KNE GRAINS SMALLER THAN	DIRTY SANDS	5M		YELLOW	SILTY	SILTY SANDS, SAND-SILT MIXTURES				CONTE		ATTERBERG LIMITS BELOW "A" LINE P.I. LESS THAN 4			
-/-		(WITH SOME FINES)	şc		YELLOW	CLAY MIXT	YEY SANDS, SAND-CLAY TURES					EXCEEDS 12%		ATTERBERG LIMITS ABOVE "A" LINE P.I. MORE THAN 7		
-	SITS SION A" INE MEGICISIE OPGANG CONTENT	W ₁ < 50 %	ML		GREEN	ROC	ORGANIC SILTS AND VERY FINE SANDS. CK FLOUR, SILTY SANDS OF SLIGHT ISTICITY				ANDS,	CLASSIFIC				
200 SIEVE)	2 8 2 8 2	w ₁ > 50%	мн		BLUE	MAC	INORGANIC SILTS, MICACEOUS OR DIATO- MACEOUS, FINE SANDY OR SILTY SOILS					IS BASED UPON PEASTICITY CHART (see below)				
PINE-GRAINED SOILS HALF BY WEIGHT PASSES 200	CLAYS ABOVE ""- UNT ON PLASSICITY CHARI NCLIGIRET OPGANIC	W _L < 30%	Cl		GREEN	GRA	MORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS, LEAN CLAYS				ICITY, LEAN					
SRAINED BY YESCH		30% < W _L < 50%	ÇI		GREEN. BLUE	INORGANIC CLAYS OF MEDIUM PLASTI- CITY, SRITY CLAYS				ļ						
FINE-C	A80 ACCI	W _L > 50%	СН		BLUE		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS				ICITY,	WHENEVER THE NATURE OF THE FINE COMISINT HAS NOT BEEN DETERMINED. IT IS DESIGNATED BY THE LETTER "F", E.G. SERS ANYTHER OF SANYTHER				
(MORC TH	ORGANIC SILS & CLAYS SCLOW AT 11MC	W _L < 50%	Oι		GREEN	ORG/ CLAY	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY ORGANIC CLAYS OF HIGH PLASTICITY			SILTY						
	CORG SELOW ON C.	W _L > 50%	ко		BLUE	ORG				SF IS A MIXTURE OF SAND WITH SILT OR CLAY						
	HIGHLY OR	GANIC SOILS	P1		ORANGE	DRANGE PEAT AND OTHER HIGHLY ORGANIC SOILS			STRONG COLOR OR ODOR, AND OFTEN							
		SPECIAL	SYMBOL	.S			\$0		PRAS	TICITY O) NA87			СН		
		BEOROCK {Undifferentiated}		VOLCAN	IC ASH		40-	so	ILS PAS	FOR		EVE		H ^E		
		SOIL COM	PONENTS	**************************************			S S				Cı				МН	
FR	ACTION	U S STANDARD SIEVE SIZE	PERCE	FINING RA	WEIGHT OF		PLASTICITY II		cı					ОН		
3R AVI	EI .	PASSING RETAINED	PERCE	NT	DESCRIPT	ŌR	P. P.					Ot				
	course fine	76 mm 19 mm 19 mm No 4	50 -	- 1	and		4		725I.	<u></u>	ML 0	10 50	6	0 7	0 8	90
AND	cograe medium	4.75 mm 2.00 mm 2.00 mm 4254 m	. 35 - 20 -		som e little				SIZES M	ENTION		LIMIT IN	ıl			
fine 425 m 754 m SiLT (non plastic)			10 -	10 - 1 trace			2. 80 G	OUPS :	ARE GIVI	N COM	BINED G	SSESSING ROUP SYA WITH CL	ABOLS.	E.G. GW	-GC IS A	WELL
CLAY	(plastic)	75 4/ m					17	%				**********	~ · pm			
		OVERSIZE I	MATERIAL										•			
	nded or eubro	behaus	Not round	ted.				Kals	Gro	und	vato	r Con	erilti	na I	44	

	Testhole Log - TH95-01
Depth (m)	Soil Description
0-5.8	Silt-and fine sand, little gravel fine to coarse, iso. cobbles, non-plastic, dense, yellow/brown, moss
5.8-6.71	Silt-and sand fine to medium, some gravel fine to coarse, non-plastic, dense, yetlow/brown, mois
6.71-8.54	Sitt-and fine sand, trace coarse sand, trace gravel, fine to coarse, iso. cobbles, non-plastic, gre/brown, hard, moist.
8.54-11.3	Silt-and fine sand, trace gravel, fine to coarse, non-plastic, iso. cobbles, grey, hard, moist.
11.3-14.9	Silt-some fine sand, trace gravel, fine to coarse, occ. cobbles, non-plastic, red/brown, hard, damp.
14.9-18.9	cray and sin, trace time sand, trace time gravel iso coppler love to more starting and single sand, trace time sand, trace ti
	End of TH95-01 at 18.9m - No groundwater seepage - Monitoring Well installed

	Testhole Log - TH95-02
Depth (m)	Soil Description
0-9.76	Sand-fine and silt, some gravel fine to coarse, occ. cobbles, dense, light brown, damp. Upper 0.3m
9.76-12.8	Sand-afine and silt, some gravel fine to coarse, iso. cobbles, dense, red/brown, moist.
12.8-15.5	Sand-fine, some silt, some gravel fine to coarse, occ. cobbles, dense, red/brown, moist.
15,5-16.5	Silt-some fine sand trace gravel fine to coarse, occ. coopies, dense, red/brown, moist.
16.5-20.1	Silt-some fine sand, trace gravel, fine to coarse, non-plastic, iso. grey/brown, cobbles, stiff, moist. Silt-little fine sand, trace clay, trace gravel, fine to coarse, occ. cobbles, non-plastic, red/brown, hard, damp.
20.1-22.9	Silt - some sand, fine to coarse, trace gravel fine to coarse, iso. cobbles, grey, very hard, non-plastic
	End of TH95-02 at 22.9m - No groundwater seepage - Monitoring Well installed

-	Testhole Log - TH95-03
Depth (m)	Soil Description
0-8.54	Silt-some fine sand, some gravel, fine to coarse, iso. cobbles, non-plastic, red/brown, dense, damp
8.54-11.3	Silt-and fine sand, trace gravel, fine to coarse, non-plastic, iso. cobbles, grey, hard, moist
11.3-15.5	Silt-some fine sand, trace gravel, fine to coarse, non-plastic, iso, coopies, grey, hard, moist
15,5-18.3	Silt-some fine sand, trace gravel, fine to coarse, non-plastic, grey/brown, hard, moist
	Sand-fine and silt, some gravel fine to coarse, occ. cobbles, dense, light brown, damp.
	End of TH95-03at 18.3m - No groundwater seepage -Monitoring Well installed

<u></u>	Testhole Log. TH95-04
Depth (m)	Cast to
0-3,35	Silt-and fine sand, trace gravel fine to coarse occ cobbles non place of
3.35-5.49	Gravel-fine to coarse, and silt, trace sand fine to coarse, occ. cobbles, light brown, moist.
5.49-11.0	Silt-and fine sand, trace coarse sand, trace gravel, fine to coarse, iso. cobbles, non-plastic, gre/brown, hard, moist.
11.0-12.8	Sand-fine to medium, and gravel, fine to coarse, iso. cobbles, trace silt, dense, red/brown, moist.
12.8-17.7	Sand- fine to medium, and silt, little gravel fine to coarse, iso. cobbles, brown, hard, moist.
17.7-30.48	Sand - fine and silt, trace gravel, fine to coarse, brown, hard, moist.
	End of TH95-04 at 26.2m - No groundwater seepage - Monitoring Well installed

***	Testhole Log - TH95-05
Depth (m)	Shill Deportation
0-1.3	Silt-and fine sand, little gravel fine to coarse, iso. cobbles, non-plastic, dense, yellow/brown, mois
1.3-3.1	Waste-municipal debris, paper, tin plastics, mixed with soil, damp.
3.1-3.4	Sand-fine to medium, some silt, little gravel, fine to coarse, compact, brown, moist.
3.4-5.1	Waste-municipal debris, paper, tin plastics, mixed with soil, damp.
5.1-5.4	Sand-fine to medium, some silt, little gravel, fine to coarse, compact, brown, moist.
5.4-6.2	Waste-municipal debris, paper, tin plastics, mixed with soil, damp.
6.2-7.1	Sand-fine to medium, some silt, little gravel, fine to coarse, compact, brown, moist.
	End of TH5 at 7. Im no groundwater-temporary installation

TESTHOLE LOG

CLIENT:	RCP	P	ROJECT: Hydrogeologial	7	ESTHOLE:		BH95-02
LOCATION:			ssessment - Golden BC		ROJECT NO);	KE95-057
DRILL RIG:	Becker Hammer	SI	URF ELV: 914.0m ASL		O-ORDINA		
DEPTH (m) ELV. (m)	INDEX:	Plot	SOIL DESCRIPTION	LabTest	SAMPL	ES	COMPLETION DETAILS
Grass	V 20 40 80 80 100 120 140	·	T T	T	Depth (m)	N	Stickup 1,2m
2.0 912	0-9.76		Sand-fine and silt, some gravel fine to coarse, occ. cobbles, dense, light brown, damp. Upper 0.3m fill		AR1 1.5		50mm dia. Solid pipe
					AR2 3.0		Bentonite Grout
6.0 908					AR3 4.5		Top 6.0m
8.0 906					AR4 6.0 D1 6.5/6.95	50	
10.0 904	9.76-12.8		Sand-fine and silt, some gravel fine to coarse, iso. cobbles, dense, grey, moist.		AR5 7,5 AR6 10,0		Sand
12.0 902		,			AR7 11.5		
14.0 900	12.8-15.5	1	Sand-fine, some silt, some gravel fine to coarse, occ. cobbles. dense, red/brown, moist.		AR8 13.0 D2 13.5/13.9 AR9 14.0	50	0.010" slotted pipe
16.0 898	15.5-16.5 16.5-20.1		Silt-some fine sand, trace gravel, fine to coarse, non-plastic, iso. grey/brown, cobbles, stiff, moist. Silt-little fine sand, trace clay, trace	İ	AR10 15,0		
			gravel, fine to coarse, occ. cobbles, non-plastic, red/brown, hard, damp		AR11 16.5 AR12 18.0		
20.0 894	20.1-22.9	-	Silt - some sand, fine to coarse, trace		D3 20/20.45	80	
22.0 892	-		gravel fine to coarse, iso.cobbles, grey, very hard, non-plastic, moist. End of TH95-01 at 18.9m - No groundwater seepage Well installed				Well base 22.9m
Prepared by: Pau		Rev	viewed by:		ure:		
Groundwater Dep	oth: no groundwater	Boı	rehole Depth: 22.9m below surface	Da	te: 10/9/95		

TESTHOLE LOG .

CLIENT:	RCP	PI	ROJECT: Hydrogeologial	1	ESTHOLE:	<u></u>	BH95-03
	Golden Landfill	A:	ssessment - Golden BC		ROJECT NO):	KE95-057
DRILL RIG:	Becker Hammer	St	JRF ELV: 908.5m ASL.		O-ORDINA		
DEPTH (m) ELV. (m)	WEINARE 76	Plot	SOIL DESCRIPTION	Lab Test	SAMPL	ES	COMPLETION DETAILS
Gravel	0 3 10 15 20			T	Depth (m)	N	Stickup 1.2m
	0-8.54		Sitt-some fine sand, some gravel, fine to coarse, iso. cobbles, non- plastic, red/brown, dense, damp		ARI 1.5		50mm dia. Solid pipe
					AR2 3.0 D1 3.5/3.95	50	Bentonite Grout
6.0 902.5					AR3 4.5		Top 6,0m
8.0 900.2					AR4 6.0 D2 6.5/6.95	50	
10.0 898.2	8.54-11.3		Silt-and fine sand, trace gravel, fine to coarse, non-plastic, iso. cobbles, grey, hard, moist.		AR5 7.5		Sand -
12.0 896.2	11.3-15.5		Silt-some fine sand, trace gravel, fine to coarse, non-plastic, grey/brown, hard, moist		AR7 11.5		
14.0 894.2					AR8 13.0 D3 13.5/13.9 AR9 14.0	50	0.010" slotted
<u>16.0</u> 892.2	15.5-18.3		Sand-fine and silt, some gravel fine to coarse, occ. cobbles, dense, light brown, damp.		AR10 15.0 D4 16/16,45 AR11 16.5	75	
18.0 890.2	<u> </u>		Poil officer of the control of		AR12 18.0		18.3m
888.2 		14	End of TH95-01 at 18.3m - No groundwater seepoge Monitoring Well installed				
Personal P	TOT t	<u>_</u>	· · · · · · · · · · · · · · · · · · ·				
Prepared by: Paul			iewed by:		ure: 3		
Groundwater Dep	th: no groundwater	por	ehole Depth: 18.3m below surface	Dat	e: 10/9/95		

TESTHOLE LOG

	RCP	PROJECT: Hydrogeologial	Т	ESTHOLE:		BH95-04
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Golden Landfill	Assessment - Golden BC		ROJECT NO		KE95-057
DRILL RIG	Becker Hammer	SURF ELV: 916.9m ASL.	C	O-ORDINA	TES:	
DEPTH (m) ELV. (m)	INDEX: METHANE %	SOIL DESCRIPTION	Lab Test	SAMPLI	ES	COMPLETION DETAILS
Grass	0 3 10 15 20		Т	Depth (m)	N	Stickep 1.2m
2.0 914.9	0-3.35	Silt-and fine sand, trace gravel fine to coarse, occ. cobbles, non-plastic, dense, yellow/brown, damp.		AR1 1.5		50mm dia. Solid pipe
4.0 912.9	3.35-5.49	Gravel-fine to coarse, and silt, trace sand fine to coarse, occ. cobbles, light brown, moist.		D! 3.5/3.95	35	Grout & backfill
- 6.0 910.9 - 8.0 908.9	5.49-11.0	Sit-and fine sand, trace coarse sand, trace gravel, fine to coarse, iso. cobbles, non-plastic, grey/brown, hard, moist.		AR4 6.0 D2 6.5/6.95 AR5 7.5	50	
10.0 906.9 - - 12.0 904.9	11.0-12.8	Sand-fine to medium, and gravel, fine to coarse, iso. cobbles, trace silt, dense, red/brown, moist.		AR6 10.0 D3 10/10.45	45	Sand
14.0 902.9	12.8-17.7	Sand- fine to medium, and silt, little gravel fine to coarse, iso. cobbles, brown, hard, moist.		AR8 13.0 D2 13.5/13.9 AR9 14.0	50	0.010" slotted pipe
<u>16.0</u> 900.2	,			AR10 15.0 D4 15/15.45 AR11 16.5	70	
18.0 898.2		Sand - hine and silt, trace gravel, fine to coarse, brown, hard, moist.	- 1	AR12 18.0 AR13 22.0		
20.0 896.2	,.	End of TH95-01 at 30.48m - No	,	AR 14 25.0		Top 20.0m
30.0 894,2		groundwater seepage Monitoring Well installed		AR 16 30.0		Bot 30.5m
Prepared by: Paul	Blackett	Reviewed by:	Figu			DOI 30.3II
Groundwater Dept	h; no groundwater	Borehole Depth: 30.5m below surface		e: 10/9/95		
	•					

Symbol Legend

Common Symbols Silty Sand Clayey Sand Sand Sandy Silt Sand and Gravel Sandy Silty Clay Silty Sand and Gravel Limestone **Well Symbols** Pipe and Screen NONE None Double Walled Pipe Sealed Pipe Fine Screen Coarse Screen Slotted Screen Slotted Screen **Top Fittings** Cap Flush-mounted Cap Reducer Pipe Break **Bottom Fittings** Cone None Сар Screw-on Cap Packing and Backfill NONE None Bentonite Sand

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH3

Well I.D.: TH-3 (well closure)

Location on site: on Golden-Donald Upper Rd

Northing/ Easting/ Elevation: 0

	SI	JBSURFACE PROFILE		SAMPL	E.	**	
Depth	Symbol	Description	Туре	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks
o ft m o		Ground Surface			İ		
10		End of Borehole				TH-3 was replaced by MW-7. TH-3 was decommissioned according to the Groundwater Protection Regulation. The surface casing was removed, the 2" piezometer was cut approximately 4" below ground surface and bentonite chips were poured into the casing. Bentonite was poured around the outer annulus of the piezometer to bring the hole to ground surface.	
70_							

Contractor: JR Drilling

Operator(s): Jerry

Drill Method:

Ground conditions: bare

Date: April 20, 2009

Time:

Temperature: 10 degC

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH4

Well I.D.: TH-4 (well closure)

Location on site: near weight scale

Northing/ Easting/ Elevation: 0

	SUB	SURFACE PROFILE		SAMPL	E		
Depth	Symbol	Description	Type	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks
10		Ground Surface				TH-4 was replaced by MW-6S. TH-4 was decommissioned according to the Groundwater Protection Regulation. The surface casing was removed, the 2" piezometer was cut approximately 4" below ground surface and bentonite chips were poured into the casing. Bentonite was poured around	
90		End of Borehole				the outer annulus of the piezometer to bring the hole to ground surface.	

Contractor: JR Drilling

Operator(s): Jerry

Drill Method:

Ground conditions: bare

Date: April 20, 2009

Time:

Temperature: 10 degC

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH-6 (6")

Well I.D.: MW-6S, MW-6D, GP-6S, GP-6D

Location on site: near weight scale (replaces TH4)

Northing/ Easting/ Elevation: 0

		SL	IBSURFACE PROFILE		SAMPL	.E		
	Depth	Symbol	Description	Type	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks
10 20 30	- - - - - -		Light brown, GRAVEL, w. sand, loose, dry				Configuration: ◆ Two groundwater monitoring wells (each 2" diameter)	- S9-WW - S9-WW - S9-WW
30 40 50	10		Light brown, SILT w/ sand, trace gravel, loose, dry Grey, GRAVEL w/ sand and silt, loose, dry Grey, GRAVEL w/ sand and silt,				◆ Two gas monitoring probes (each 1" diameter) ◆ Schedule 40 PVC	W W
60 70 80	20		Note: larger gravel than above Light brown, (f.) SAND w/ silt and trace gravel, dense, moist	į			 Gas piezos, are threaded 20/40 sand pack around each monitoring well 	32.77 m April 22/09
90. 100. 110.	30 8		Grey, (m.) SAND, w/ silt and gravel, dense, moist Grey, cemented GRAVEL, dense, dry Yellow, SILT w/ some angular				Screen Assembly: ◆ No. 10 slot PVC MW6D -Screened in bedrock	32.77 m
120 . 130 . 140 .	40 4		gravel and mc. sand, dense, moist Black, Limestone bedrock				- Screened btw 59.76 m (196 ft) and 65.85 (216 ft) bgs MW6S -Screened in surficial	
150 _ 160 _	50						deposits (overburden) -Screened btw 31.40 m (103 ft) and 34.45 m (113 ft) bgs GP6D	
180 _	60						-Screened btw 12.20 m (40 ft) and 16.77 m (55 ft) bgs GP6S -Screened btw 7.93 m	
200 _ 210 _ 220 _			End of Borehole				(26 ft) and 9.45 m (31 ft) bgs <u>Casing height</u> =	

Contractor: JR Drilling Central Ltd.

Operator(s): Jerry Opper

Drill Method: Dual Air Rotary

Ground conditions: bare

Date: April 20, 2009

Time:

Temperature: 10 degC

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH-7 (6")

Well I.D.: MW-7, GP-7S, GP-7D (replaces TH3)

Location on site: Golden-Donald Upper Rd.

Northing/ Easting/ Elevation: 0

	SI	JBSURFACE PROFILE		SAMPL	.E				
Depth	Symbol	Description	Type	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks		
0 ft m 0 10		Grey, SILT and clay, dense, moist Grey, SILT, dense, moist Light brown, SILT w/ (f.) sand and gravel, loose, moist, fining upwards Grey, cemented GRAVEL w/ sand and silt, dense, damp Grey, SILT trace sand, dense, moist Grey, GRAVEL w/ (m.) sand and silt, dense, moist Grey, (fm.) SAND w/ silt, dense, moist, coarsening upward Grey, cemented GRAVEL, dense, dry Grey, (f.) angular GRAVEL w/ sand and silt, dense, dry, End of Borehole				Configuration: ◆ One groundwater monitoring well (2" diameter) ◆ Two gas monitoring probes (each 1" diameter) ◆ Schedule 40 PVC ◆ Gas probes are threaded ◆ 20/40 sand pack around each monitoring well Screen Assembly: - No. 10 slot PVC MW-7 - Screened in the surficial deposits (overburden) - Screened btw 25.6 m (84 ft) and 31.7 m (104 ft) bgs GP-7D - Screened btw 13.72 m (45 ft) and 15.24 m (50 ft) bgs GP-7S - Screened btw 4.5 m (15 ft) and 6.10 m (20 ft) bgs Casing Height: 1.2 m (3.9 ft)	Sorid PVC Bentonite Solid PVC Bentonite MW-7-		
40 1				Cantroote	155.5				

Contractor: JR Drilling Central Ltd.

Operator(s): Jerry Opper

Drill Method: Dual Air Rotary

Ground conditions: bare

Date: April 23, 2009

Time:

Temperature: 7 deg C

Project No: 2010-8835.010.006

Well I.D.: TH-8

Client: CSRD

First Water: n/a

Location: Golden Landfill

Stabilized Water Level: 14 m bloc

Top of Casing Elevation: flush mount

Ground Elevation: Approx. 915 m asl

Reviewed by: Tilman Roschinski

L	ocation (on site: 150 m NW of landfill on Golden D	onald Upper Road	Reviewed by: Tilman Roschinski Logged by: Bryer Manwell
		Subsurface Geology		
Depth	Symbol	Description	Well Details and Notes	Well Construction
-1 <u>f</u> f	m	Ground Surface		
14 19 19 14 14 14 14 14 14 14 14 14 14 14 14 14	5 5 15	Ground Surface SAND AND GRAVEL Sand and gravel, trace fines, light brown.	Flush mount casing, well sealed with j-plug	u ✓ Oct 7 2010 bentonite grout bentonite grout
49		CLAYEY TILL Clay matrix, some gravel, trace sand, dense, wet. REGOLITH		

Contractor: Target Drilling Inc.

Drill Method: Coring

Boring Diameter/ Depth: 6 in / 27.3 m

Operator(s):

Date: Oct 5-7 2010

Project No: 2010-8835.010.006

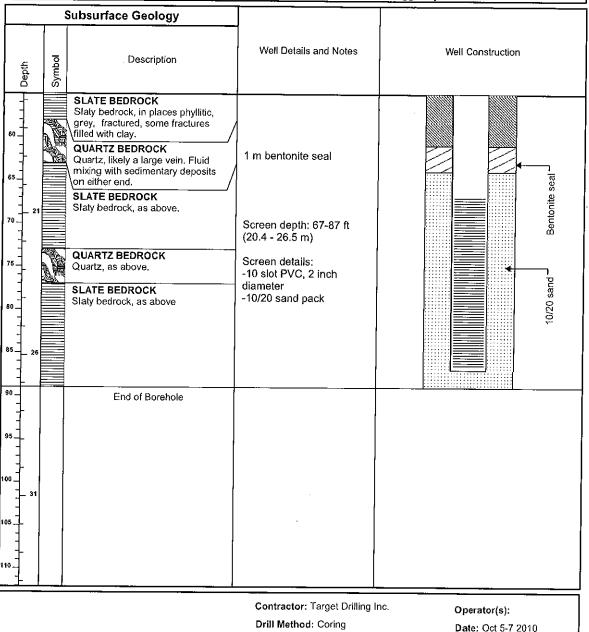
Location on site: 150 m NW of landfill on Golden Donald Upper Road

Well I.D.: TH-8

Client: CSRD

First Water: n/a

Location: Golden Landfill


Stabilized Water Level: 14 m btoc

Ground Elevation: Approx. 915 m asl

Top of Casing Elevation: flush mount

Reviewed by: Tilman Roschinski

Logged by: Bryer Manwell

Boring Diameter/ Depth: 6 in / 27.3 m

Project No: 2010-8835.010.006

Location on site: 5 m SE of landfill

Well I.D.: BH9

Client: CSRD

First Water: n/a

Location: Golden Landfill

Stabilized Water Level: n/a

Ground Elevation: Approx. 928 m asi

Top of Casing Elevation: 0

Reviewed by: Tilman Roschinski

Logged by: Bryer Manwell

	_	Subsurface Geology		Logged by. Brye Manwell
Depth	Description		Well Details and Notes	Well Construction
o ft mo	 	Ground Surface		-
10		SILT Silt, occasional cobbles, dry to moist, yellowish-grey.	No well installed.	Natural slough
50 15				
55		End of Borehole		

Contractor: Target Drilling Inc.

Drill Method: Coring

Boring Diameter/ Depth: 6 in

Operator(s):

Date: Oct 8 2010

Monitoring Well ID: MW18-10

Project Number: 14-024-21

Client: CSRD

Project: Golden RDF Additional Drilling

Location: Golden, BC

Depth Below Ground Surface	Symbol	Lithology	Well Construction	Well Completion Details
ft m 0 - 0		Ground Surface Topsoil Sand and gravel, medium grained sand, sub angular gravel, moderately to poorly sorted, brown, dry.		Lockable steel wellcap with a 0.81 m (32") stick up 8" Steel casing from 0.81m (3 ft) above ground surface (ags) to 35.65 m (117 ft) below ground surface (bgs). Bentonite fill from 0 m (0 ft) to 6.1 m
30-				(20 ft) bgs, 10.7 m (35 ft) to 11.3 m (37 ft) bgs, 15.2 m (50 ft) to 15.8 m (52 ft) bgs 19.8 m (65 ft) to 20.4 m (67 ft) bgs and from 24.7 m (81 ft) to 25.3 m (83 ft) bgs. Natural fill from 6.1 m (20 ft) to 10.7 m (35 ft) bgs, 11.3 m (37 ft) to 15.2 m (50 ft) bgs, 15.8 m (52 ft) to 19.8 m (65 ft) bgs and from 20.4 m (67 ft) to 24.7 m
45 - 15		Sand and gravel, medium to coarse grained sand, sub angular gravel, grey, dry. Sand and gravel, medium grained sand, sub angular gravel, moderately sorted, brown, moist at 58 ft.	XX XX	(81 ft) bgs.`
75-		Sand and gravel, with silt, fine to medium grained sand, sub angular gravel, moderately sorted, grey, moist. Bedrock, grey, mapped as argillite,	XX XX	
90-		shale and limestone, dry.		Sand pack with 10 filter sand from 25.3 m (83 ft) to 35 m (115 ft) bgs. Water Level 28.53 m (94 ft) bgs June 25, 2018.
105				3 m (10 ft) length of threaded 10 slot screen from 32 m (105 ft) bgs to 35.1 m (115 ft) bgs. 0.3 m (1 ft) length sandpack from 35.4 m (116 ft) bgs to 35.7 m (117 ft) bgs.

Coordinates: 503411.92 m E 5684049.84 m N 11 U

Static Water Level: 28.53 m June 26, 2018

Ground Elevation: 919 m above sea level (asl)

Total Borehole Depth: 35.65 m (117 ft) bgs

Drawn By: RA

Checked By: BRM

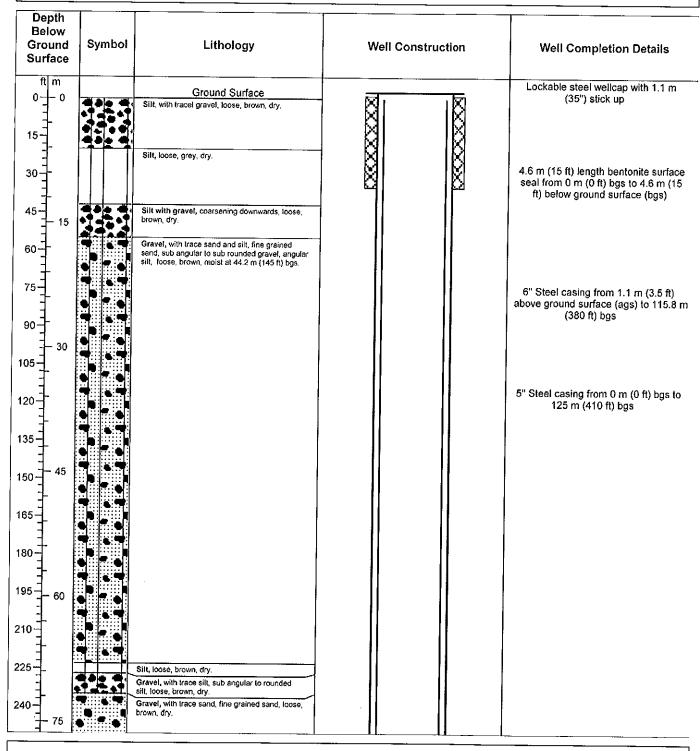
Drilling Contractor: JR Drilling

Drilling Method: Dual Air Rotary

Date of Completion: June 25, 2018

Logged By: RA

Monitoring Well ID: MW18-11


Project Number: 14-024-21

Client: CSRD

Project: Golden RDF

Location: Golden, BC

Coordinates: 503205.13 m E 5684006.34 m N 11 U Static Water Level: 114 m (374 ft) December 6, 2018

Ground Elevation: 915 m above sea level (masl)

Total Borehole Depth: 115.8 m (380 ft)

Drawn By: RA

Checked By: BRM

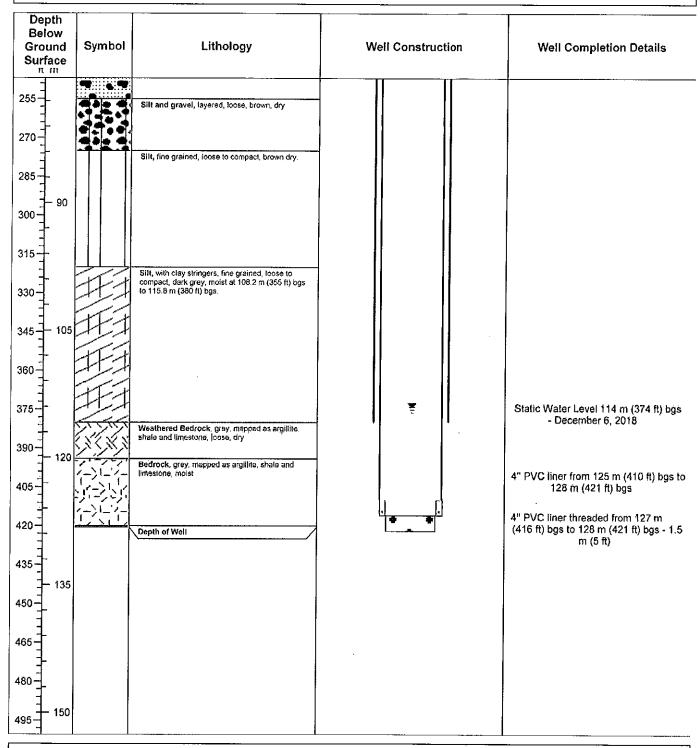
Drilling Contractor: JR Drilling Kamloops

Drilling Method: Dual Air Rotary

Date of Completion: December 3 - 6, 2018

Logged By: RA/BRM

Monitoring Well ID: MW18-11


Project Number: 14-024-21

Client: CSRD

Project: Golden RDF

Location: Golden, BC

Coordinates: 503205.13 m E 5684006.34 m N 11 U

Static Water Level: 114 m (374 ft) December 6, 2018

Ground Elevation: 915 m above sea level (masl)

Total Borehole Depth: 115.8 m (380 ft)

Drawn By: RA

Checked By: BRM

Drilling Contractor: JR Drilling Kamloops

Drilling Method: Dual Air Rotary

Date of Completion: December 3 - 6, 2018

Logged By: RA/BRM

Report 1 - Detailed Well Record

```
Construction Date: 2000-10-25 00:00:00.0
 Well Tag Number: 99638
                                                Driller: Owen's Drilling Ltd.
                                                Well Identification Plate Number:
 Owner: KATS CONTRACTING
                                                Plate Attached By:
                                                Where Plate Attached:
 Address: 532 HIETALA ROAD
                                                PRODUCTION DATA AT TIME OF DRILLING:
Well Yield: 6 (Driller's Estimate) U.S. Gallons per Minute
 Area: GOLDEN
                                                Development Method: Air lifting
 WELL LOCATION:
                                                Pump Test Info Flag: N
Artesian Flow:
 KOOTENAY Land District
 District Lot: Plan: Lot:
Township: 27 Section: 18 Range: 21
                                                Artesian Pressure (ft):
                                                Static Level: 50 feet
 Indian Reserve: Meridian: W5M Block: A
                                                WATER QUALITY:
 Island:
                                                Character:
BCGS Number (NAD 27): 082N036121 Well:
                                                Colour;
                                                Odour:
Well Disinfected: N
 Class of Well: Water supply
Subclass of Well: Domestic
                                                EMS ID:
Orientation of Well: Vertical
                                                Water Chemistry Info Flag: N
Field Chemistry Info Flag:
Status of Well: New
Well Use: Private Domestic
                                                Site Info (SEAM);
Observation Well Number:
Observation Well Status:
                                               Water Utility:
Construction Method:
                                               Water Supply System Name:
Water Supply System Well Name:
Diameter: inches
Casing drive shoe: Y N
Well Depth: 276 feet
Elevation: feet (ASL)
                                                SURFACE SEAL:
                                               Flag: N
Final Casing Stick Up: 6 inches
                                                Material:
Well Cap Type: PLASTIC CAP
Bedrock Depth: 18 feet
                                               Method:
                                               Depth (ft):
Lithology Info Flag: N
                                               Thickness (in):
File Info Flag: N
Sieve Info Flag: N
                                               Liner from
                                                                  To:
                                                                              feet
Screen Info Flag: N
                                               WELL CLOSURE INFORMATION:
                                               Reason For Closure:
Site Info Details:
                                               Method of Closure:
Closure Sealant Material:
Other Info Flag:
Other Info Details:
                                               Closure Backfill Material:
                                               Details of Closure:
Screen from
                        to feet
                                               Type
                                                                        Slot Size
Casing from
                        to feet
                                                Diameter
                                                                        Material
                                                                                                Drive Shoe
                                                                        Steel
                        276
                                                5.88
                                                                        Open hole
GENERAL REMARKS:
 260' OF PVC LINER. BOTTOM 40' PERFORATED. SHOE: 1X6" CARBIDE BOTTON. RECOMMENDED PUMP TYPE: SUB
LITHOLOGY INFORMATION:
         0 to
18 to
From
                   18 Ft.
                              CLAY, GRAVEL, COBBLES
                             BEDROCK, BROKEN

2 Gallons per Minute (U.S./Imperial)
From
                   36 Ft.
         36 to
                  150 Ft.
                                                                            bedrock
From
        150 to
                  257 Ft.
                              2 Gallons per Minute (U.S./Imperial)
                                                                            bedrock
                  276 Ft.
From
                              1 Gallons per Minute (U.S./Imperial)
```

- Return to Main
- Return to Search Options
- · Return to Search Criteria

Information Disclaimer

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

-		
Well	Construction	Report
		robore

☐ Well Closure Report

Stamp company name/address/ phone/fax/e-mail here, if desired.

Willistry Well ID Plate Number	
Ministry Well Tag Number: //	6361
Confirmation/alternative spec	
Original well construction rec	ort attached

Ministry of	Environment		Well Alteration	Report					Orig	ginal well construction	n report atta	ched
			minimum manda			RES	SEPTEMBER 1	S	ee revers	e for notes & definit	tions of abbr	reviations.
			in co	n50	Lid	MIL	d		1			
	address:		Street no 2/1						(2)(Prov.	Postal Cod	eroAlhi
									, 3 T.	Town ZZ Rg. 22 Land	d District d	
			2 and Descri						-3_Twp	Rg, ZZ Lan	d District	0/0//0/2
NAD 83 (see note	: Zone:		and UTM N	orthing:			m			(see note 3): 57 e://6 58.		
Method	of drilling	air r	rotary able too	□ mud r	otary 🗆 au	ger 🗆 dr						
			rtical horizontal					Metho	d (see note	e 4):		
							of well:					
MINORAL CO.	-	9 70		-10-10		100		100	ommercial c	or industrial other (s	pecify):	-
From ft (bgl)	To ft (bgl)	Relat Hardn		Material De	escription (Us	se recomm	1 (see notes 1: ended terms or nount, if applica	reverse.	Water-be Estimated (USgp	Flow Observations ((e.g., fractured	
0	41	m	BR.				c + 500					
41	73	100	BR.									ALMERIC
73	82	5					2 4 50			EN BING		-
2)	24	5					+ 12		132 LI	6		
84	88						+ -100		111			
7										A ME STONE		
1												
										The British		
							1			To Fight Ma		
		-										
	-		165	100		999				The state of the s	1 1 1 1 1	
From ft (bgl)	To ft (bgl)	Dia in	Casing Material /	Open Hole	Wall Thickness in	Drive	Screen From ft (bgl)	To ft (bgl)	Dia	Type (see no	te 18)	Slot Size
0	26	8	57866		261	13	. 83	73	8	40 inch	n. SER	-
	3										pine.	
									- No.			
5	PE										133	
			70,76		Depth:		Screen type			ttom Uncased hol	e	
Method of Backfill: T		n: La Pou	ured Pumped		Depth:	in				eel Plastic O	ther (specify):	
Liner:	PVC [Other (s	pecify):					The same of	the same of the sa	slot Slotted D		е
Diameter.		ir		Thickness:		in	Screen bott Filter pack:		il L Plug	p □ Plate □ Other	(specify):	in
From:	_ft (bgl) T	ο: π	(bgl) Perforated: F	rom:f	(bgl) To:	ft (bgl)	Type and si				Miles II	
Develo	ped by	:	A TO DELLO				Final we	ell com	pletion	data:		
-	100000	rging 🗆	Jetting Pumpii	ng 🗆 Baili	ng		Total depth		38	ft Finished well o		ft (bgl)
Other	(specify):			Total	duration:	hrs	Final stick (1000	ft (bt	in Depth to bedro oc) Estimated well		ft (bgl) USgpm
	ield esti	imated	bv:				Artesian flo	W;		USgpm, or Artesian p		ft
and the second second			Bailing Othe	(specify):	1 - 5 -		Type of well		attack 4	Well	disinfected:	Yes No
Rate:	-	and the same of	5 USgpm Duration ft (btoc) Pumping		1	ft (htee)	Well clo			on:		
			ty characteris		1	_ft (btoc)	Reason for	closure:				
			Cloudy 🗆 S		Gas		Method of c		Poured [Pumped Backfill mate	rial:	
Colour/od	lour:			Waters	ample collec	cted:	Details of ck		note 17):	Daukiii iiidte	Total Control of the	200
	riller (pri	ALCOHOL: N			1							
			20): 620 20): 620		TORL	5	Date of	vork m	YY/MM/DI	0):	70.7	
Consulta	ant (if appli	icable; na	me and company):	k. Ho	450	-	Started:			Completed:	1505	25
Water Pro	tection Reg	ulation.	tion, well alteration or with the requirements	well closure n the Water	Act and the G	may be, Fround	Comments				1	
Signatu	re of Dril	ler Resp	onsible	1 17	-							

Landfill Gas Probe GP20-01D

PROJECT NUMBER 19-2850.03 PROJECT NAME Golden CSRD Landfill **CLIENT** CSRD

ADDRESS 350 Golden Donald Upper Road, Golden, BC

DRILLING DATE July 21, 2020 CONTRACTOR On The Mark Locates Ltd. EQUIPMENT MODEL Truck Mounted Auger Rig CHECKED BY LMM BORING METHOD ODEX

FIELD SCREENING METHOD LOGGED BY KT

COMMENTS

										Ι		
Depth (m)	USCS Classification	Soil Description	Graphic Log		Sample ID	Sample Type	PID (ppmv)	Analysed	% Recovery	Water Level	Well Di	
- - - 1	SC/GC	Brown, w>PL, CLAYEY GRAVEL, some to sandy, inferred cobbles and boulders, cohesive, hard. (TILL-LIKE)		SA1		SS		Z				-Stick Up -Bentonite
- - 2				SA2		SS		N				-Cuttings _Bentonite _Seal
- - - 3 -				SA3		SS		N				-Cuttings
- - 4 -												
_ _ 5	CL	Light brown, w <pl, and="" clay,="" cohesive,="" gravel="" hard.<="" sand,="" silty="" some="" td="" very=""><td></td><td>SA4</td><td></td><td>SS</td><td></td><td>N</td><td></td><td></td><td></td><td>_Bentonite Seal</td></pl,>		SA4		SS		N				_Bentonite Seal
- - - - - - - - 7		WEATHERED BEDROCK.										
- - - - - - - - - - - - - - - - - - -		REDDOCK										25mm Slotted PVC Pipe and Filter Sand
- - 11 - - - - 12		BEDROCK.										-Cuttings
- - - - - 13		End of Soil Vapour Probe. is bore log is intended for environmental not geo										Page 1 of ²

Landfill Gas Probe GP20-01S

PROJECT NUMBER 19-2850.03 PROJECT NAME Golden CSRD Landfill **CLIENT** CSRD

ADDRESS 350 Golden Donald Upper Road, Golden, BC

DRILLING DATE July 22, 2020 CONTRACTOR On The Mark Locates Ltd. EQUIPMENT MODEL Truck Mounted Auger Rig CHECKED BY LMM BORING METHOD ODEX

FIELD SCREENING METHOD LOGGED BY KT

COMMENTS

			Ī		T					
Depth (m)	USCS Classification	Soil Description	Graphic Log	Sample ID	Sample Type	PID (ppmv)	Analysed	% Recovery	Water Level	Well Diagram
- 0.5 - 1 - 1.5 - 2.5 - 3.5	SC/GC	Brown, w>PL, CLAYEY GRAVEL, some to sandy, inferred cobbles and boulders, cohesive, hard. (TILL-LIKE)								Bentonite Bentonite Bentonite
4.5 - 5.5 - 6.5	CL	Light Brown, w <pl, and="" bedrock.<="" clay,="" cohesive,="" gravel="" hard.="" sand,="" silty="" some="" td="" very="" weathered=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25mm Slotted PVC Pipe and Filter Sand</td></pl,>								25mm Slotted PVC Pipe and Filter Sand
- 7.5 - 8 - 8.5		End of Soil Vapour Probe. is bore log is intended for environmental not geo								Page 1 of 1

Landfill Gas Probe GP20-02D

PROJECT NUMBER 19-2850.03 PROJECT NAME Golden CSRD Landfill **CLIENT** CSRD

ADDRESS 350 Golden Donald Upper Road, Golden, BC

DRILLING DATE July 22, 2020 CONTRACTOR On The Mark Locates Ltd. EQUIPMENT MODEL Truck Mounted Auger Rig CHECKED BY LMM

FIELD SCREENING METHOD LOGGED BY KT

BORING METHOD ODEX

COMMENTS

				I			ı			ı	1	
Depth (m)	USCS Classification	Soil Description	Graphic Log		Sample ID	Sample Type	PID (ppmv)	Analysed	% Recovery	Water Level	w	e ll Diagram
	√OL _/ GC	Dark brown, W <pl, clayey="" organic="" rootlets.<="" silt,="" td=""><td>9, 2</td><td>SA1</td><td></td><td>SS</td><td></td><td>N</td><td></td><td></td><td>: ^ : .</td><td>- Stick Up</td></pl,>	9, 2	SA1		SS		N			: ^ : .	- Stick Up
0.5		Brown, w <pl, and="" boulders,="" clayey="" cobbles="" cohesive,="" gravel,="" hard.<="" inferred="" sand,="" some="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>										
1		grading to										
1.5		Brown, w~PL, gravelly SILTY CLAY, some sand, inferred cobbles and boulders, cohesive.		SA2		SS		N				
_ 2												
2.5												
3			8,00	SA3		SS		N				Bentonite
3.5												Seal
_ _ 4		WEATHERED REDDOOK	, X									
4.5		WEATHERED BEDROCK.										
_ 5												
5.5												
_ _ _ 6												
- 6.5												
7												
7.5												
- - - - 8												25mm Slotted PVC
												Pipe and Filter Sand
8.5												
9												
9.5		BEDROCK.									90,00900	 No⊊∕
10		BEUNOUK.									######################################	င်္ကြီး င်္ကြီး င်္ကြီး Cuttings
_ _ 10.\$											0.0030000 0.00300000 0.0030000000000000	0/03 609 800
		End of Soil Vapour Probe.	toobnica									Page 1 of

Landfill Gas Probe GP20-02S

PROJECT NUMBER 19-2850.03 PROJECT NAME Golden CSRD Landfill

CLIENT CSRD

ADDRESS 350 Golden Donald Upper Road, Golden, BC

DRILLING DATE July 22, 2020

CONTRACTOR On The Mark Locates Ltd. EQUIPMENT MODEL Truck Mounted Auger Rig CHECKED BY LMM

BORING METHOD ODEX

FIELD SCREENING METHOD

LOGGED BY KT

COMMENTS

					1	1				
Depth (m)	USCS Classification	Soil Description	Graphic Log	Sample ID	Sample Type	PID (ppmv)	Analysed	% Recovery	Water Level	Well Diagram
	√OL ∠	Dark brown, W <pl, clayey="" organic="" silt,<="" td=""><td>77</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Stick Up</td></pl,>	77							Stick Up
_ 0.5	GC	rootlets. Brown, w <pl, and="" boulders,="" clayey="" cobbles="" cohesive,="" gravel,="" hard.<="" inferred="" sand,="" some="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>								
		grading to	1.							
_ 1 _ _		Brown, w~PL, gravelly SILTY CLAY, some sand, inferred cobbles and boulders, cohesive.								
_ _ 1.5			25							Bentonite
-										Seal
2 2										
_ _ _ 2.5			2.2							
_										
_ _ _ 3			2000							
-			258							
_ _ 3.5										
-			1/8							
- - - 4										
-		WEATHERED BEDROCK.								
- - 4.5										
-										25mm
- - - 5										Slotted PVC
-										Filter Sand
- - - 5.5										
- 0.0										
_ _ 6										
- - - 6.5										
- 0.5										
_		End of Soil Vapour Probe.								
_ 7 _ _										
_										
— 7.5 - -										
D:		is bore log is intended for environmental not geo	l 	l						Page 1 of

APPENDIX C 2020 GROUNDWATER LEVELS AND WATER QUALITY DATA

							ı								ı											
			Sam	npling Location	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4	DMW-4	DMW-4	DMW20-01	DMW20-01	DMW20-01		DUP A	DUP A	DUP A	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S
				Date Sampled	2020-03-24	2020-05-20	2020-08-25	2020-11-03	2020-03-24	2020-05-20	2020-08-25		2020-08-24	2020-11-03			2020-08-24	2020-11-03	2020-03-24	2020-05-20	2020-08-24		2020-03-24		2020-08-24	
				Lab Sample ID Sample Type	0032091-06	0051806-07	0082459-07	20K0317-07	0032091-07	0051806-08	0082459-08	0051806-06	0082459-11	20K0317-10	0032091-09	0051806-10	0082459-10	20K0317-09	0032091-08	0051806-09	0082459-09	20K0317-08	0032091-01	0051806-01	0082459-01	. 20K0317-0:
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW		•			•					•			•	•	•			•		•		-
Field Parameters					Ī																					
Depth to Water	m				-	-	-	-	-	-	-	-	-	-	-	-	-	-	33.71	33.765	34.788	33.862	32.495	32.531	32.535	32.584
Dissolved Oxygen	mg/L				1.86	2	3.29	3.57	3.7	5.15	2.83	10.06	8.87	9.45	-	-	-	-	1.84	3.92	3.6	3.21	1.45	2.26	2.07	3.68
Electrical Conductivity	μS/cm				881	1104	1331	1120	880	1194	1374	538	548	553	-	-	-	-	3000	3960	3911	3871	2955	3944	3864	3837
Elevation of Piezometric Surface	m				-	-	-	-	-	-	ı	-	-	-	=	-	-	-	884.565	884.51	883.487	884.413	884.562	884.526	884.522	884.473
Oxidation reduction potential	mV				42.3	110.6	127.1	234	28.9	17.4	101	225.7	177.6	259.3	-	-	-	-	104.9	198.2	149.8	291.7	99	216.9	94	247.7
рН	pH Units				7.58	7.04	7.48	7.02	7.07	7.13	7.36	7.51	7.82	7.6	-	-	-	-	6.93	6.76	6.81	6.72	6.93	6.68	6.76	6.79
Temperature	°C				4.9	9	8.7	6.9	7.8	10.8	10.5	9.8	15.4	8.2	-	-	-	-	9.9	10.9	11	10.3	11.5	12.1	12.1	11.7
Anions																										
Chloride	mg/L	1	250	250	9.49	8.79	9.13	8.98	50.5	40.5	42.2	34.4	38.8	34.7	378	399	377	365	399	392	377	366	380	398	379	371
Fluoride	mg/L	1.5	230	1.5	0.72	0.76	0.91	0.47	1.25	1.47	1.35	0.16	0.12	<0.1	0.18	0.15	<0.1	<0.1	0.18	0.15	<0.1	<0.1	0.17	0.16	<0.1	<0.1
Nitrate (as N)	mg/L	10		10	0.334	0.666	0.112	0.489	<0.01	<0.01	<0.01	0.294	0.429	0.403	30.6	39.7	35	34.3	32.7	45	35.6	34.6	30.6	43.4	33.9	34.2
Nitrite (as N)	mg/L	1		1	<0.01	<0.01	<0.01	<0.01	<0.01	0.039	<0.01	0.05	<0.01	<0.01	<0.01	0.381	<0.01	<0.01	0.012	0.455	<0.01	<0.01	<0.01	0.48	<0.01	<0.01
Sulfate	mg/L		500	500	232	213	251	224	110	127	128	24.6	25.1	25	690	624	633	643	690	615	634	642	688	611	637	636
		-		-			-		-					-	-			-					-			-
Dissolved Metals		<u> </u>	I			T	T		I					l		T		l		T	l	1	l		I	Т.
Aluminum, dissolved	mg/L			9.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.481	<0.005
Antimony, dissolved	mg/L	0.006		0.006	<0.0002	<0.0002	<0.0002	0.00025	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00036	0.00029	0.00034	0.00029	<0.0002	<0.0002	0.00021	0.00023
Arsenic, dissolved	mg/L	0.01		0.01	0.00121	0.00104	0.00129	0.00117	0.047	0.0533	0.0525	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00073	<0.0005	0.00051	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00073	<0.0005
Barium, dissolved	mg/L	2		1	0.0155	0.0173	0.0158	0.0159	0.0219	0.0245	0.024	0.11	0.11	0.119	0.0458	0.0535	0.0617	0.0466	0.0503	0.0532	0.049	0.0457	0.0456	0.0551	0.0618	0.0509
Beryllium, dissolved	mg/L			0.008	<0.0001	<0.0001	<0.0001	0.00022	0.00013	0.00012	0.00012	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth, dissolved	mg/L	5		5	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001 1.74
Boron, dissolved	mg/L mg/L	0.005		0.005	0.394 0.00001	0.289 <0.00001	0.448	0.352 <0.00001	0.185 <0.00001	0.19 <0.00001	0.145 <0.00001	0.0617 <0.00001	0.0505 <0.00001	0.0534 <0.00001	1.81 <0.00001	1.92 <0.00001	1.97 <0.00001	1.75 <0.00001	1.63 0.000012	1.73 0.000038	1.97 0.000012	1.75 <0.00001	1.55 <0.00001	1.76 <0.00001	1.87 <0.00001	<0.00001
Cadmium, dissolved Calcium, dissolved	mg/L	0.003		0.003	73.5	74.6	69.2	81.3	70.7	72.7	66.7	48.5	48.3	55.7	158	158	164	171	155	158	154	170	153	161	159	167
Chromium, dissolved	mg/L	0.05			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00094	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00091	<0.0005
Cobalt, dissolved	mg/L	0.03		0.02*	0.00069	0.00093	0.00068	0.00076	<0.0003	0.00029	<0.0003	<0.0003	0.00011	0.00015	0.00157	0.0016	0.0019	0.00165	0.0018	0.00179	0.00189	0.00178	0.00154	0.00157	0.00178	0.0017
Copper, dissolved	mg/L	2	1	1.5	0.00384	0.0212	0.00484	0.0109	<0.0004	<0.0004	<0.0004	<0.0004	0.00189	0.00052	0.00243	0.00242	0.00272	0.00225	0.00261	0.00298	0.0024	0.0022	0.0022	0.00247	0.00279	0.00262
Iron, dissolved	mg/L		0.3	6.5	<0.01	<0.01	0.014	<0.01	0.394	0.669	0.776	0.103	<0.01	<0.01	<0.01	<0.01	0.767	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	0.636	<0.01
Lead, dissolved	mg/L	0.005		0.01	<0.0002	0.00023	0.00047	0.00021	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00086	0.00024	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00087	<0.0002
Lithium, dissolved	mg/L			0.008	0.0532	0.0397	0.0529	0.045	0.0254	0.0248	0.0245	0.00137	0.00123	0.0017	0.04	0.0426	0.0415	0.0401	0.04	0.0428	0.0416	0.0404	0.0401	0.0449	0.0405	0.0404
Magnesium, dissolved	mg/L				91.2	88	100	95.8	102	109	114	28.1	30.3	30.3	258	256	274	269	257	249	271	263	255	254	268	268
Manganese, dissolved	mg/L	0.12	0.02	1.5	0.00377	0.00261	0.00352	0.00276	0.00448	0.0153	0.00574	0.0194	0.0087	0.0101	0.0789	0.0693	0.11	0.0961	0.113	0.108	0.109	0.111	0.0789	0.0685	0.103	0.0968
Mercury, dissolved	mg/L	0.001		0.001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Molybdenum, dissolved	mg/L			0.25	0.00058	0.00087	0.00053	0.00073	0.00035	0.00027	0.00025	0.00073	0.00077	0.00075	0.00036	0.00028	0.00023	0.00032	0.00034	0.00036	0.00032	0.0003	0.00032	0.00033	0.00018	0.00034
Nickel, dissolved	mg/L			0.08	0.00169	0.0014	0.00124	0.00154	0.00197	0.00182	0.00181	<0.0004	0.00052	<0.0004	0.0117	0.0114	0.0129	0.0125	0.0121	0.0121	0.0131	0.0129	0.0111	0.0114	0.0125	0.0125
Phosphorus, dissolved	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Potassium, dissolved	mg/L				8.87	6.87	8.94	8.64	4.79	4.82	4.71	1.01	1.09	1.23	162	177	165	169	166	173	169	168	159	175	161	168
Selenium, dissolved	mg/L	0.05		0.01	<0.0005	0.00058	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silicon, dissolved	mg/L				7.2	7.9	6.5	6.5	8.2	8.8	7.5	4	3.1	3.5	12.5	14.1	13.2	11.6	12.2	13.5	12	11.6	12	13.8	12.5	11.8
Silver, dissolved	mg/L		_	0.02	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Sodium, dissolved	mg/L		200	200	48.3	33.5	50.1	41.8	28	25.3	27.4	17.9	20.9	21.1	271	265	282	287	278	268	294	286	266	263	275	286
Strontium, dissolved	mg/L	7		2.5	4.95	3.96	5.33	4.76	1.73	1.75	1.82	0.329	0.343	0.342	1.58	1.67	1.73	1.57	1.54	1.6	1.68	1.57	1.52	1.69	1.67	1.59
Sulfur, dissolved	mg/L				85.7	76.8	93.6	82.7	43	48.1	51.3	8.1	10.5	8.6	253	234	256	234	252	224	253	227	246	231	248	234
Tellurium, dissolved	mg/L				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Thailium, dissolved	mg/L				<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	0.000055	0.000035	0.00006	0.000049	0.000055	0.000041	0.000063	0.000055	0.000055	0.000037	0.000057	0.000054
Thorium, dissolved	mg/L			2.5	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00035	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00032	<0.0001
Tin, dissolved	mg/L			2.5	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00021	0.00021	<0.0002	0.00063	0.00039	0.00095	<0.0002	<0.0002	0.00021	0.00023	<0.0002
Titanium, dissolved	mg/L			0.003	<0.005	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	<0.005	<0.005 <0.001	<0.005	<0.005 <0.001	<0.005	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	0.0304	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	<0.005	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	0.0318	<0.005 <0.001
Tungsten, dissolved Uranium, dissolved	mg/L mg/L	0.02		0.003	<0.001 0.000917	0.00155	0.000947	0.00146	<0.001 0.000086	0.000161	<0.001 0.000101	0.000648	<0.001 0.000669	0.000721	0.00721	0.00691	<0.001 0.00698	0.00757	0.00728	0.00718	<0.001 0.00723	0.00759	0.00725	0.00737	<0.001 0.00687	0.00755
·	mg/L	0.02		0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00721	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00759	<0.001	<0.001	<0.001	<0.00755
Vanadium, dissolved Zinc, dissolved	mg/L		5	3	0.0282	0.0262	0.001	0.0245	<0.001	0.0065	<0.001	<0.001	0.0102	<0.001	<0.001	<0.001	<0.001	<0.001	0.0062	0.0089	0.0049	<0.001	<0.001	<0.001	<0.001	<0.001
Zirc, dissolved Zirconium, dissolved	mg/L		,	-	0.00057	0.0262	0.00064	0.00245	0.00173	0.0065	0.00143	<0.004	<0.0001	<0.004	0.00016	0.00014	0.00052	0.00015	0.0062	0.0089	0.0049	0.0004	0.00015	0.00016	0.00051	0.00016
En contain, dissolved	I IIIg/ L	1	I		0.00037	0.00047	0.00004	0.00032	0.001/3	0.00133	0.00143	\U.UUU1	~U.UUU1	\U.UUU1	0.00010	0.00014	0.00032	0.00013	0.00013	0.00010	0.00021	0.0001/	0.00013	0.00010	0.00031	1 0.00010

General Parameters

			Com		DMM/ 1h	DMM/ 1h	DMM/ 1h	DMM/ 1h		DAMA/ 4	DNAMA A	DN414/20 01	DN414/20 01	DN4)4/20 01	DUDA	DUDA	I DUD A	DUDA	1414/00 CD	1 MANAGO CD	L MANAGO CD	L MANAGO CD	NAVA/00 CC	L MANAGO CC	L MANAGO CC	
			San	npling Location	DMW-1b	DMW-1b	DMW-1b 2020-08-25	DMW-1b	DMW-4	DMW-4	DMW-4	DMW20-01			DUP A	DUP A	DUP A	DUP A	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	
				Date Sampled	2020-03-24			2020-11-03	2020-03-24	2020-05-20	2020-08-25	2020-05-20	2020-08-24	2020-11-03	2020-03-24	2020-05-20	2020-08-24	2020-11-03	2020-03-24	2020-05-20	2020-08-24	2020-11-03	2020-03-24	2020-05-20	2020-08-24	
				Lab Sample ID Sample Type	0032091-06	0051806-07	0082459-07	20K0317-07	0032091-07	0051806-08	0082459-08	0051806-06	0082459-11	20K0317-10	0032091-09	0051806-10	0082459-10	20K0317-09	0032091-08	0051806-09	0082459-09	20K0317-08	0032091-01	0051806-01	0082459-01	20K0317-01
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW						<u> </u>							<u> </u>				<u> </u>	1				
						1		<u> </u>		1	<u> </u>		1	1	<u> </u>		1	1	1	1	1	Г	ı	T		
Alkalinity, Bicarbonate (as CaCO3)	mg/L				443	431	449	429	500	516	465	233	220	195	965	952	948	954	958	934	947	946	975	944	949	942
Alkalinity, Carbonate (as CaCO3)	mg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Hydroxide (as CaCO3)	mg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Phenolphthalein (as CaCO3)	mg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Total (as CaCO3)	mg/L			+	443	431	449	429	500	516	465	233	220	195	965	952	948	954	958	934	947	946	975	944	949	942
Ammonia, Total (as N)	mg/L				0.721	0.161	0.861	0.481	0.215	0.206	0.223	<0.05	<0.05	<0.05	1.1	1.44	1.77	1.64	1.24	1.53	1.85	1.9	1.32	1.53	1.71	1.61
Bicarbonate (HCO3)	mg/L				540	525	548	523	610	629	567	284	269	238	1180	1160	1160	1160	1170	1140	1160	1150	1190	1150	1160	1150
Carbonate (CO3)	mg/L				<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Electrical Conductivity	μS/cm				1090	1060	1230	1180	1110	1150	1220	530	576	568	3850	3940	4010	4000	3820	3960	4050	4050	3990	3910	3940	3970
Hardness, Total (as CaCO3)	mg/L			_	560	549	586	598	596	630	634	237	246	264	1460	1450	1540	1540	1450	1420	1500	1510	1430	1450	1500	1520
Hydroxide (OH)	mg/L				<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34
Pri Total dissolved solids	pH Units		500		7.9	8.03	7.95	8.08	7.9	8.02	7.98	8.14	8.22 308	8.23 302	7.63 2660	7.8 2550	7.79 2630	7.81	7.65	7.71	7.77	7.89 2460	7.69	7.73 2590	7.71 2730	7.89 2550
Total dissolved solids	mg/L NTU		500	+	784 0.12	727 0.14	0.16	758 0.31	726 4.84	712 4.9	739 8.59	293 5.04	0.74	1.75	35.7	2550	51.3	2520 184	2730 25.2	2500 46.5	2720 5.82	13.2	2630 37.9	19	60.4	170
Turbidity	INTU			1	0.12	0.14	0.10	U.51	1 4.04	1 4.3	0.39	3.04	U.74	1./5	33./	24.8	1 31.3	104	25.2	40.5	J 3.02	15.2	37.9	13	00.4	1 1/0
Volatile Organic Compounds (VOC)																										
1,1-Dichloroethane	μg/L			30	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-Dichloroethylene	μg/L	14		14	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	μg/L			8000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	μg/L			3	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	μg/L			0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dibromoethane	μg/L			0.5	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	μg/L	200	3	200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	μg/L	5		5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloropropane	μg/L			4.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	μg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichloropropene (cis + trans)	μg/L			1.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	μg/L	5	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	μg/L	5		5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	μg/L			100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	μg/L			100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	2		2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	μg/L			80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	μg/L				<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Chloroform	μg/L	100		100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
cis-1,2-Dichloroethylene	μg/L			8	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L			100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	μg/L			F0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichloromethane	μg/L	50	1.0	50	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Ethylbenzene Methyl tert-butyl ether	μg/L	140	1.6	140	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1
· · · · · · · · · · · · · · · · · · ·	μg/L		15	95 800	<1	<1	<1	<1	<1		<1	<1	<1	<1 <1	<1	<1	<1	<1		<1 <1		<1		<1	<1	<1
Styrene Tetrachloroethylene	μg/L μg/L	10		30	<1 <1	<1	<1 <1	<1	<1 <1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1 <1
Tetrachloroethylene Toluene	μg/L μg/L	60	24	60	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	μg/L μg/L	00	24	80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	μg/L μg/L			5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	μg/L			1000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl chloride	μg/L	2		2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes (total)	μg/L	90	20	90	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
		J		, 50			-	· ·~					· ·~					. ~	· ·-					<u></u>		
Polycyclic Aromatic Hydrocarbons (PAH)		-		1		1			1	1	1		I	1	1	1	1			ı	1	1	ı	T		
1-Methylnaphthalene	μg/L			5.5	-	<0.1	=	-	-	<0.1	=	<0.1	-	-	=	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-
2-Chloronaphthalene	μg/L			300	-	<0.1	=	-	-	<0.1	=	<0.1	-	-	=	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-
2-Methylnaphthalene	μg/L			15	-	<0.1	-	-	-	<0.1	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	 -
Acenaphthene	μg/L			250	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Acenaphthylene	μg/L			-	-	<0.2	-	-	-	<0.2	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-
Acridine	μg/L				-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-

			Sa	mpling Location	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4	DMW-4	DMW-4	DMW20-01	DMW20-01	DMW20-01	DUP A	DUP A	DUP A	DUP A	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S
				Date Sampled		2020-05-20	2020-08-25	1	2020-03-24	2020-05-20	2020-08-25		2020-08-24		2020-03-24		1	2020-11-03								2020-11-03
				Lab Sample ID			0082459-07	20K0317-07		0051806-08	0082459-08				0032091-09		0082459-10					20K0317-08				20K0317-01
				Sample Type																						
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW																						
	1	1			-	1			1	1	1				<u> </u>				<u> </u>			<u> </u>	1			
Anthracene	μg/L			1000	-	<0.01	-	-	-	<0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-
Benz(a)anthracene	μg/L			0.07	-	<0.01	-	-	-	<0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-
Benzo(a)pyrene	μg/L	0.04		0.01	-	<0.01	-	-	-	<0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-
Benzo(b+j)fluoranthene	μg/L			0.07	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Benzo(g,h,i)perylene	μg/L				-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Benzo(k)fluoranthene	μg/L				-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Chrysene	μg/L			7	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Dibenz(a,h)anthracene	μg/L			0.01	-	<0.01	-	-	-	<0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-
Fluoranthene	μg/L			150	-	<0.03	-	-	-	<0.03	-	<0.03	-	-	-	<0.03	-	-	-	<0.03	-	-	-	<0.03	-	-
Fluorene	μg/L			150	-	<0.05	=	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Indeno(1,2,3-cd)pyrene	μg/L				-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Naphthalene	μg/L			80	-	<0.2	-	-	-	<0.2	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-
Phenanthrene	μg/L				-	<0.1	-	-	-	<0.1	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-
Pyrene	μg/L			100	-	<0.02	-	-	-	<0.02	-	<0.02	-	-	-	<0.02	-	-	-	<0.02	-	-	-	<0.02	-	-
Quinoline	μg/L			0.05	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	=	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
BCMOE Aggregate Hydrocarbons																										
EPHw10-19	μg/L			5000	-	<250	-	-	-	<250	-	<250	-	-	-	<250	-	-	-	<250	-	-	=	<250	-	-
EPHw19-32	μg/L				-	<250	-	-	-	<250	-	<250	-	-	=	<250	-	-	-	<250	-	-	-	<250	-	-
HEPHW	μg/L				-	<250	-	-	-	<250	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	<250	-	-
LEPHw	μg/L			15000	-	<250	-	-	-	<250	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	<250	-	-
VHw (6-10)	μg/L	1			-	<100	<100	-	-	<100	<100	<100	<100	-	-	<100	<100	-	-	<100	<100	-	-	<100	<100	-
VPHw	μg/L				-	<100	<100	-	-	<100	<100	<100	<100	-	-	<100	<100	-	-	<100	<100	-	-	<100	<100	-

						1					1			,	T		ı			ı	ı	
			Sam	pling Location	MW10-8	MW10-8	MW10-8	MW10-8	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #6	Town Well #6
				Date Sampled	2020-03-24	2020-05-20	2020-08-25	2020-11-03	2020-03-25	2020-05-20	2020-08-25	2020-11-03	2020-03-24	2020-05-20	2020-08-24	2020-11-03	2020-03-25	2020-05-20	2020-08-24	2020-11-03	2020-08-24	2020-11-03
				Lab Sample ID	0032091-02	0051806-02	0082459-02	20K0317-02	0032091-03	0051806-03	0082459-03	20K0317-03	0032091-04	0051806-04	0082459-04	20K0317-04	0032091-05	0051806-05	0082459-05	20K0317-05	0082459-06	20K0317-06
				Sample Type														<u> </u>				
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW	1																	
Field Parameters					1																	
Depth to Water	m				13.825	13.757	13.872	13.948	27.905	27.975	28.045	28.059	113.047	112.33	112.212	112.278	-	-	-	-	-	-
Dissolved Oxygen	mg/L				5.92	10.89	9.53	7.45	1.81	4.64	6.7	2.54	2.06	2.63	2.88	2.51	4.4	4.56	4.27	5.81	4.68	2.79
Electrical Conductivity	μS/cm				2177	2635	2739	2794	2195	2446	2637	3174	1165	1436	1556	1533	781	1007	996	996	892	895
Elevation of Piezometric Surface	m				905.773	905.841	905.726	905.65	886.932	886.862	886.792	886.778	795.479	796.196	796.314	796.248	-	-	-	-	-	-
Oxidation reduction potential	mV				-61.6	171.9	168.3	244.1	80.1	164.9	147.9	277.1	-74.3	-89.4	-20.3	106.3	96.2	264.8	179.8	277.4	193.2	237
рН	pH Units				7.5	7.28	7.34	7.01	7.18	7.01	7.11	6.96	7.76	7.17	7.26	7.06	7.45	6.96	7.13	6.97	6.85	6.88
Temperature	°C				6.8	8.8	8.5	7.04	9.7	13.8	13.9	12.9	9.6	9.8	10.4	8.4	8.3	9.4	10.9	8.7	10.4	9
	•																					
Anions						ı	Ī	<u> </u>		1	1			1	ı							
Chloride	mg/L		250	250	629	555	597	558	356	342	350	376	113	60.6	71.4	84.1	99	96.5	94	92.5	60.4	60.2
Fluoride	mg/L	1.5		1.5	0.18	0.27	0.2	<0.1	<0.1	0.31	0.14	<0.1	0.77	0.96	0.74	0.49	<0.1	<0.1	0.11	<0.1	<0.1	<0.1
Nitrate (as N)	mg/L	10		10	0.858	1.19	1.01	1.08	40	21.3	24.4	67.9	<0.01	0.022	<0.01	<0.01	1.55	1.5	1.46	1.5	1.26	1.03
Nitrite (as N)	mg/L	1		1	<0.01	0.478	<0.01	<0.01	<0.01	0.388	<0.01	<0.01	<0.01	0.061	<0.01	<0.01	<0.01	0.122	<0.01	<0.01	<0.01	0.012
Sulfate	mg/L		500	500	50.8	44.9	51.4	49.7	71.4	71.1	68.2	78.9	32	116	88.3	105	42.1	43	42.1	40.7	34.2	37.9
Dissolved Metals																						
Aluminum, dissolved	mg/L			9.5	<0.005	<0.005	<0.005	<0.005	<0.005	0.0102	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Antimony, dissolved	mg/L	0.006		0.006	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00021	0.0002	0.00218	<0.0002	0.00139	0.00048	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Arsenic, dissolved	mg/L	0.01		0.01	0.00383	0.00439	0.00518	0.00432	0.00104	0.00107	0.00133	0.0014	0.00599	0.0358	0.011	0.0208	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Barium, dissolved	mg/L	2		1	0.178	0.2	0.196	0.2	0.303	0.277	0.311	0.353	0.0154	0.0338	0.0082	0.0266	0.216	0.218	0.217	0.224	0.191	0.196
Beryllium, dissolved	mg/L			0.008	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00031
Bismuth, dissolved	mg/L				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Boron, dissolved	mg/L	5		5	0.228	0.256	<0.05	<0.05	0.43	0.223	0.401	0.708	0.284	0.325	0.262	0.261	0.0912	0.104	<0.05	<0.05	<0.05	<0.05
Cadmium, dissolved	mg/L	0.005		0.005	0.000011	<0.00001	<0.00001	0.000012	0.000028	0.00002	0.000023	0.000039	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.000011
Calcium, dissolved	mg/L				84	94.2	86.2	102	99	72.7	94.7	122	36.1	59.2	40.3	59.3	93.9	92.2	87.4	104	98.4	116
Chromium, dissolved	mg/L	0.05			0.00059	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00059	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Cobalt, dissolved	mg/L			0.02*	0.0003	<0.0001	<0.0001	<0.0001	0.00473	0.00468	0.00523	0.005	0.00016	0.00048	0.00026	0.00015	<0.0001	<0.0001	<0.0001	<0.0001	0.00021	0.00028
Copper, dissolved	mg/L	2	1	1.5	0.00164	0.00126	0.00119	0.00125	0.00155	0.0011	0.00121	0.00923	<0.0004	<0.0004	<0.0004	<0.0004	0.00216	0.0127	0.00191	0.00301	<0.0004	0.0141
Iron, dissolved	mg/L		0.3	6.5	<0.01	<0.01	<0.01	<0.01	<0.01	0.049	<0.01	<0.01	0.052	2.28	0.151	0.64	<0.01	<0.01	<0.01	<0.01	0.137	0.119
Lead, dissolved	mg/L	0.005		0.01	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00123	<0.0002	0.00021	<0.0002	<0.0002
Lithium, dissolved	mg/L			0.008	0.0185	0.0199	0.0193	0.0202	0.0224	0.015	0.021	0.0249	0.0271	0.0229	0.0234	0.0245	0.00242	0.00193	0.00171	0.00241	0.00133	0.00191
Magnesium, dissolved	mg/L				103	105	118	124	195	149	202	204	143	107	127	130	43.6	40.2	42.8	44	35.5	36
Manganese, dissolved	mg/L	0.12	0.02	1.5	0.00914	0.00098	0.0009	0.00037	0.174	0.149	0.167	0.198	0.0605	0.0301	0.0309	0.0286	<0.0002	<0.0002	<0.0002	<0.0002	0.0287	0.043
Mercury, dissolved	mg/L	0.001		0.001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Molybdenum, dissolved	mg/L			0.25	0.00131	0.00069	0.00063	0.00043	0.00108	0.00076	0.00111	0.00109	0.00193	0.00061	0.00212	0.00098	0.00018	0.00018	0.00018	0.00021	0.00102	0.00116
Nickel, dissolved	mg/L			0.08	0.00105	0.00089	0.00095	0.00136	0.0401	0.0338	0.0434	0.0447	0.0103	0.00474	0.0068	0.00745	<0.0004	<0.0004	<0.0004	<0.0004	0.0008	0.00154
Phosphorus, dissolved	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Potassium, dissolved	mg/L		-		5.83	5.77	5.67	6.26	28.9	16.4	27.7	45.4	4.81	7.86	6.46	6.82	1.97	1.87	1.82	2.14	1.18	1.34
Selenium, dissolved	mg/L	0.05		0.01	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silicon, dissolved	mg/L			0.00	8.9	10.8	9.1	9.1	10.4	7.3	9.7	10.5	4.3	4.7	3.2	3.8	5.4	5.6	4.5	5.2	4.6	5.1
Silver, dissolved	mg/L		200	0.02	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Sodium, dissolved	mg/L	7	200	200	303	296	324	334	185	127	183	239	106	104	112	113	59.4	55.4	57.8	60.4	33.5	34.8
Strontium, dissolved	mg/L	 		2.5	1.18	1.23	1.32	1.33	1.42	1.15	1.56	1.57	0.481	1.02	0.644	0.856	0.481	0.465	0.473	0.487	0.368	0.383
Sulfur, dissolved Tellurium, dissolved	mg/L mg/L				18.8 <0.0005	15.3 <0.0005	21.3 <0.0005	18.4 <0.0005	29.8 <0.0005	20.4 <0.0005	30.7 <0.0005	29.1 <0.0005	<0.0005	41.5 <0.0005	36.2 <0.0005	37.2 <0.0005	17 <0.0005	13.6 <0.0005	15.9 <0.0005	15.3 <0.0005	12.3 <0.0005	14.5 <0.0005
Thallium, dissolved	mg/L mg/L				<0.0005	<0.0005	<0.0005	<0.0005	0.000099	0.00005	0.000103	0.000127	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Thorium, dissolved	mg/L				<0.0001	<0.0001	<0.0001	<0.0002	<0.0001	<0.0001	<0.0001	<0.000127	<0.0001	<0.0001	<0.0001	<0.0001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tin, dissolved	mg/L	-		2.5	0.0003	<0.0001	0.0001	<0.0001	0.0003	0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium, dissolved	mg/L			۷.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Tungsten, dissolved	mg/L			0.003	0.0119	0.0047	0.0052	0.0018	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Uranium, dissolved	mg/L	0.02		0.003	0.00192	0.00229	0.0032	0.0018	0.00399	0.00324	0.00367	0.0044	0.000068	0.000084	0.000055	0.000068	0.00128	0.00128	0.00121	0.00133	0.00141	0.00155
Vanadium, dissolved	mg/L	0.02		0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00121	<0.001	<0.001	<0.001
Zinc, dissolved	mg/L		5	3	0.0055	<0.001	<0.001	<0.001	0.0103	<0.001	<0.001	0.0087	0.0069	0.0132	0.0064	0.001	<0.001	0.0359	0.0044	0.0053	<0.001	<0.001
Zirconium, dissolved	mg/L			,	<0.0033	<0.004	<0.004	<0.004	0.00025	0.00013	0.00022	0.0007	<0.0009	0.00132	0.0004	0.0013	<0.004	<0.0001	<0.0044	<0.0033	<0.004	<0.004
Z. Codiff, dissolved	1116/ L	ı	ı		10.0001	10.0001	10.0001	10.0001	1 0.00023	0.00013	0.00022	1 0.00020	1 10.0001	0.00014	0.00011	0.00010	1 10.0001	1 -0.0001	1 10.0001	1 10.0001	1 10.0001	10.0001
General Parameters																						

										1												
			Sam	npling Location	MW10-8	MW10-8	MW10-8	MW10-8	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #6	Town Well #6
				Date Sampled Lab Sample ID	2020-03-24		2020-08-25 0082459-02	2020-11-03 20K0317-02			2020-08-25 0082459-03	2020-11-03 20K0317-03	2020-03-24 0032091-04	2020-05-20 0051806-04	2020-08-24 0082459-04	2020-11-03 20K0317-04	2020-03-25 0032091-05	2020-05-20 0051806-05	2020-08-24	2020-11-03 20K0317-05	2020-08-24 0082459-06	2020-11-03 20K0317-06
				Sample Type	0032091-02	0051800-02	0082439-02	2000517-02	0032091-03	0031000-03	0002439-03	2000317-03	0032091-04	0031800-04	0062459-04	2000317-04	0032091-03	0031800-03	0082459-05	2000517-05	0062439-00	2000317-00
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW					1	ı			ı					1	l			
Allediate Bissels and Ass Co CO2)	/1	1	1	ı	-	F44	F04	F40	1 000	720	742	056	74.6	640	640	674	274	265	256	250	250	262
Alkalinity, Bicarbonate (as CaCO3)	mg/L				530 <1	511 <1	501 <1	518 <1	806 <1	729 <1	713 <1	856 <1	716 <1	648 <1	648 <1	671 <1	374 <1	365 <1	356 <1	358 <1	358 <1	363 <1
Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	mg/L mg/L	1			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Phenolphthalein (as CaCO3)	mg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Total (as CaCO3)	mg/L				530	511	501	518	806	729	713	856	716	648	648	671	374	365	356	358	358	363
Ammonia, Total (as N)	mg/L				0.099	<0.05	<0.05	0.056	1.44	1.68	1.73	2.6	0.191	0.257	0.447	0.361	<0.02	<0.05	<0.05	<0.05	<0.05	0.117
Bicarbonate (HCO3)	mg/L				646	623	611	632	983	889	870	1040	874	791	790	819	456	446	434	437	437	443
Carbonate (CO3)	mg/L				<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Electrical Conductivity	μS/cm				2700	2590	2830	2880	2770	2420	2560	3240	1460	1390	1460	1580	945	997	1040	1040	917	857
Hardness, Total (as CaCO3)	mg/L				634	669	701	766	1050	796	1070	1150	680	589	624	684	414	396	395	441	392	437
Hydroxide (OH)	mg/L				<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34
рН	pH Units				7.95	7.98	8.05	8.09	7.81	7.9	7.97	7.89	8.25	7.93	8.13	8.06	7.98	7.93	7.98	8.04	7.94	7.93
Total dissolved solids	mg/L		500		1550	1290	1560	1460	1550	1310	1390	1820	850	849	849	899	607	562	579	559	520	507
Turbidity	NTU				41.5	3.48	83.7	230	65.8	73.2	114	172	52.4	112	45.1	37	0.12	<0.1	<0.1	0.23	23.6	171
Volatile Organic Compounds (VOC)																						
Volatile Organic Compounds (VOC) 1,1-Dichloroethane	μg/L			30	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-Dichloroethylene	μg/L μg/L	14		14	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	μg/L	1		8000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.1.2-Trichloroethane	μg/L			3	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	μg/L			0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dibromoethane	μg/L			0.5	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	μg/L	200	3	200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	μg/L	5		5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloropropane	μg/L			4.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	μg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichloropropene (cis + trans)	μg/L			1.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	μg/L	5	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	μg/L	5		5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	μg/L			100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	μg/L			100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	2		2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	μg/L			80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	μg/L				<2	<2	<2	<2	<2	<2	<2	<2	<2	<6	<2	<2	<2	<2	<2	<2	<2	<2
Chloroform	μg/L	100		100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
cis-1,2-Dichloroethylene	μg/L			8	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	-		100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	μg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichloromethane	μg/L	50	4.6	50	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Ethylbenzene Mothyl tort butyl other	μg/L	140	1.6	140	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	μg/L	1	15	95 800	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Styrene Tetrachloroethylene	μg/L	10		30	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1
Tetrachloroethylene Toluene	μg/L μg/L	60	24	60	<1	<1	<1 <1	<1	<1	<1 <1	<1 <1	<1	<1 8.8	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1
trans-1,2-Dichloroethylene	μg/L μg/L	00		80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	μg/L μg/L	1		5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	μg/L			1000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl chloride	μg/L	2		2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes (total)	μg/L	90	20	90	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	, , , ,	•				•	•	•											•			
Polycyclic Aromatic Hydrocarbons (PAH) 1-Methylnaphthalene	μg/L			5.5	<u> </u>	<0.1			T -	<0.1	_		_	<0.1	_	_	_	<0.1	_	_	_	_
2-Chloronaphthalene	μg/L			300	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	_	-	<u>-</u>	<0.1	-	_	-	_
2-Methylnaphthalene	μg/L μg/L			15	 	<0.1	-	-	_	<0.1	_	-	-	<0.1	_	-	<u>-</u>	<0.1	-	-	-	-
Acenaphthene	μg/L			250	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	_	<u>-</u>	<0.05	-	-	-	-
Acenaphthylene	μg/L			250	 	<0.03	-	-	-	<0.03	_	-	-	<0.2	_	-	_	<0.2	-	-	-	_
Acridine	μg/L				_	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	_	-	-	_
	1	1					·		-													

			Can	npling Location	MW10-8	MW10-8	MW10-8	MW10-8	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #6	Town Well #6
			Sail	Date Sampled		2020-05-20					2020-08-25	2020-11-03	2020-03-24	2020-05-20		2020-11-03	2020-03-25	2020-05-20	2020-08-24	2020-11-03	2020-08-24	2020-11-03
				•	l			1											1			
				Lab Sample ID	0032091-02	0051806-02	0082459-02	20K0317-02	0032091-03	0051806-03	0082459-03	20K0317-03	0032091-04	0051806-04	0082459-04	20K0317-04	0032091-05	0051806-05	0082459-05	20K0317-05	0082459-06	20K0317-06
Aughte	11-24	CODUMO 144.0	000040	Sample Type																		
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW	1																	
Anthracene	μg/L			1000	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	-
Benz(a)anthracene	μg/L			0.07	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	-
Benzo(a)pyrene	μg/L	0.04		0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	-
Benzo(b+j)fluoranthene	μg/L			0.07	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Benzo(g,h,i)perylene	μg/L				-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	1	-	<0.05	-	-	-	-
Benzo(k)fluoranthene	μg/L				-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Chrysene	μg/L			7	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Dibenz(a,h)anthracene	μg/L			0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	-
Fluoranthene	μg/L			150	-	<0.03	-	-	-	<0.03	-	-	-	<0.03	-	1	1	<0.03	-	-	-	-
Fluorene	μg/L			150	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Indeno(1,2,3-cd)pyrene	μg/L				-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Naphthalene	μg/L			80	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	-	-
Phenanthrene	μg/L				-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-
Pyrene	μg/L			100	-	<0.02	-	-	-	<0.02	-	-	-	<0.02	-	-	-	<0.02	-	-	-	-
Quinoline	μg/L			0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
BCMOE Aggregate Hydrocarbo	ons																					
EPHw10-19	μg/L			5000	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	-
EPHw19-32	μg/L				-	<250	-	-	-	<250	-	-	-	313	-	-	-	<250	-	-	-	-
HEPHw	μg/L				-	<250	-	-	-	<250	-	-	-	313	-	-	-	<250	-	-	-	-
LEPHw	μg/L			15000	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	-
VHw (6-10)	μg/L				-	<100	<100	-	-	<100	<100	-	-	<100	<100	-	-	<100	<100	-	<100	-
VPHw	μg/L				-	<100	<100	-	-	<100	<100	-	-	<100	<100	-	-	<100	<100	-	<100	-

> Greater than reported upper detection limit
- Not Sampled
No Guideline or Standard
* Province-wide Interim Background Concentration per ENV Protocol 9
GCDWQ AO Guidelines for Canadian Drinking Water Quality - Aesthetic Objectives
GCDWQ MAC Guidelines for Canadian Drinking Water Quality - Maximum Acceptable Concentrations
CSR DW BC Contaminated Sites Regulation, Schedule 3.2 Generic Numerical Water Standards for Drinking Water
40 Highlighted Value Exceeds GCDWQ MAC
40 Red text Value Exceeds GCDWQ AO
40 Red text Value Exceeds CSR DW

Less than reported detection limit

Notes:

<

APPENDIX D HISTORICAL WATER QUALITY DATA

Part											1			1											
Part		Sampling Location	DMW-1	DMW-1	DMW-1	DMW-1b																			
Part			2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29
March Marc		•																						7040434-07	7090074-04
Part		•																							Normal
Part	alyte	Unit		•					·			•	•			•			•				•		
Professional Content	ld Parameters	•																							
Performant Per	pth to Water	m	-	-	-	-	-	9.89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Part	solved Oxygen	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.29	0.59	1.98	1.21	2.34	0.34	0.01	4.73	-	-	2.53
Secont continue	ctrical Conductivity	μS/cm	1120	1220	1150	1220	1000	1150	1170	1140	1070	870	750	1040	1075	1030	1118	1021	1142	1155	1134	1201	1127	1113	1128
Part	vation of Piezometric Surface	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Property Property	idation reduction potential	mV	-	61	-18	-199	40	162	99	44	-12	124	8	19	-41	-86	-65	-28	-26	53	-35	97	29	83	17
Part		pH Units	7.31	7.28	7.3	7.4	7.31	7.23	7.15	7.54	7.4	7.36	7.22	7.16	7.3	7.3	7	7.5	7.2	6.3	7.3	7.3	7.4	7.7	7.4
Perfect Perf	nperature	°C	6.5	9.9	6.2	8.8	9.5	6.1	8.2	10	8	8.7	7.7	8	7.8	9.1	8.2	9.8	8.5	8	8.1	7.9	9.1	6.8	9.6
Professor Prof	ions																								
Marche Marche	omide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Marcie Name Marcie Name	oride	mg/L	26.8	23.3	30.1	26	27.7	32.7	28.4	32.2	35.7	38.9	40.9	41.1	35.8	39.7	40.1	39.7	42.4	51.7	38.7	47.1	50.4	42.1	12.4
Marticle Marticle	oride	mg/L	-	-	-		-	-	1.1	0.81	1.05	1.23	1.31	1.02	1.13	0.84	1.15	1.25	1.28	1.31	1.28	1.28	1.25	1.25	0.73
Part Part	rate (as N)	mg/L	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.199	0.397	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.175
Maricus Mari	rite (as N)	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.012	<0.010	<0.010	<0.010
Manifunch Migh Mi	fate	mg/L	208	213	91.7	137	133	124	144	127	123	121	129	117	135	127	122	133	114	116	129	124	124	126	252
Martines Martines	etals																								
Partners, standbried Mag. No. 1	ıminum, dissolved	mg/L	<0.005	0.007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.006	0.005	<0.005	-	-	-	-	<0.005	<0.005	-	<0.0050
Part	minum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.005	<0.005	<0.05	<0.005	-	-	0.005	-
Martine Martin Martine Martine Martine Martine Martine Martine Martine Martine	timony, dissolved	mg/L	0.0002	0.0002	<0.0001	0.0002	0.0002	<0.0020	0.0001	0.0002	0.0004	0.0004	0.0004	0.0005	0.0003	0.0003	0.0002	-	-	-	-	<0.0001	<0.0001	-	<0.00020
Martine Mart Mart Mart Mart Mart Mart Mart Mart Martine Mart Martine Mart Martine Mart Martine Mart Martine	timony, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	0.0003	-
Parlian Residence March Ma	senic, dissolved	mg/L	0.0043	0.007	0.0389	0.026	0.0362	0.0285	0.0196	0.0419	0.0392	0.0388	0.0397	0.0382	0.0351	0.0378	0.0436	-	-	-	-	0.0421	0.0407	-	0.00124
Part	senic, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0236	0.0489	0.042	0.0375	-	-	0.0326	-
Part Part	rium, dissolved	mg/L	0.0236	0.023	0.0269	0.0242	0.022	0.021	0.024	0.023	0.022	0.023	0.023	0.023	0.024	0.024	0.026	-	-	-	-	0.025	0.024	-	0.0149
Performent	rium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.022	0.026	<0.05	0.024	-	-	0.025	-
Seminary Seminary	ryllium, dissolved	mg/L	<0.0001	<0.0001	0.0001	0.0001	<0.0001	0.0001	0.0001	<0.0001	0.0001	0.0001	<0.0001	0.0001	0.0002	0.0001	0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010
Seminate May	ryllium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	0.0001	<0.001	0.0001	-	-	<0.0001	-
Series Margin M	muth, dissolved		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0002	<0.0001	<0.0001	<0.0001					<0.0001	<0.0001		<0.00010
Second S	muth, total	mg/L	-			-					-	-						<0.0001	<0.0001	<0.001	<0.0001	-		<0.0001	-
Cadmium, dissolved			0.171	<u> </u>	<u> </u>	0.143	0.135	0.104	0.138	0.137	0.133	0.145	0.166		0.153	0.138	0.134		-		1	0.191	0.172		0.386
Calcium, Intell	<u> </u>		-			-			-			-	-			-		0.146	0.139	0.14	0.146	 		0.137	-
Calcium, dissolved mg/L 73.9 73.9 73.5 71.9 63.2 65.9 61.2 63.9 64 68.7 71.8 73.4 74 73.1 70.5 7.5 7.5 7.5 7.5 74.5 70.8 70.8 70.5 70.5 70.5 70.5 70.5 70.5 70.5 70.5			0.00002	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00003	<0.00001	<0.00001	0.00001	<0.00001	<0.00001	<0.00001	0.00001	0.00001		-			0.00003	0.00001		<0.000010
Calcium, total mg/L 0.0146 0.0014 0.0009 0.00005 0.000			-	1		-		-	-				-			-						-	-		
Chromium, dissolved mg/L 0.0146 0.0014 0.0009 0.0005			/3.9					65.9				68.7										/4.5			75.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · · · · · · · · · · · · · · · ·		-			1																			
Cobalt, dissolved	, , , , , , , , , , , , , , , , , , , ,											<0.0005									+	<0.0005			<0.00050
Cobalt, total mg/L				<u> </u>	<u> </u>	1						<0.00005		+								0.00007	+		0.00075
Copper, dissolved mg/L 0.0297 0.0392 0.0004 0.0006 0.0008 0.002 0.0002 0.0001 0.0004 0.0002 0.0007 0.0002 0.0007 0.0002 0.0004	·				1																	0.0000/	-0.00005		0.00075
Copper_total mg/L - - - - - - - - -	·			<u> </u>	<u> </u>	1																0.0004	0.0185		0.00361
From the control of																									0.00361
Front total mg/L - - - - - - - - -																						†			0.014
Lead, dissolved mg/L 0.0001 0.0004 < 0.0001 0.0001 0.0001 0.0001 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 < 0.0002 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.																							-		- 0.014
Lead, total mg/L - 0.002 Lithium, dissolved mg/L 0.0232 0.031 0.026 0.0238 0.0218 0.029 0.0228 0.0227 0.0251 0.0251 0.0259 0.0264 0.0252 0.0252 - - - - 0.0222 0.024 - - - 0.0222 0.024 - - - 0.0222 0.024 - - - 0.0222 0.024 - - - 0.0222 0.024 - - - 0.0222 0.024 - - - - 0.0232 0.024 0.025 0.024 0.024 0.026 0.025 0.024 0.024 0.025 0.024 0.024 0.025 0.024 0.024 0.024 113 - - -					<u> </u>	-																	0.0003		<0.00020
Lithium, dissolved mg/L 0.023 0.031 0.026 0.0238 0.0218 0.0209 0.0196 0.0228 0.027 0.0251 0.0251 0.0259 0.0264 0.0252 0.0252 0.0243 0.024 0.026 0.0228 0.024 0.0245 0.0252 0.0252 0.0245 0.0252 0.0252 0.0245 0.0252	·											-													-
Lithium, total mg/L			0.0232		 	0.0238	0.0218	0.0209	0.0196	0.0228		0.0251	0.0251		0.0264		0.0252					0.0222	0.024		0.0477
Magnesium, dissolved mg/L 96.7 92.5 104 116 104 94.7 122 111 104 111 113 111 123 114 104 - - - - - - 124 113 - Magnesium, total mg/L <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>			-																						-
Magnesium, total mg/L			96.7	92.5	<u> </u>	116	104	94.7	122	111	104	111	113		123	114						124	113		98.8
Manganese, dissolved mg/L 0.0022 0.0032 0.0042 0.0039 0.004 0.0039 0.005 0.0041 0.0037 0.004 0.0039 0.0054 0.0158 0.0048 0.0046 0.0041 -	<u> </u>		-																						-
	<u> </u>		0.0022	0.0032	0.0042	0.0039	0.004	0.0039	0.005	0.0041	0.0037	0.004	0.0039	0.0039	0.0054	0.0158	0.0048					0.0046	0.0041		0.00401
		mg/L	-			-		-	-			-	-		-			0.0047	0.0046	0.005	0.0057	-		0.011	-
Mercury, dissolved mg/L <0.00005 <0.00005 <0.00005 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.000			<0.00005	<0.00005	<0.00005	<0.00002	<0.00002	<0.00002	<0.00002	0.00033	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-				<0.00002	<0.00002		<0.000010
Mercury, total mg/L <0.00002 - <0.00002 - <0.00002 - <0.00002	· · · · · · · · · · · · · · · · · · ·																	<0.00002	-	<0.00002	<0.00002	-			-

		ı			1									1							1			$\overline{}$
	Sampling Location	DMW-1	DMW-1	DMW-1	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b
	Date Sampled	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29
	Lab Sample ID	K0B0397-04		K0K0729-04	K1E0403-05	K1H0536-03		2051369-01	2081484-03	2111131-03	3051354-03	3081378-03	3110772-03		4081094-03	4110161-03	5051773-04	5081710-02	5110693-01	6050336-02		6111141-04	7040434-07	7090074-04
	Sample Type	K0D0337 04	K010700 01	KOKO725 04	KILO403 03	K1110330 03	K130003 03	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit							Normal	Worman	Homiu	Norman	Homiai	Normal	Worman	Homiu	Normal	Homiai	Homiai	Homidi	Normal	Normal	Horrida	Horrida	Normal
Molybdenum, dissolved	mg/L	0.0011	0.0008	0.0004	0.0003	0.0004	0.0017	0.0006	0.0004	0.0004	0.0004	0.0002	0.0004	0.0003	0.0004	0.0004	_	_	_	_	0.0004	0.0004	_	0.00058
Molybdenum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0004	0.0004	<0.001	0.0003	-	-	0.0003	-
Nickel, dissolved	mg/L	0.0034	0.0046	0.0036	0.0011	0.0014	0.0011	<0.0002	0.0014	0.0012	0.0014	0.0015	0.0016	0.0012	0.0021	0.0016	-	-		-	0.0017	0.0022	-	0.00115
Nickel, total	mg/L		-	-		- 0.0014	- 0.0011		-			-	-		0.0021	-	0.0006	0.0026	<0.002	0.0016		- 0.0022	0.002	- 0.00115
Phosphorus, dissolved	mg/L	<0.020	<0.020	<0.020	<0.020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	-	-		-	<0.02	0.24	-	<0.050
Phosphorus, total	mg/L	- 10.020			- 10.020	- 10.02							-	- 10.02	0.04	-	<0.020	0.08	<0.2	<0.02	-	0.24	<0.05	10.050
Potassium, dissolved	mg/L	6.64	9.66	4.75	4.72	4.85	4.24	5.17	5.08	4.72	5.11	5.31	4.86	4.76	5.06	4.94	-	-		-	5.62	5.2	-	8.08
Potassium, total	mg/L	- 0.04				4.05	-	5.17	-	-	3.11	5.51	-	4.70	3.00	-	4.93	5.94	5.1	5.1		5.2	4.73	- 0.00
Selenium, dissolved	mg/L	0.0005	<0.0003	<0.0003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	3.54	5.1	-	<0.0005	<0.0005	-	<0.00050
Selenium, total	mg/L	0.0003			-	-	-	\0.0003			-	<0.0003	-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	<0.0005	<0.0005	<0.005	<0.0005			<0.0005	-
Silicon, dissolved	mg/L	10.4	6.09	4.55	7.93	8	7.3	7.6	7.9	8	7.9	8	7.4	7.4	8	8.4	-		-		8	8.3	-	6.4
		10.4	- 0.09	4.55	7.93	-	7.5	7.0		-	7.5	0	7.4	7.4	0	-	7.9	9	8	8.3		0.3	7.5	- 0.4
Silicon, total	mg/L	<0.00005	<0.00005	<0.00005	0.00005	<0.00005	<0.00005	<0.0005	- <0.00005	<0.00005	<0.0005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0005	7.9	-	-	0.3	<0.00005	<0.00005	1.3	<0.000050
Silver, dissolved	mg/L	\0.00003	\0.00003	\0.00005	0.00005	\U.UUUU3	<0.00005	\U.UUUU3	\U.UUUU3	<0.00005	\U.UUUU3	\U.UUUU3	<0.00005	\U.UUUU3	\U.UUUU3	<0.00005	0.00005	0.00163	<0.0005	<0.00005	\0.00005	\U.UUUU3	<0.00005	\0.000030
Silver, total	mg/L	25.0	22.7	26.6	25.4	2F 1		72 5	29.6		20.1	30.4		25.4	20.4	30.1	0.00005	0.00163	<0.0005		22.0	20.0	<0.00005	47.5
Sodium, dissolved	mg/L	25.8	23.7	26.6	25.4	25.1	25.3	23.5	29.0	27.4	29.1	30.4	29.7	25.4	28.4	30.1	26.9	33.2	29.7	28.7	32.8	29.8	26.3	47.5
Sodium, total	mg/L	2.07	2.00	1.00	1.0	1.00	1.62	1.00	1 72	1.67	1.70	1.74		1.01	1.70		26.9	33.2	29.7	28.7	1.00	1.70	20.3	4 22
Strontium, dissolved	mg/L	3.07	3.89	1.88	1.8	1.69	1.62	1.69	1.72	1.67	1.76	1.74	1.7	1.81	1.76	1.71	1.00	1.00	1.74	1.02	1.96	1.79	1 70	4.33
Strontium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	- 27		-	- 47	1.68	1.99	1.74	1.82		-	1.78	
Sulfur, dissolved	mg/L	-	-	-	-	-	-	55	50	46	46	45	37	52	46	47	-	-	- 27	-	52	44	- 42	80.3
Sulfur, total	mg/L						0.000			0.000						0.000	46	51	37	45			43	
Tellurium, dissolved	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	<0.0002	<0.0002	-	<0.00050
Tellurium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	<0.002	<0.0002	-	-	<0.0002	-
Thallium, dissolved	mg/L	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	0.00004	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	-	-	-	<0.00002	<0.00002	-	<0.000020
Thallium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00002	<0.00002	<0.0002	<0.00002	-	-	<0.00002	-
Thorium, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010
Thorium, total	mg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-
Tin, dissolved	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0002	<0.0002	0.0003	-	-	-	-	0.0002	<0.0002	-	<0.00020
Tin, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0004	<0.0002	<0.002	<0.0002	-	-	<0.0002	-
Titanium, dissolved	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-	-	-	<0.005	<0.005	-	<0.0050
Titanium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	<0.05	<0.005	-	-	<0.005	-
Tungsten, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tungsten, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium, dissolved	mg/L	0.00173	0.00165	0.00008	0.00013	0.00011	0.00009	0.00014	0.00007	0.00009	0.00009	0.00007	0.00008	0.00014	0.00014	0.00009	-	-	-	-	0.00005	0.00007	-	0.00103
Uranium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00011	0.00007	<0.0002	0.00013	-	-	0.0002	 -
Vanadium, dissolved	mg/L	0.0055	0.0028	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-	-	-	-	<0.001	<0.001	-	<0.0010
Vanadium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	<0.001	<0.01	<0.001	-	-	<0.001	-
Zinc, dissolved	mg/L	0.0096	0.0193	0.0097	0.0321	0.005	0.01	0.009	<0.004	0.005	<0.004	<0.004	<0.004	<0.004	<0.004	0.005	-	-	-	-	<0.004	0.067	-	0.038
Zinc, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.004	<0.004	<0.04	<0.004	-	-	0.017	-
Zirconium, dissolved	mg/L	0.0006	0.0004	0.002	0.0015	0.0013	0.0011	0.0011	0.0013	0.0014	0.0011	0.001	0.0011	0.0012	0.0012	0.0015	-	-	-	-	0.0019	0.0015	-	0.00056
Zirconium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0012	0.0019	0.001	0.0014	-	-	0.0012	-
General Parameters					ļ														1			,		
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	481	482	480	504	432
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	444	453	475	509	509	495	486	480	512	497	463	479	499	479	478	490	478	500	481	482	480	504	432
Ammonia, Total (as N)	mg/L	0.65	0.76	0.29	0.2	0.26	0.26	0.155	0.263	0.031	0.274	0.274	0.295	0.261	0.28	0.24	0.234	0.21	0.276	0.196	0.251	0.228	0.239	0.758
Bicarbonate (HCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	587	588	586	614	527
Carbonate (CO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.6	<0.6	<0.600	<0.600
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	1130	1140	1090	1120	1090	1100	1150	1120	1120	1110	1140	1150	1160	1140	1160	1150	1120	<2	1170	1160	1180	1140	1170
Electrical Conductivity	uS/cm		_	_	_	_	_	_	-	_	-	_	_	_	-	-	-	_	-	_	_	_	_	-

											_	_					_							
	Sampling Location	DMW-1	DMW-1	DMW-1	DMW-1b																			
	Date Sampled	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29
	Lab Sample ID	КОВОЗ97-04	K0F0788-01	K0K0729-04	K1E0403-05	K1H0536-03	K1J0685-03	2051369-01	2081484-03	2111131-03	3051354-03	3081378-03	3110772-03	4060249-03	4081094-03	4110161-03	5051773-04	5081710-02	5110693-01	6050336-02	6081698-02	6111141-04	7040434-07	7090074-04
	Sample Type							Normal																
Analyte	Unit																							
Hardness, Total (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	649	678	645	-	-	-	-	-
Hydroxide (OH)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.3	<0.3	<0.340	<0.340
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	pH Units	7.73	7.89	7.69	7.84	7.79	7.79	7.86	7.85	7.09	7.78	7.86	7.86	7.89	7.66	7.81	7.74	7.7	7.63	7.6	7.73	7.89	7.67	7.92
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	0.8	0.5	3.6	2	3.4	1.8	1.6	3	3.4	3	3.4	3.2	4.3	3.7	4.3	1.5	3	4.5	4.8	1.68	1.49	2.4	0.63
Microbiological Parameters																								
Coliforms, Fecal	CFU/100 mL	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
E. coli, Total	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)																							1	
1,1-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-
1,2-Dibromoethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
1,2-Dichloropropane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Benzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-
Benzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Bromodichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-

		DMW-1	DMW-1	DMW-1	DMW-1b	DMW-1b	DMW-1b	DMW-1b																
	Sampling Location	DIVIVO-1	DIVIVV-1	DIVIV-1	DIVIVE-10	DIVIVO-1D	DIVIVV-10	DIVIVV-1D	DIVIVV-1D	DIVIVV-10	DIVIVV-10	DIVIVV-10	DIVIVV-10	DIVIVV-10	DIVIVY-10	DIVIVO-10	DIVIVO-10	DIVIVV-10	DIAIAA-10	DIVIVV-10	DIVIVO-10	DIVIVV-10	DIVIVV-10	DIVIVO-ID
	Date Sampled	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29
	Lab Sample ID	K0B0397-04	K0F0788-01	K0K0729-04	K1E0403-05	K1H0536-03	K1J0685-03	2051369-01	2081484-03	2111131-03	3051354-03	3081378-03	3110772-03	4060249-03	4081094-03	4110161-03	5051773-04	5081710-02	5110693-01	6050336-02	6081698-02	6111141-04	7040434-07	7090074-04
	Sample Type							Normal	Normal	Normal	Normal													
Analyte -	Unit		1	1			1						ı	T	T	<u> </u>	I				T	1		
Bromoform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-
Carbon tetrachloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-
Chloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Chloroform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 -	-	-	-
cis-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Dibromochloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Dibromomethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0030	-
Dichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Ethylbenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Methyl tert-butyl ether	μg/L	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-	-	-	1	-
Styrene	mg/L	-	-	-	-	-	-	-	-	-	1	•	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Styrene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	ug/L	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	•	-
Tetrachloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/L	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Toluene	μg/L	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	i	-	-	-	-	-	-	-	-	-	-	1	-
Trichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Trichlorofluoromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Vinyl chloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
Xylenes (total)	μg/L	_	_	_	-	_	_	_	-	_	-	-	-	_	_	-	_	-	_	_	-	_	_	_
Xylenes (total)	ug/L		_	-	_	_	_	_	-	_	-	-	-	_	_	-	_	-	_	_	<u> </u>	_	_	
BCMOE Aggregate Hydrocarbons	1 49/-		1	1									ı	1	1	ı	1	1	ı		1	1		
VPHw	mg/L	-	_	<u> </u>	-	_	_	_	-	_	-	-	_	_	_	-	_	-	_	_	_	_	-	_
	I '''6/ L			1		1				1					1	<u> </u>	1	1	1	1	1	1	<u> </u>	

				1						1		1	1		1				1	1	1		1	
		DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4
	Sampling Location																							
	Date Sampled	2017-11-20	2018-06-26	2018-09-11	2019-05-29	2019-08-13	2019-10-29	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04		2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05		2017-11-20	2018-06-26	2018-09-11
	Lab Sample ID		8062674-02	8090975-04	9052874-07	9081278-07	N000444-06	3051354-05	3081378-04	3110772-04	4060249-04	4081094-04	4110161-04		5081710-03	5110693-02	6050336-03	6081698-03	6111141-05	7040434-06	7090074-03		8062674-03	8090975-05
	Sample Type	Normal	Normal	Normal				Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit																							
Field Parameters				1						1	1	1	1	1					1	1		1	1	1
Depth to Water	m ,	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	4.67	-	0.32	3.45	2.75	2.49	-		-	2.33	0.3	3.22	2.98	2.04	0.4	0	9.12	4.63	-	0.54	4.21	-	4.34
Electrical Conductivity	μS/cm	1137	1033	1189	1056	987	1006	900	1130	1100	914	1062	953	922	1043	1109	1271	1139	790	927	1159	1187	1214	1232
Elevation of Piezometric Surface	m	-	- 464	- 402	- 22.7	- 10	- 464.7	-	-	- 204	- 70	-	-		-	- 27	-	- 206	452	- 225	- 47	-	-	- 72
Oxidation reduction potential	mV	7.2	-161	-182	-33.7	-16	161.7	235	68	204	78	77	-8	69	-5	37	80	206	152	235	-47	7.2	96	72
pH Tomporatura	pH Units	7.3 7.9	7.34	7.28 7.8	7.3 8.8	7.26	7.47 6.4	7.25 8.7	7.16	7.11	7.3	7.1 8.6	7.1 8.2	7.5	7.3 8.2	6.3	7.1 8.5	7.3	7.3 7.7	7.6 7.8	7.4	7.2	7.42 7.9	7.23 7.9
Temperature	C	7.9	8	7.8	8.8	11	6.4	8.7	7.8	7.2	7.9	8.6	8.2	9	8.2	8	8.5	8.2	7.7	7.8	9.5	8	7.9	7.9
Anions	/1	-0.10	<0.10	<0.10										<0.10	10.10	10.10	<0.10	<0.10	10.10	<0.10	<0.10	10.10	<0.10	10.10
Bromide	mg/L	<0.10			11.2	10.4	0 0	22.4	16.2	16.0	20.6	10.7	17.4	+	<0.10	<0.10	†		<0.10			<0.10		<0.10
Chloride Fluoride	mg/L mg/L	52.8 1.3	92.2	52.3 1.38	0.83	10.4 0.47	8.8 0.63	22.4 0.48	16.2 0.61	16.9 0.52	20.6 0.28	19.7 0.32	0.42	0.89	13.2 0.74	15.7 0.48	15.7 0.69	15.1 0.49	14.5 0.42	12.8 0.34	46.5 1.45	0.79	11.8 0.71	12.6 0.72
Nitrate (as N)	mg/L	<0.010	<0.010	<0.100	0.522	0.47	0.63	0.48	0.135	<0.010	0.28	0.32	0.602	0.89	0.74	0.725	0.488	0.49	0.42	0.34	0.012	0.79	0.71	0.72
Nitrate (as N)	mg/L	<0.010	<0.010	<0.100	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.012	<0.010	<0.010	0.048
Sulfate	mg/L	108	117	119	246	191	175	236	270	268	150	250	213	275	232	196	263	223	135	153	122	246	238	252
Metals	18/ -	100	117	113	240	131	173	230	270	200	130	230	213	273	232	130	203	223	133	133	122	240	230	232
Aluminum, dissolved	mg/L	_	0.0202	<0.0050	0.0141	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	l -	_	_	_	<0.005	<0.005	_	<0.0050	l -	0.0128	<0.0050
Aluminum, total	mg/L	<0.0050	-	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	<0.05	<0.005	-	-	<0.005	-	<0.0050	-	-
Antimony, dissolved	mg/L	-	<0.00020	<0.00020	<0.0002	<0.0002	<0.0002	0.0004	0.0005	0.0005	0.0004	0.0004	0.0003	-	-	-	-	<0.0001	0.0002	-	<0.00020	-	<0.00020	<0.00020
Antimony, total	mg/L	<0.00020	-	-	-	-	-	-	-	-	-	-	-	0.0002	0.0003	<0.001	0.0002	-	-	0.0001	-	<0.00020	-	-
Arsenic, dissolved	mg/L	-	0.0434	0.0411	0.00107	0.0011	0.00082	0.0013	0.0013	0.0014	0.0012	0.0014	0.0013	-	-	-	-	0.001	0.0009	-	0.0421	-	0.00124	0.00137
Arsenic, total	mg/L	0.0476	-	-	-	-	-	-	-	-	-	-	-	0.0014	0.0018	<0.005	<0.0005	-	-	0.001	-	0.00149	-	-
Barium, dissolved	mg/L	-	0.0225	0.0222	0.0167	0.014	0.0152	0.015	0.014	0.015	0.015	0.017	0.017	-	-	-	-	0.017	0.015	-	0.0223	-	0.0159	0.0155
Barium, total	mg/L	0.0246	-	-	-	-	-	-	-	-	-	-	-	0.017	0.016	<0.05	0.019	-	-	0.016	-	0.0165	-	-
Beryllium, dissolved	mg/L	-	0.00011	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	0.00011	-	<0.00010	<0.00010
Beryllium, total	mg/L	0.00011	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-
Bismuth, dissolved	mg/L	-	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010	-	<0.00010	<0.00010
Bismuth, total	mg/L	<0.00010	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-
Boron, dissolved	mg/L	1	0.156	0.134	0.321	0.204	0.275	0.263	0.415	0.465	0.07	0.286	0.218	-	-	-	-	0.267	0.092	-	0.148	-	0.355	0.336
Boron, total	mg/L	0.101	-	-	-	-	-	-	-	-	-	-	-	0.659	0.392	0.2	0.444	-	-	0.106	-	0.386	-	-
Cadmium, dissolved	mg/L	-	<0.000010	<0.000010	0.000011	<0.00001	0.000011	0.00002	0.00003	<0.00001	0.00002	0.00001	0.00002	-	-	-	-	0.00003	0.00001	-	<0.000010	-	0.000014	0.000015
Cadmium, total	mg/L	<0.000010	-	-	-	-	-	-	-	-	-	-	-	0.00001	<0.00001	<0.0001	<0.00001	-	-	<0.00001	-	<0.000010	-	-
Calcium, dissolved	mg/L	-	71.2	70.8	75.7	74.4	69.6	78.2	80.7	82.5	75.1	86.4	79.9	-	-	-	-	77.8	68.9	-	70.7	-	74.9	78.6
Calcium, total	mg/L	65.9	-	-	-	-	-	-	-	-	-	-	-	79	81.9	81.6	97	-	-	73.2	-	76.1	-	-
Chromium, dissolved	mg/L	-	<0.00050	<0.00050	0.00108	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	-	<0.00050	-	<0.00050	<0.00050
Chromium, total	mg/L	<0.00050	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.005	<0.0005	-	-	<0.0005	-	<0.00050	-	-
Cobalt, dissolved	mg/L	-	0.00011	<0.00010	0.00108	0.00077	0.00082	0.00084	0.00075	0.00059	0.00126	0.00133	0.00106	-	-	-	-	0.00091	0.00088	-	<0.00010	-	0.0008	0.00112
Cobalt, total	mg/L	<0.00010	-	-	-	-	-	-	-	-	-	-	-	0.00079	0.00083	0.0009	0.00125	-	-	0.00077	-	0.00068	-	-
Copper, dissolved	mg/L	-	0.00069	<0.00040	0.006	0.015	0.0264	0.0036	0.003	0.0024	0.0668	0.006	0.0065	-	-	-	-	0.0043	0.0593	-	0.00044	-	0.00594	0.0263
Copper, total	mg/L	0.00073	-	-	-	-	-	-	-	-	-	-	-	0.01	0.0027	0.006	0.0071	-	-	0.0394	-	0.00181	-	-
Iron, dissolved	mg/L	-	0.381	<0.010	0.122	<0.01	0.011	0.014	0.014	0.013	0.011	0.021	0.014	-	-	-	-	0.011	<0.010	-	0.575	-	0.039	<0.010
Iron, total	mg/L	0.437	-	-	-	-	-	-	-	-	-	-	-	0.04	0.02	<0.10	0.01	-	-	0.03	-	0.037	-	-
Lead, dissolved	mg/L	-	<0.00020	<0.00020	0.0003	0.00026	0.00034	0.0003	0.0004	0.0002	0.0003	0.0002	0.0003	-	-	-	-	<0.0001	0.0004	-	<0.00020	-	0.00028	<0.00020
Lead, total	mg/L	<0.00020	- 0.024	- 0.0245	- 0.0455	- 0.0204	- 0.0244	- 0.0247	- 0.0470	- 0.0546	- 0.0470	- 0.0005	- 0.0247	0.0004	0.0003	<0.001	0.0003	- 0.0005	- 0.0472	0.0002		<0.00020	- 0.0456	
Lithium, dissolved	mg/L	- 0.0247	0.024	0.0245	0.0455	0.0301	0.0344	0.0347	0.0478	0.0516	0.0178	0.0385	0.0317		- 0.0463	-	- 0.0547	0.0285	0.0173	- 0.04.03	0.0245	- 0.0500	0.0456	0.0443
Lithium, total	mg/L	0.0217	100	100	- 02.7	- 07.4	- 01	- 102	107	100		102	- 02.2	0.0696	0.0462	0.03	0.0547	105	-	0.0192		0.0508	- 02.5	- 04.7
Magnesium, dissolved	mg/L	- 404	106	106	92.7	87.4	91	103	107	106	93	102	93.3	102	- 00.6	- 02.4	- 110	105	85	- 00.5	115	- 01.1	93.5	94.7
Magnesium, total	mg/L	101	0.00000	- 0.00380	0.00366	0.00275	- 0.00242	- 0.0020	- 0.0043	0.004	0.0021	0.0127	- 0.0042	102	98.6	93.1	119	- 0.0020	0.0015	80.5	0.00535	91.1	0.00585	- 0.006E8
Manganese, dissolved	mg/L	- 0.00410	0.00808	0.00389	0.00366	0.00275	0.00242	0.0039	0.0042	0.004	0.0021	0.0127	0.0043	- 0.0048	0.0027	- 0.004	0.0061	0.0039	0.0015	0.0017	0.00535	0.00277	0.00585	0.00658
Manganese, total	mg/L	0.00419	-0.000010	-0.000040	-0.00001	-0.00001	-0.00001				-0.00003	-0.00003		0.0048	0.0037	0.004	0.0061	-0.00003	-0.00003	0.0017	-0.000010	0.00377	-0.000010	
Mercury, dissolved	mg/L	-0.000010	<0.000010	<0.000040	<0.00001	<0.00001	<0.00001	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002		-	-0.00003	-0.00003	<0.00002	<0.00002	-0.00002	<0.000010		<0.000010	<0.000040
Mercury, total	mg/L	<0.000010	-	-	-	-	-	-	-	-	-	-	-	<0.00002	_	<0.00002	<0.00002	-	-	<0.00002	-	<0.000010	-	-

Seed second se			i																		1				
Part	l .	Sampling Location	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4						
Part	<u> </u>	· · · ·	2017-11-20	2018-06-26	2018-09-11	2019-05-29	2019-08-13	2019-10-29	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11
Part																									
Profession 196		•																							
Mary Content Mary	Analyte																								
Marchander Mar		mg/L	-	0.00027	0.00036	0.00082	0.00105	0.00097	0.0008	0.0004	0.0006	0.0014	0.0008	0.001	-	-	-	-	0.001	0.0012	-	0.00031	-	0.00062	0.00079
No. 14. 11. 11. 11. 11. 11. 11. 11. 11. 11	Molybdenum, total	mg/L	0.00035	-	-	-	-	-	-	-	-	-	-	-	0.0006	0.0007	0.001	0.0009	-	-	0.0014	-	0.00049	-	-
Segretation Segretary Se	Nickel, dissolved	mg/L	-	0.00199	0.00201	0.00205	0.00146	0.00148	0.0018	0.0015	0.0012	0.0027	0.0026	0.0019	-	-	-	-	0.0014	0.0017	-	0.00179	-	0.00127	0.00132
Progression Progression	Nickel, total	mg/L	0.00204	-	-	-	-	-	-	-	-	-	-	-	<0.0002	0.0025	<0.002	0.0018	-	-	0.0017	-	0.00105	-	-
Part	Phosphorus, dissolved	mg/L	-	<0.050	<0.050	<0.05	<0.05	<0.05	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	-	-	-	-	<0.02	<0.02	-	<0.050	-	<0.050	<0.050
Part	Phosphorus, total	mg/L	<0.050	-	-	-	-	-	-	-	-	-	-	-	<0.020	<0.02	<0.2	<0.02	-	-	<0.05	-	<0.050	-	-
Seminate Seminate	Potassium, dissolved	mg/L	-	5.15	4.79	7.19	5.75	5.72	7.63	9.49	9.36	3.66	7.73	6.8	-	-	-	-	7.23	4.01	-	4.69	-	8.51	8.04
Seminoniste Seminoniste	Potassium, total	mg/L	4.63	-	-	-	-	-	-	-	-	-	-	-	11.7	9.42	6.2	9.74	-	-	4.15	-	8.59	-	-
Marchen Marc	Selenium, dissolved	mg/L	-	<0.00050	<0.00050	<0.0005	0.00056	<0.0005	<0.0005	<0.0005	<0.0005	0.0008	0.0007	0.0007	-	-	ī	-	0.0005	0.0007	-	<0.00050	-	<0.00050	<0.00050
Page Page	Selenium, total	mg/L	<0.00050	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.005	<0.0005	-	-	0.0006	-	<0.00050	i	-
Standard Part (1) Column (1)<	Silicon, dissolved	mg/L	-	7.7	7.6	6.3	7.2	7.9	7.2	7	6.6	7.4	7.3	7.9	-	-	i	-	6.8	7.6	-	7.2	-	6.8	6.5
See See See See See See See See See Se	Silicon, total	mg/L	7.6	-	-	-	-	-	-		-	-	-	-	7	7.2	7	8.1		-	7.3	-	6.4	-	-
Semigrified Migrified Mi	Silver, dissolved	mg/L	-	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	-	-	-	-	<0.00005	<0.00005	-	<0.000050	-	<0.000050	<0.000050
Seminary May	Silver, total	mg/L	<0.000050	-	-	-	-	-	-	-	-	-	-	-	0.00005	0.00129	<0.0005	<0.00005	-	-	<0.00005	-	<0.000050	-	-
Section of the content	Sodium, dissolved	mg/L	-	29.2	28.8	39.4	26.2	29.9	34.2	48.8	51	20.2	34.8	31.6	-	-	-	-	33.4	17	-	27.9	-	44.6	41.2
Semiground Fig. 1.5 1.	Sodium, total	mg/L	26.9	-	-	-	-	-	-	-	-	-	-	-	70.3	46.9	27.2	50	-	-	21.1	-	46.4	-	-
Substitution	Strontium, dissolved	mg/L	-	1.66	1.76	4.26	3.49	3.11	4.26	5.03	5.11	2.07	4.53	3.8	-	-	-	-	4.11	2.09	-	1.59	-	4.49	4.8
Substitution	Strontium, total	mg/L	1.85	-	-	-	-	-	-	-	-	-	-	-	6.04	5.09	3.55	5.47	-	-	2.3	-	5.49	-	-
Marients Marient Ma	Sulfur, dissolved	mg/L	-	44.1	41.4	82.7	70.7	71.2	80	95	88	58	87	80	-	-	-	-	83	48	-	43	-	85.5	86.6
Final Part	Sulfur, total	mg/L	42.6	-	-	-	-	-	-	-	-	-	-	-	98	87	67	98	-	-	46	-	88.3	-	-
Part Part	Tellurium, dissolved	mg/L	-	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	<0.0002	<0.0002	-	<0.00050	-	<0.00050	<0.00050
Substitute May Ma	Tellurium, total	mg/L	<0.00050	-	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	<0.002	<0.0002	-	-	<0.0002	-	<0.00050	-	-
Part Part	Thallium, dissolved	mg/L	-	<0.000020	<0.000020	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	-	-	-	<0.00002	<0.00002	-	<0.000020	-	<0.000020	<0.000020
Particut Particut	Thallium, total	mg/L	<0.000020	-	-	-	-	-	-	-	-	-	-	-	<0.00002	<0.00002	<0.0002	<0.00002	-	-	<0.00002	-	<0.000020	-	-
Fig.	Thorium, dissolved	mg/L	-	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010	-	<0.00010	<0.00010
Finale Finale	Thorium, total	mg/L	<0.00010			-	-		-	-	-	-	-		<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010		-
Family Harding Hard	Tin, dissolved	mg/L	-	<0.00020	<0.00020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-				<0.0002	<0.0002		<0.00020		<0.00020	<0.00020
Family F	Tin, total	mg/L	<0.00020						-	-		-			0.0003	<0.0002	<0.002	<0.0002			<0.0002	-	<0.00020		
Tragistic place with a mig/L 1. 4.00010 4.0001 4.	Titanium, dissolved	<u> </u>	-	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-			<0.005	<0.005	-	<0.0050		<0.0050	<0.0050
Figure 1.5 Fig			<0.0050			-			-	-	-	-	-	-	<0.005	<0.005	<0.05	<0.005	-	-	<0.005	-	<0.0050		-
Varioum, dissolved mg/L - 0.00011 0.00071 0.0011 0.00072 0.0014 0.0015 0.00155 0.00155 0.0015 0.00115 0.0011 0.00016 0.0015 0.00156			-	<0.0010	<0.0010	<0.001	<0.001	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.0010	<0.0010
Varial municial mg/L 0.000068 mg/L 0.000068 mg/L 0.000068 mg/L 0.000068 0.0001			<0.0010		-				-		-	-	-		-	-		-	-	-	-	-			-
Vanadium, dissolved	· · · · · · · · · · · · · · · · · · ·		-	0.00011			0.00178					0.00262	0.00152			-			0.00158			0.000121		0.000954	0.00118
Vanadium, total mg/L			0.000068												0.00051			U.00134			0.00225		U.000895		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-0.0010				<0.001					<0.001							<0.001			<0.0010	-0.0010	<0.0010	<0.0010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·		<0.0010	l	1		0.0276		-			- 0.045			<0.001				0.015			0.0061	<0.0010	0.0424	0.055
2rconium, dissolved mg/L -	· · · · · · · · · · · · · · · · · · ·		0.0094				0.0276								0.02								0.0105		
2/1 2/1 2/2 2/3 3/4	· · · · · · · · · · · · · · · · · · ·		0.0084	l			0.00042								- 0.03								0.0103		+
Common C			0.00161												0.0007								0.00058		
Alkalinity, Bicarbonate (as CaCO3) mg/L 481 477 522 435 401 415 419 410 396 399 489 439 409 452 Alkalinity, Carbonate (as CaCO3) mg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	· · · · · · · · · · · · · · · · · · ·	III8/L	0.00101				_	ı -		-	I -	-			1 0.0007	0.000	\0.001	0.000	-		1 0.0004	_	0.00036	-	-
Alkalinity, Carbonate (as CaCO3) mg/L < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.		mg/I	481	477	522	435	401	415	_	-	_	-	-	_	_	_	-	419	410	396	399	489	439	409	452
Alkalinity, Hydroxide (as CaCO3) mg/L < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		†	†					_			_	_		_	_									
Alkalinity, Phenolphthalein (as CaCO3) mg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	· · · · · · · · · · · · · · · · · · ·		†									_													†
Alkalinity, Total (as CaCO3) mg/L 481 477 522 435 401 415 437 427 435 392 399 416 430 429 422 419 410 396 399 489 439 409 452 Ammonia, Total (as N) mg/L 0.262 0.248 0.249 0.531 0.055 0.028 0.596 0.952 1.07 0.028 0.814 0.341 1.26 0.816 0.283 0.814 0.336 0.036 0.024 0.216 1.06 0.758 0.849 Bicarbonate (HCO3) mg/L 587 582 637 531 489 506			†									-													
Ammonia, Total (as N) mg/L 0.262 0.248 0.249 0.531 0.055 0.028 0.596 0.952 1.07 0.028 0.814 0.341 1.26 0.816 0.283 0.814 0.336 0.036 0.024 0.216 1.06 0.758 0.849			-	†	+	 									_										
Bicarbonate (HCO3) mg/L 587 582 637 531 489 506 511 500 483 486 596 536 499 552 Carbonate (CO3) mg/L < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.600 < 0.6			-	1		1									 										
Carbonate (CO3) mg/L <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <	, ,		 																						
Chemical Oxygen Demand mg/L			 																						†
Electrical Conductivity µS/cm 1170 1150 1180 1150 1030 982 1160 1220 1230 979 1170 1120 1220 1130 1090 1210 1100 951 955 1160 1190 1140 1180							-		-			-	-		-	-				-	-		-		-
			1170	1150	1180	1150	1030	982	1160	1220	1230	979	1170	1120	1220	1130	1090	1210	1100	951	955	1160	1190	1140	1180
	Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

		550000																						
	Sampling Location	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4																
	Date Sampled	2017-11-20	2018-06-26	2018-09-11	2019-05-29	2019-08-13	2019-10-29	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11
	Lab Sample ID	7111886-05	8062674-02	8090975-04	9052874-07	9081278-07	N000444-06	3051354-05	3081378-04	3110772-04	4060249-04	4081094-04	4110161-04	5051773-03	5081710-03	5110693-02	6050336-03	6081698-03	6111141-05	7040434-06	7090074-03	7111886-06	8062674-03	8090975-05
	Sample Type	Normal	Normal	Normal				Normal																
Analyte	Unit		1	1		1				1	1	1	1	1	1	ı	1	<u> </u>	1	1	1	1		
Hardness, Total (as CaCO3)	mg/L	582	-	-	571	546	549	-	-	-	-	-	-	619	611	587	-	-	-	-	-	565	-	-
Hydroxide (OH)	mg/L	<0.340	<0.340	<0.340	<0.34	<0.34	<0.34	-	-	-	-	-	-	-	-	-	<1	<0.3	<0.3	<0.340	<0.340	<0.340	<0.340	<0.340
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	pH Units	7.86	7.8	7.79	7.96	7.9	8.04	7.76	7.84	7.77	7.9	7.64	7.81	7.79	7.74	7.72	7.66	7.72	7.87	7.76	7.87	7.95	7.89	7.8
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	5.34	4.61	-	0.27	0.27	0.18	0.2	0.2	0.3	5.5	0.2	0.2	0.5	0.2	0.2	0.2	0.3	0.24	0.25	7.35	0.37	0.32	-
Microbiological Parameters				1		1					1	1		_		1		1		1	1	1		
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Coliforms, Fecal	MPN/100 mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL		-	-	-	 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli, Total	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)					1							1								,				
1,1-Dichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	-	<0.0003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-	-	-	<0.0003
1,2-Dibromoethane	μg/L	-	-	-	<0.3	-	<0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
1,2-Dichloropropane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
1,4-Dichlorobenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Benzene	mg/L	-	-	<0.0005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	<0.0005
Benzene	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Bromodichloromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
Bromoform	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	i	<0.0010
						•			•		•			•		•					•			

r _a .		DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4																
Sar	mpling Location	2		J	2		2	J										2					J	
	Date Sampled	2017-11-20		2018-09-11	2019-05-29	2019-08-13	2019-10-29	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05		2017-11-20	2018-06-26	2018-09-11
	Lab Sample ID	7111886-05	8062674-02	8090975-04	9052874-07	9081278-07	N000444-06	3051354-05	3081378-04	3110772-04	4060249-04	4081094-04	4110161-04	5051773-03	5081710-03	5110693-02	6050336-03	6081698-03	6111141-05	7040434-06	7090074-03	7111886-06	8062674-03	8090975-05
	Sample Type	Normal	Normal	Normal				Normal																
Analyte	Unit		1	I									ı		1 1		1 1		1	1	1	ı	ı	
Bromoform	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	-	-	<0.0005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	<0.0005
Carbon tetrachloride	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	-	<0.0020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	<0.0020
Chloroethane	μg/L	-	-	-	<2	-	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Chloroform	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Dibromochloromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Dibromomethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/L	-	-	<0.0030	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0030	-	-	-	<0.0030
Dichloromethane	μg/L	-	-	-	<3	-	<3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Ethylbenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Methyl tert-butyl ether	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	ug/L	-	-	-	-	-	-		-	-	1	1	-	-	-	•	-	•	-	-	-	-	-	-
Styrene	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Styrene	μg/L	-	-	-	<1	-	<1	•	-	-	1	1	-	-	-	•	-	•	-	-	-	-	-	-
Styrene	ug/L	-	-	-	-		-		-	-	1	•	-	-	-	•	-	•	-	-	-	-	-	-
Tetrachloroethylene	μg/L	-	-	-	<1	-	<1	1	-	-	ı	ı	-	-	-	1	-	1	-	-	-	-	-	-
Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	1	-	-	-	•	-	•	-	-	-	-	-	-
Toluene	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Toluene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	1	-	-	-	•	-	•	-	-	-	-	-	-
Trichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	ı	-	-	-		-	-	-	-	-	-	-	-
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	1	-	-	-	•	-	ı	-	<0.0010	-	-	-	<0.0010
Trichlorofluoromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	ı	-	-	-		-	-	-	-	-	-	-	-
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-	-	-	-
Vinyl chloride	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Vinyl chloride	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	μg/L	-	-	-	<2	-	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
BCMOE Aggregate Hydrocarbons	,	•	•	•											,									-
VPHw	mg/L	_	_	_	_	_	_	-		_	_	_	_	_	_ [_	_	-	_	_	<u> </u>	_	-	_

		ĺ				I		1		I		Hospital	Vicking	I					l					
	Sampling Location	DMW-4	DMW-4	DMW-4	DMW-5	DMW-568	DMW-571	DMW-606	DUP	DUP A	DUP A	Hospital Creek	Kicking Horse	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Date Sampled	2018-12-03	2019-05-29	2019-08-13	2018-06-25	2018-06-27	2018-06-27	2018-06-27	2019-10-29	2019-05-29	2019-08-13	2018-12-04	2018-06-27	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2018-12-03	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09
	Lab Sample ID	8120636-04	9052874-08	9081278-08	8062668-01	8062808-02	8062808-03	8062808-01	N000444-07	9052874-09	9081278-09	8120636-06	8062805-03	K9E0816-03	K9K0184-01	K0B0397-02		8120636-01	K9E0816-02	K9K0184-02	K0B0397-01	K0F0788-03	K0K0729-01	K1E0403-03
	Sample Type	Normal			Normal	Normal	Normal	Normal				Normal	Normal					Normal						
Analyte	Unit		•	•												•	•	•				•	•	
Field Parameters	'	•																						
Depth to Water	m	-	-	-	-	-	-	-	-	-	-	-	-	32.972	34	32.69	33.55	33.47	32.619	33	33.49	32.68	32.7	31.618
Dissolved Oxygen	mg/L	3.79	2.39	3.68	-	-	-	-	-	-	-	13.48	-	0.83	1.92	-	-	4.05	2.21	1.07	-	-	-	-
Electrical Conductivity	μS/cm	1000	1092	1129	1051	-	-	1895	-	-	-	360	220	6700	4700	4400	4300	3780	4600	4700	4400	4430	6600	4200
Elevation of Piezometric Surface	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxidation reduction potential	mV	152	-70.4	-12.3	220	-	-	-113	-	-	-	-	138	-	-	-	73	110	-	-	-	73	173	175
рН	pH Units	7.18	7.27	7.18	7.38	-	-	7.31	-	-	-	7.49	8.48	6.78	6.86	6.76	7.01	6.81	6.87	6.84	6.79	6.86	6.91	6.75
Temperature	°C	7.1	12	11.2	13.5	-	-	10.7	-	-	-	0.1	10.1	10.8	9.4	9.4	11.3	8.9	12.5	10.5	10.9	11.6	10	12.2
Anions	•	!	•		Î				İ						•		•			•				
Bromide	mg/L	<0.10	-	-	-	-	-	-		-	-	<0.10	-	-	-	-	-	1.88	-	-	-	-	-	-
Chloride	mg/L	10.9	49.5	42.4	1.75	51.1	20	32.7	391	397	395	0.97	4.04	688	574	715	665	358	674	604	713	667	732	556
Fluoride	mg/L	0.62	1.64	1.22	2.45	0.51	0.81	6.83	0.11	0.15	0.19	<0.10	-	-	-	-	-	0.25	-	-	-	-	-	-
Nitrate (as N)	mg/L	0.402	<0.01	<0.01	0.109	0.673	<0.010	<0.010	32.1	36.9	33.1	0.052	0.096	62.6	56.4	67.7	61.4	27.2	62	60	66.9	62.3	55	53.2
Nitrite (as N)	mg/L	0.035	<0.01	<0.01	<0.010	<0.010	<0.010	0.011	<0.01	<0.01	0.161	<0.010	-	<0.01	<0.01	<0.01	0.03	<0.010	<0.01	<0.01	0.02	0.03	<0.01	<0.01
Sulfate	mg/L	215	126	122	72.9	98.2	120	123	702	721	704	28.9	-	788	783	945	873	582	781	824	925	861	781	606
Metals	, ,																							
Aluminum, dissolved	mg/L	<0.0050	<0.005	<0.005	-	-	-	-	<0.005	<0.005	<0.005	<0.0050	-	0.006	<0.005	0.23	<0.005	0.0101	0.012	<0.005	0.009	0.006	<0.005	<0.005
Aluminum, total	mg/L	<0.0050		-	<0.0050	0.0079	<0.0050	0.0173	-	-	-	0.0088	-	-	-	-	-	-	-	-	-	-	-	-
Antimony, dissolved	mg/L	<0.00020	<0.0002	<0.0002	-	-	-	-	<0.0002	0.00044	<0.0002	<0.00020	-	0.0003	0.0003	0.0005	0.0005	0.00191	0.0006	0.0002	0.0006	0.0004	0.001	0.0006
Antimony, total	mg/L	<0.00020	-	-	0.0006	0.00021	<0.00020	<0.00020	-	-	-	<0.00020	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic, dissolved	mg/L	0.00146	0.0633	0.0414	-	-	-	-	<0.0005	<0.0005	<0.0005	<0.00050	-	0.0104	0.0029	0.003	0.0048	0.00063	0.0033	0.0028	0.0021	0.0044	0.0057	<0.0005
Arsenic, total	mg/L	0.00161	-	-	0.0674	<0.00050	<0.00050	0.00239	-	-	-	<0.00050	-	-	-	-	-	-	-	-	-	-	-	-
Barium, dissolved	mg/L	0.0224	0.0242	0.0229	-	-	-	-	0.047	0.0512	0.0491	0.0555	-	0.101	0.0566	0.0822	0.062	0.0465	0.087	0.0566	0.0831	0.0676	0.074	0.0595
Barium, total	mg/L	0.0154	-	-	<0.0050	0.0953	0.0833	0.0253	-	-	-	0.0589	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium, dissolved	mg/L	<0.00010	0.00011	0.00011	-	-	-	-	<0.0001	<0.0001	<0.0001	<0.00010	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Beryllium, total	mg/L	<0.00010	-	-	-	-	-	-	-	-	-	<0.00010	-	-	-	-	-	-	-	-	-	-	-	-
Bismuth, dissolved	mg/L	<0.00010	<0.0001	<0.0001	_	-	_	-	<0.0001	<0.0001	<0.0001	<0.00010	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth, total	mg/L	<0.00010	-	-	-	-	-	-	-	-	-	<0.00010	-	-	-	-	-	-	-	-	-	-	-	-
Boron, dissolved	mg/L	0.33	0.13	0.136	-	-	-	-	2.18	1.84	1.86	0.0091	-	1.12	1.05	1.28	1.08	1.95	1.09	0.921	1.24	1.14	1.48	1.31
Boron, total	mg/L	0.335	-	-	0.173	0.213	0.0545	0.961	-	-	-	0.0093	-	-	-	-	-	-	-	-	-	-	-	_
Cadmium, dissolved	mg/L	<0.000010	<0.00001	<0.00001	_	-	-	-	<0.00001	<0.00001	<0.00001	<0.000010	-	0.00006	0.00001	0.00002	0.00002	<0.000010	0.00005	0.00003	0.00004	0.00002	0.00002	0.00018
Cadmium, total	mg/L	0.00001	-	-	<0.000010	<0.000010	<0.000010	0.000121	-	-	-	<0.000010	-	-	-	-	-	-	-	-	-	-	-	-
Calcium, dissolved	mg/L	67.9	70.7	71.2	-	-	-	-	158	170	164	53.2	-	235	197	217	186	164	220	192	215	191	212	194
Calcium, total	mg/L	68.6	_	_	0.27	91.9	95.6	34.4	-	-	_	52.4	-	_	-	_	_	_	_	-	-	_	-	_
Chromium, dissolved	mg/L	<0.00050	0.00088	<0.0005	_	-	_	_	<0.0005	0.00105	<0.0005	<0.00050	-	0.006	0.0065	0.0342	0.0109	<0.00050	0.004	0.0082	0.0341	0.0117	0.0019	<0.0005
Chromium, total	mg/L	<0.00050	-	-	<0.00050	0.00076	<0.00050	<0.00050	-	-	-	<0.00050	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	mg/L	0.00076	0.00029	<0.0001	_		_	-	0.00164	0.00167	0.00168	<0.00010	-	0.00298	0.00108	0.00151	0.00142	0.00164	0.00415	0.0022	0.00258	0.00228	0.0014	0.00124
Cobalt, total	mg/L	0.00075	-	-	<0.00010	0.00049	0.00445	0.00104	-	-	-	<0.00010	-	T -	-	-	-	-	-	-	-	-	-	-
Copper, dissolved	mg/L	0.00315	<0.0004	<0.0004	_		_	-	0.00217	0.00247	0.00201	<0.00040	-	0.008	0.0055	0.0143	0.0097	0.00328	0.0091	0.0056	0.0157	0.0077	0.0048	0.0019
Copper, total	mg/L	0.00488	-	-	0.00841	0.0582	0.00719	0.00196	-	-	-	0.00323		-	-	-	-	-	-	-	-	-	-	-
Iron, dissolved	mg/L	0.06	0.672	0.409	-	-	-	-	<0.01	<0.01	<0.01	<0.010		0.23	0.204	0.402	0.396	<0.010	0.219	0.196	0.195	0.425	0.396	<0.010
Iron, total	mg/L	0.062		-	0.059	0.466	0.552	3.6		-	-	<0.010	_	-	-	-	-	-	-	-	-	-	-	-
Lead, dissolved	mg/L	0.00032	<0.0002	<0.0002	-	-	-	-	<0.0002	<0.0002	<0.0002	<0.00020		<0.0001	<0.0001	0.0002	<0.0001	0.00048	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001
Lead, total	mg/L	0.00078	-	-	0.00149	0.00124	<0.00020	0.00134	-	-	-	0.00096	_	-	-	-	-	-	-	-	-	-	-	- 0.0001
Lithium, dissolved	mg/L	0.0429	0.0269	0.0249	-	-	-	-	0.0453	0.0458	0.0438	0.00102	_	0.0341	0.0359	0.054	0.0477	0.0443	0.0305	0.0278	0.0574	0.0488	0.042	0.0377
Lithium, total	mg/L	0.0435	-	-	_	_	_	_	-	-	-	0.00107	_	-	-	-	-	-	-	-	-	-	-	- 0.0377
Magnesium, dissolved	mg/L	92.6	106	107	_	-	_	_	295	275	272	17.5	_	292	310	308	263	297	299	314	310	269	286	285
Magnesium, total	mg/L	94.9	- 100	-	2.05	107	118	19.7	-	-	-	18.1	-	-	-	-	- 203	-	-	-	-	-	-	-
Manganese, dissolved	mg/L	0.00333	0.00864	0.0041	-	- 107	-	-	0.0898	0.0792	0.0888	<0.00020	-	0.242	0.0862	0.115	0.113	0.00199	0.518	0.212	0.168	0.191	0.108	0.0937
Manganese, total	mg/L	0.00333	- 0.00804		0.00103	0.0225	0.36	0.017	- 0.0838	-	- 0.0000	0.00020	-			0.113	5.115	-	-		-		-	
Mercury, dissolved	mg/L	<0.00010	<0.00001	<0.00001		- 0.0223	-		<0.00001	<0.00001	<0.00001	<0.00048	-	<0.00005	<0.00005	<0.00005	<0.00005	<0.000040	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00002
		<0.000010	- <0.00001	-0.00001	<0.000010	<0.000010	<0.000010	<0.000010	<0.00001	- 0.00001		<0.000040		- <0.00003	-		- 0.00003	-	-	- 0.00003		-	-	- 0.00002
Mercury, total	mg/L	<0.000040			<0.000010	<0.000010	<0.000010	<0.000010			-	<0.000010				-					-		_	

				1	I	ı						Hospital	Kicking	1					1					
San	npling Location	DMW-4	DMW-4	DMW-4	DMW-5	DMW-568	DMW-571	DMW-606	DUP	DUP A	DUP A	Creek	Horse	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Date Sampled	2018-12-03	2019-05-29	2019-08-13	2018-06-25	2018-06-27	2018-06-27	2018-06-27	2019-10-29	2019-05-29	2019-08-13	2018-12-04	2018-06-27	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2018-12-03	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09
	Lab Sample ID	8120636-04	9052874-08	9081278-08	8062668-01	8062808-02	8062808-03	8062808-01	N000444-07	9052874-09	9081278-09	8120636-06	8062805-03	K9E0816-03	К9К0184-01	ковоз97-02	K0F0788-04	8120636-01	K9E0816-02	К9К0184-02	K0B0397-01	K0F0788-03	K0K0729-01	K1E0403-03
	Sample Type	Normal			Normal	Normal	Normal	Normal				Normal	Normal					Normal						
Analyte	Unit			_																				
Molybdenum, dissolved	mg/L	0.00077	0.00037	0.00034	-	-	-	-	0.0003	0.00031	0.00032	0.00036	-	0.0006	0.0003	0.0003	0.0003	0.00047	0.0023	0.0009	0.0004	0.0006	0.0005	0.0003
Molybdenum, total	mg/L	0.0008	-	-	0.0009	0.00083	0.00107	0.00022	-	-	-	0.0004	-	-	-	-	-	-	-	-	-	-	-	-
Nickel, dissolved	mg/L	0.00116	0.0022	0.00217	-	-	-	-	0.0116	0.0114	0.0123	<0.00040	-	0.0163	0.0085	0.0112	0.0132	0.012	0.0148	0.0094	0.0115	0.0137	0.0154	0.007
Nickel, total	mg/L	0.00118	-	-	0.00076	0.0032	0.00347	0.00109	-	-	-	<0.00040	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, dissolved	mg/L	<0.050	<0.05	<0.05	-	-	-	-	<0.05	<0.05	<0.05	<0.050	-	0.039	<0.020	0.03	<0.020	<0.050	0.043	0.02	0.031	0.024	<0.020	<0.020
Phosphorus, total	mg/L	<0.050	-	-	-	-	-	-	-	-	-	<0.050	-	-	-	-	-	-	-	-	-	-	-	-
Potassium, dissolved	mg/L	7.11	4.62	4.68	-	-	-	-	173	171	176	0.47	-	131	149	153	147	186	109	133	153	146	157	167
Potassium, total	mg/L	7.38	-	-	1.07	8.26	10.6	14.5	-	-	-	0.45	-	-	-	-	-		-	-	-	-	-	-
Selenium, dissolved	mg/L	<0.00050	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	<0.0005	<0.00050	-	<0.0003	<0.0003	<0.0003	0.0018	<0.00050	<0.0003	<0.0003	<0.0003	0.0006	0.0018	0.0006
Selenium, total	mg/L	<0.00050	-	-	<0.00050	<0.00050	<0.00050	<0.00050		-	-	<0.00050	-	-	-	-	-		-	-	-	-	-	
Silicon, dissolved	mg/L	7	7.3	7.7	-	-	-	-	13.7	11.3	12.3	3.3	-	10	10.1	22.4	8.42	12.8	9.21	9.1	17.6	10.8	8.95	12.4
Silicon, total	mg/L	7.2 <0.000050	<0.00005	<0.0005	-	-	-	-	<0.0005	<0.0005	- <0.0005	3.3 <0.000050	-	<0.0005	<0.0005	<0.00005	<0.0005	<0.00050	0.00005	<0.00005	<0.00005	0.00006	0.00014	<0.00005
Silver, dissolved Silver, total	mg/L mg/L	<0.000050	<0.00005	<0.00005	-	-	-			<0.00005	\U.UUUU3	<0.000050	-		\U.UUUU3	<0.00005	\U.UUUU3	-0.00000	0.00005		- 0.00003	0.00000	0.00014	00003
Sodium, dissolved	mg/L	40.7	28.4	26.7	-		-		317	294	294	1.89	-	348	379	384	314	323	351	378	380	323	344	322
Sodium, total	mg/L	41.5	-	-	282	46.6	22.3	484	-	-	-	1.86		-	-	-	-	-	-	-	-	-	-	-
Strontium, dissolved	mg/L	4.1	1.73	1.76	-	-	-	-	1.56	1.69	1.66	0.174	_	2.53	2.21	2.04	2.04	1.75	2.42	2.09	2.07	2.12	2.25	1.95
Strontium, total	mg/L	4.14	-	-	0.0123	1.19	1.29	1.65	-	-	-	0.173	-	-	-	-	-	-	-	-	-	-	-	-
Sulfur, dissolved	mg/L	78.8	43.4	45.4	-	-	-	-	285	259	274	10.8	-	-	-	-	-	292	-	-	-	-	-	-
Sulfur, total	mg/L	81	-	-	-	-	-	-	-	-	-	10.1	-	-	-	-	-	-	-	-	-	-	-	-
Tellurium, dissolved	mg/L	<0.00050	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	<0.0005	<0.00050	-	<0.0002	<0.0002	<0.0002	<0.0002	<0.00050	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tellurium, total	mg/L	<0.00050	-	-	-	-	-	-	-	-	-	<0.00050	-	-	-	-	-	-	-	-	-	-	-	-
Thallium, dissolved	mg/L	<0.000020	<0.00002	<0.00002	-	-	-	-	0.00006	0.000056	0.000061	<0.000020	-	0.00009	0.00006	0.00006	0.00007	0.000048	0.00008	0.00006	0.00007	0.00007	0.00007	0.00006
Thallium, total	mg/L	<0.000020	-	-	-	-	-	-	-	-	-	<0.000020	-	-	-	-	-	-	-	-	-	-	-	-
Thorium, dissolved	mg/L	<0.00010	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	<0.0001	<0.00010	-	-	<0.0001	<0.0001	<0.0001	<0.00010	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thorium, total	mg/L	<0.00010	-	-	-	-	-	-	-	-	-	<0.00010	-	-	-	-	-	-	-	-	-	-	-	-
Tin, dissolved	mg/L	<0.00020	<0.0002	<0.0002	-	-	-	-	<0.0002	0.00025	<0.0002	<0.00020	-	0.0002	0.0002	0.0002	0.0002	0.00151	0.0003	<0.0002	<0.0002	<0.0002	0.0002	<0.0002
Tin, total	mg/L	<0.00020	-	-	-	-	-	-	-	-	-	<0.00020	-	-	-	-	-	-	-	-	-	-	-	-
Titanium, dissolved	mg/L	<0.0050	<0.005	<0.005	-	-	-	-	<0.005	<0.005	<0.005	<0.0050	-	<0.005	0.006	0.017	0.008	<0.0050	<0.005	0.005	0.005	0.008	0.014	<0.005
Titanium, total	mg/L	<0.0050	-	-	-	-	-	-	-	-	-	<0.0050	-	-	-	-	-	-	-	-	-	-	-	-
Tungsten, dissolved	mg/L	<0.0010	<0.001	<0.001	-	-	-	-	<0.001	<0.001	<0.001	<0.0010	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Tungsten, total	mg/L	<0.0010	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-
Uranium, dissolved	mg/L	0.00134	0.000111	0.00014	-	-	-		0.00747	0.00771	0.00761	0.000797	-	0.00761	0.00751	0.00639	0.00741	0.00793	0.00886	0.00757	0.007	0.00757	0.0079	0.00607
Uranium, total	mg/L	0.00131			0.00141	0.00174	0.00277	0.000176		0.004		0.000856	-		- 0.003	- 0.046	- 0.0063		- 0.004.4			- 0.000		
Vanadium, dissolved	mg/L	<0.0010	<0.001	<0.001	-	-	-	-	<0.001	<0.001	<0.001	<0.0010	-	0.0019	0.002	0.016	0.0062	<0.0010	0.0014	0.0026	0.0134	0.009	<0.0010	<0.001
Vanadium, total	mg/L	<0.0010	0.0101	0.0045	-	-	-	-	-0.004	- 0.0047	-0.004	<0.0010	-	0.0063	0.0026	- 0.0096	0.0047	0.0057	0.0062	0.0029	0.0102	0.005	- 0.0044	0.004
Zinc, dissolved Zinc, total	mg/L mg/L	0.0189	0.0101	0.0045	0.0153	0.0447	0.0671	- 1.27	<0.004	0.0047	<0.004	<0.0040 0.0065	-	0.0063	0.0036	0.0086	0.0047	0.0057	0.0063	0.0029	0.0103	0.005	0.0044	0.004
Zirconium, dissolved	mg/L	0.00053	0.00153	0.00162	-	-	-	-	0.00017	0.00015	0.00014	<0.00010	-	0.0008	0.0002	0.0004	0.0002	0.00021	0.001	0.0005	0.0003	0.0003	0.0002	0.0002
Zirconium, total	mg/L	0.00049	-	-	_	_	_	_	-	-	-	<0.00010	-	-	-	-	-	-	-	-	-	-	-	-
General Parameters	, o															ı								
Alkalinity, Bicarbonate (as CaCO3)	mg/L	411	504	516	477	504	546	932	938	970	917	189	-	-	-	-	-	939	-	-	-	-	-	-
Alkalinity, Carbonate (as CaCO3)	mg/L	<1.0	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	-	-	-	-	-	<1.0	-	-	-	-	-	-
Alkalinity, Hydroxide (as CaCO3)	mg/L	<1.0	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	-	-	-	-	-	<1.0	-	-	-	-	-	-
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	<1.0	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	-	-	-	-	-	<1.0	-	-	-	-	-	-
Alkalinity, Total (as CaCO3)	mg/L	411	504	516	477	504	546	932	938	970	917	189	-	1380	762	768	787	939	1590	780	794	778	757	801
Ammonia, Total (as N)	mg/L	0.416	0.285	0.288	-	-	-	-	1	1.06	1.3	<0.020	-	0.29	0.08	0.3	0.09	0.79	0.54	0.26	0.44	0.26	0.13	0.2
Bicarbonate (HCO3)	mg/L	502	615	630	582	615	667	1140	1140	1180	1120	230	-	-	-	-	-	1150	-	-	-	-	-	-
Carbonate (CO3)	mg/L	<0.600	<0.6	<0.6	<0.600	<0.600	<0.600	<0.600	<0.6	<0.6	<0.6	<0.600	-	-	-	-	-	<0.600	-	-	-	-	-	-
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	1100	1160	1160	1020	1200	1190	2010	3860	4130	3970	382	-	5110	4820	4790	4720	789	5090	4840	4780	4680	4640	4250
Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

					1	1	1		l	1		Uganital	Vielden	I					l					$\overline{}$
	Sampling Location	DMW-4	DMW-4	DMW-4	DMW-5	DMW-568	DMW-571	DMW-606	DUP	DUP A	DUP A	Hospital Creek	Kicking Horse	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Date Sampled	2018-12-03	2019-05-29	2019-08-13	2018-06-25	2018-06-27	2018-06-27	2018-06-27	2019-10-29	2019-05-29	2019-08-13	2018-12-04	2018-06-27	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2018-12-03	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09
	Lab Sample ID	8120636-04	9052874-08		8062668-01	8062808-02	8062808-03	8062808-01	N000444-07	9052874-09	9081278-09	8120636-06	8062805-03	K9E0816-03	K9K0184-01	K0B0397-02	K0F0788-04	8120636-01	K9E0816-02	K9K0184-02	K0B0397-01	K0F0788-03	K0K0729-01	1
	Sample Type	Normal			Normal	Normal	Normal	Normal				Normal	Normal					Normal						
Analyte	Unit		1													ı							ı	
Hardness, Total (as CaCO3)	mg/L	-	612	619	9.13	671	726	167	1610	1560	1530	-	-	-	-	-	-	-	-	-	_	-	-	_
Hydroxide (OH)	mg/L	<0.340	<0.34	<0.34	<0.340	<0.340	<0.340	<0.340	<0.34	<0.34	<0.34	<0.340	-	-	-	-	-	<0.340	-	_	-	-	-	-
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH	pH Units	7.83	7.99	7.96	7.88	7.89	7.97	8.02	7.73	7.61	7.66	8.21	_	7.4	7.28	7.32	7.55	7.32	7.4	7.29	7.49	7.57	7.35	7.5
pH	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	<0.0020	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	-	-	0.163	-	-	-	-	-	-
Total organic carbon	mg/L	-	-	-	_	_	-	_	-	_	_	-	-	_	_	-	-	_	_	_	_	_	-	-
Turbidity	NTU	0.58	6.97	3.56	0.11	2.38	1.96	42.6	114	222	235	0.83	-	_	9.1	1600	3500	176	2400	2900	830	1500	730	188
Microbiological Parameters															_									
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	_	_	_	_	Τ -
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli, Total	CFU/100 mL	-	-	-	<1	<1	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)	,			•																	•		I	
1,1-Dichloroethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	-	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	μg/L	-	<0.3	-	-	-	-	-	<0.3	<0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	1	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	μg/L	-	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	mg/L	_	_	1	_			_	l	_	_		_	_	_	_		_	_	İ	_	_	-	_

		DMW-4	DRAWA A	DMW-4	DMW-5	DMW F69	DMW-571	DMW 606	DUD	DUP A	DUDA	Hospital	Kicking	MW09-6D	M14/00 6D	MANAGO ED	MANAGO ED	MW09-6D	M14/00 65	MANAGO CE	MANAGO 66	MANAGO CC	MANAGO GC	MWOO 66
	Sampling Location	DIVIVV-4	DMW-4	DIVIVV-4	DIVIVV-5	DMW-568	DIVIVV-3/1	DMW-606	DUP	DUPA	DUP A	Creek	Horse	IVIVVUS-6D	MW09-6D	MW09-6D	MW09-6D	IVIVVU9-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Date Sampled	2018-12-03	2019-05-29	2019-08-13	2018-06-25	2018-06-27	2018-06-27	2018-06-27	2019-10-29	2019-05-29	2019-08-13	2018-12-04	2018-06-27	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2018-12-03	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09
	Lab Sample ID	8120636-04	9052874-08	9081278-08	8062668-01	8062808-02	8062808-03	8062808-01	N000444-07	9052874-09	9081278-09	8120636-06	8062805-03	K9E0816-03	K9K0184-01	K0B0397-02	K0F0788-04	8120636-01	K9E0816-02	K9K0184-02	K0B0397-01	K0F0788-03	K0K0729-01	K1E0403-03
	Sample Type	Normal			Normal	Normal	Normal	Normal				Normal	Normal					Normal						
Analyte	Unit		1	1							I			ļ	ı			I			1			
Bromoform	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	μg/L	-	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	μg/L	-	<2	-	-	-	-	-	<2	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
Dibromochloromethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	μg/L	-	<3	-	-	-	-	-	<3	<3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-		-
Vinyl chloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	μg/L	-	<2	-	-	-	-	-	<2	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BCMOE Aggregate Hydrocarbons																								
VPHw	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
																								

				1		1	1	1	1	1				1		1	1	1				1		
		MW09-6S																						
	Sampling Location				2012 20 20		2012 25 21								2015 11 00				2247 24 25			2010.05.05		
	Date Sampled			2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-10	2019-05-29
	Lab Sample ID	K1H0536-02	K1J0685-01	2051369-03	2081484-01	2111131-01		3081378-01	3110772-01	4060249-06	4081094-06	4110161-06	5051773-06		5110693-03	6050336-01		6111141-03	7040434-03		7111886-01	8062674-01		9052874-01
A	Sample Type		1	Normal																				
Analyte	Unit]																						
Field Parameters	1	22.525	1 00 005	20.50	22.525	20.504	1		00.554	1	20.54	22.5	22.57	1 00.70	20.74	22.75	20.50		1	22.56	22.50			22.522
Depth to Water	m	32.625	32.625	32.59	32.605	32.624	32.629	32.64	32.651	32.6	32.61	32.6	32.67	32.78	32.74	32.76	32.59	32.57	-	32.56	32.68	32.73	32.47	32.588
Dissolved Oxygen	mg/L	-	-	-	-	-	-	-	-	0.28	1.56	1.07	1.36	1.74	0.95	0.46	0.43	1.98	-	1.17	0.6	-	3.51	2.06
Electrical Conductivity	μS/cm	3600	4000	4100	4600	480	3300	4900	3700	4240	4030	4610	4710	4550	4530	4700	4520	2270	4150	4120	3630	4260	4160	3759
Elevation of Piezometric Surface	m	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	885.687
Oxidation reduction potential	mV	67	167	135	210	164	231	228	-24	96	116	44	-7	-55	45	151	182	186	217	158	-	168	168	-4.3
рн 	pH Units	6.87	6.73	6.86	6.97	6.9	6.87	6.63	6.64	4.8	7.3	6.7	6.5	6.7	6	6.7	6.7	/	7.3	7	/	7.03	7.02	6.89
Temperature	°C	12.4	11.1	11.2	12.5	12.2	12.4	12.1	12.2	13	13	12.3	14.1	12.8	12.5	12.5	13.5	12.2	11.8	12.6	12	13.1	11.6	11.7
Anions	1 .	1	Т	1		I	1	1	1	1	I			T	1		1	T		1	T	T		
Bromide	mg/L	-	-		-		-	-	-	-	-		0.47	1.09	1.48	0.13	2.81	1.14	0.88	2.16	2.84	0.38	<10.0	-
Chloride	mg/L	632	621	599	587	709	669	662	662	650	491	529	594	549	627	605	529	497	470	480	417	416	- 0.20	398
Fluoride	mg/L	-	-	0.11	0.31	0.14	0.12	0.14	<0.10	<0.10	0.11	0.25	0.14	0.1	0.23	0.17	0.16	0.33	0.14	<0.10	0.51	0.27	0.28	0.15
Nitrate (as N)	mg/L	66.5	56.3	0.010	54.6	59.1	62.3	54.5	54.7	52.1	41.8	48.9	38	34.1	33.3	44.1	37.7	40.1	42.3	35.3	32.6	31.3		33.8
Nitrite (as N)	mg/L	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.016	5.7	<0.010	<0.010	<0.010	<0.010	<0.01
Sulfate	mg/L	688	701	719	787	893	814	910	884	858	784	879	950	878	905	903	851	867	799	757	663	628	-	677
Metals	· · · · · ·		1	1		1		1	1	1				T			1				1			
Aluminum, dissolved	mg/L	<0.005	<0.005	0.005	<0.005	<0.005	0.006	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	0.024	0.859	<0.005	<0.005	0.007	0.006	0.0067	<0.0050	0.927	0.0081	<0.005
Aluminum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony, dissolved	mg/L	0.0004	<0.0020	0.0002	0.0009	0.0009	0.0009	0.0011	0.001	0.0003	0.0005	0.0003	0.0005	0.0005	0.0004	0.0006	<0.0001	0.0002	0.0001	<0.00020	<0.00020	0.00116	0.00076	0.00042
Antimony, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic, dissolved	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.001	0.0034	<0.0005	<0.0005	0.0007	0.00055	<0.00050	0.00117	0.00067	<0.0005
Arsenic, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium, dissolved	mg/L	0.059	0.051	0.062	0.066	0.067	0.067	0.065	0.061	0.059	0.054	0.058	0.062	0.062	0.071	0.055	0.058	0.057	0.057	0.051	0.05	0.0748	0.0491	0.0515
Barium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	0.003	<0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001
Beryllium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bismuth, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001
Bismuth, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Boron, dissolved	mg/L	1.18	1.26	1.23	1.29	1.43	1.47	1.53	1.64	1.67	1.6	1.61	2.04	1.9	1.77	2.12	2.08	1.76	2.03	1.86	1.57	1.7	1.6	1.8
Boron, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, dissolved	mg/L	0.00001	0.00002	<0.00001	<0.00001	0.00002	0.00002	0.00003	0.00001	<0.00001	<0.00001	0.00001	0.00002	<0.00001	0.00003	<0.00001	0.00002	0.00003	<0.00001	<0.000010	<0.000010	0.000036	<0.000010	<0.00001
Cadmium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium, dissolved	mg/L	177	177	180	182	193	218	235	231	218	217	209	199	197	208	202	179	168	163	180	167	186	148	170
Calcium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium, dissolved	mg/L	<0.0005	<0.0005	<0.0005	0.0016	0.0006	0.0009	<0.0005	0.0066	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0017	0.0057	0.0008	<0.0005	0.0006	0.00063	<0.00050	0.00169	<0.00050	0.00093
Chromium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	mg/L	0.00116	0.00093	0.00136	0.00114	0.00108	0.00148	0.00128	0.00127	0.001	0.00118	0.00133	0.00141	0.00149	0.00204	0.00198	0.00164	0.00183	0.00164	0.00161	0.00164	0.00212	0.00162	0.00163
Cobalt, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper, dissolved	mg/L	0.0015	0.017	0.0009	0.0018	0.0016	0.0014	0.0021	0.0013	0.0169	0.0017	0.0018	0.0028	0.042	0.2	0.0065	0.0051	0.217	0.0028	0.00681	0.00211	0.00664	0.00312	0.00252
Copper, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron, dissolved	mg/L	<0.01	<0.01	<0.01	0.02	0.01	0.028	<0.010	0.105	<0.010	0.012	0.011	0.011	0.062	1.21	0.609	0.021	0.02	<0.010	0.013	<0.010	1.43	0.046	<0.01
Iron, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	<0.0001	0.0014	0.0039	<0.0001	<0.0001	<0.0001	<0.0001	<0.00020	<0.00020	0.00191	<0.00020	<0.0002
Lead, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lithium, dissolved	mg/L	0.0364	0.0335	0.0361	0.0382	0.0395	0.045	0.0479	0.0486	0.052	0.0497	0.0501	0.0483	0.0513	0.0462	0.0519	0.0396	0.0438	0.0484	0.0452	0.042	0.045	0.0403	0.0448
Lithium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium, dissolved	mg/L	259	246	308	308	321	349	378	347	351	335	329	332	339	322	327	331	309	302	298	267	259	274	276
Magnesium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese, dissolved	mg/L	0.0894	0.0932	0.072	0.0683	0.0882	0.112	0.122	0.119	0.0908	0.121	0.132	0.0747	0.087	0.157	0.0791	0.0793	0.0731	0.0597	0.0887	0.0697	0.147	0.0262	0.0826
Manganese, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury, dissolved	mg/L	<0.00002	0.00005	<0.00002	0.00008	0.00004	0.00002	0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.000010	0.000041	<0.000010	<0.000040	<0.00001
Mercury, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

		İ	1	1												1				1	1			
	Sampling Location	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Date Sampled	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-10	2019-05-29
	Lab Sample ID	K1H0536-02	K1J0685-01	2051369-03	2081484-01	2111131-01	3051354-01	3081378-01	3110772-01	4060249-06	4081094-06	4110161-06	5051773-06	5081710-04	5110693-03	6050336-01	6081698-01	6111141-03	7040434-03	7090074-01	7111886-01	8062674-01	8090975-01	9052874-01
	Sample Type			Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	
Analyte	Unit																							
Molybdenum, dissolved	mg/L	0.0003	0.0036	0.0003	0.0018	0.0005	0.0006	0.0003	0.0007	0.0003	0.0003	0.0003	0.0004	0.0004	0.0037	0.0003	0.0003	0.0012	0.0003	0.00031	0.00032	0.00027	0.00033	0.00036
Molybdenum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel, dissolved	mg/L	0.0067	0.0067	0.0073	0.008	0.008	0.0155	0.0097	0.0176	0.0078	0.0097	0.0103	0.0093	0.0109	0.0119	0.0139	0.0114	0.0116	0.011	0.0113	0.0116	0.0122	0.0123	0.0116
Nickel, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, dissolved	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.05	<0.050	<0.050	0.053	<0.050	<0.05
Phosphorus, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Potassium, dissolved	mg/L	160	148	170	161	178	202	228	210	222	232	246	215	217	199	209	213	211	209	200	184	189	180	172
Potassium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Selenium, dissolved	mg/L	0.0006	<0.0005	0.0007	<0.0005	<0.0005	<0.0005	0.0008	<0.0005	<0.0005	0.0006	0.0006	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.0005
Selenium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silicon, dissolved	mg/L	11.5	10.2	12.2	11.4	11.9	11.9	12.5	11.1	12	12.3	13.7	12.7	12.7	12.9	13.3	11.2	12.1	12.6	11.6	11.2	13.8	11.3	11.3
Silicon, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver, dissolved	mg/L	0.00012	0.00009	<0.00005	<0.00005	0.00011	0.0001	<0.00005	0.00008	<0.00005	<0.00005	<0.00005	0.00007	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.000050	<0.000050	<0.000050	<0.000050	<0.00005
Silver, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium, dissolved	mg/L	298	290	346	362	375	409	444	407	372	385	428	385	394	375	359	366	347	343	334	285	261	297	294
Sodium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Strontium, dissolved	mg/L	1.88	1.74	1.91	2	2.11	2.18	2.28	2.1	2.15	2.06	2.04	1.92	2.05	1.9	1.95	1.84	1.76	1.74	1.62	1.73	1.65	1.65	1.7
Strontium, total	mg/L	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Sulfur, dissolved	mg/L	-	-	266	298	339	359	405	366	337	340	398	343	362	342	281	336	312	284	268	273	266	257	263
Sulfur, total	mg/L						0.000				0.000			- 0.0003			0.000					-0.00050	-0.00050	
Tellurium, dissolved	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0003	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.00050	<0.00050	<0.00050	<0.00050	<0.0005
Tellurium, total	mg/L	0.00005	0.00006	0.00005	0.00005	0.00022	0.00005	0.00000	0.00007	0.00005	0.00007	0.00007	0.00007	0.00006	0.00007	0.00006	0.00006		0.00006	-0.000030	0.000058	0.00006	0.000057	0.000061
Thallium, dissolved	mg/L	0.00005	0.00006	0.00005	0.00005	0.00022	0.00005	0.00009	0.00007	0.00005	0.00007	0.00007	0.00007	0.00006	0.00007	0.00006	0.00006	0.00006	0.00006	<0.000020	0.000058	0.00006	0.000057	0.000061
Thallium, total Thorium, dissolved	mg/L mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	0.00067	<0.00010	<0.0001
Thorium, total	mg/L	\0.0001	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 0.0001	- 0.0001	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		<0.0001	<0.0001 -		- 0.0001			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.0000		<0.0001	<0.0001	\0.0001	\0.00010	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.00007		\(\text{0.0001}\)
Tin, dissolved	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0005	0.0013	<0.0002	0.0003	0.0003	<0.0002	0.00026	0.00023	0.00031	<0.00020	0.00028
Tin, total	mg/L	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium, dissolved	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.038	0.014	<0.005	<0.005	<0.005	<0.0050	<0.0050	0.0525	<0.0050	<0.005
Titanium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tungsten, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	<0.0010	<0.001
Tungsten, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium, dissolved	mg/L	0.00602	0.00607	0.0058	0.00698	0.00686	0.00779	0.00823	0.00765	0.00721	0.00777	0.00802	0.00729	0.00779	0.00804	0.00863	0.00753	0.00717	0.00734	0.00769	0.00796	0.00707	0.00763	0.00748
Uranium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium, dissolved	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.002	<0.001	<0.001	<0.001	<0.0010	<0.0010	0.0013	<0.0010	<0.001
Vanadium, total	mg/L	-	-	-	-		-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-
Zinc, dissolved	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.009	0.005	0.005	0.006	0.027	0.067	0.009	0.035	0.199	0.005	0.034	<0.0040	0.0229	0.0044	0.0048
Zinc, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zirconium, dissolved	mg/L	0.0001	0.0001	0.0001	0.0003	0.0001	0.0002	0.0002	0.0001	0.0001	0.0004	0.0004	0.0002	0.0001	0.0008	0.0002	0.0001	0.0001	0.0002	0.00014	0.00012	0.00083	0.00019	0.00014
Zirconium, total	mg/L	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
General Parameters																								
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	857	878	907	902	878	929	1050	1140	963
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1
Alkalinity, Total (as CaCO3)	mg/L	800	784	805	813	790	902	771	798	818	802	832	855	865	897	857	878	907	902	878	929	1050	1140	963
Ammonia, Total (as N)	mg/L	0.18	0.16	0.133	0.274	0.406	0.432	0.462	0.518	0.39	0.588	0.408	0.644	0.614	0.899	1.4	1.21	0.94	1.19	0.935	1.17	1.26	1.12	1.42
Bicarbonate (HCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1050	1070	1110	1100	1070	1130	1280	1390	1180
Carbonate (CO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.6	<0.6	<0.600	<0.600	<0.600	<0.600	<0.600	<0.6
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	4230	4320	4380	4670	5040	5020	5150	5220	4840	4750	4850	4640	4520	4570	4650	4480	4430	4350	4170	4190	4060	4070	3990
Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

		1	1								<u> </u>	1	1			1			1	1	1			
	Canadina Lasatian	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Sampling Location Date Sampled		2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-10	2019-05-29
	Lab Sample ID	K1H0536-02		2051369-03	2012-08-22	2111131-01		3081378-01	3110772-01	4060249-06		4110161-06	5051773-06		5110693-03	6050336-01	6081698-01	6111141-03	7040434-03	7090074-01	7111886-01	8062674-01	8090975-01	1 1
	Sample Type	A RITIOSSO OZ	KIJOOOJ OI	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	3032074 01
Analyte	Unit		ı	1		1				1	1		1	1	1		1							-
Hardness, Total (as CaCO3)	mg/L	-	_	-	_	_	_	-	-	_	_	_	_	_	_	-	_	_	_	_	_	_	-	1560
Hydroxide (OH)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.3	<0.3	<0.340	<0.340	<0.340	<0.340	<0.340	<0.34
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH	pH Units	7.39	7.35	7.45	7.35	6.96	7.4	7.46	7.36	7.65	7.39	7.49	7.37	7.34	7.3	7.55	7.42	7.68	7.42	7.6	7.51	7.39	7.45	7.61
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	79	155	437	267	32.2	448	163	84.6	3.7	47.2	196	6.9	1.6	205	1.6	1.89	220	1.03	46.9	387	2210	-	203
Microbiological Parameters		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		1
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli, Total	CFU/100 mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)																								
1,1-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-	-	-	<0.0003	-
1,2-Dibromoethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.3
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
1,2-Dichloropropane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,3-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,3-Dichloropropene (cis + trans)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,4-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	<1
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	<0.0005	-
Benzene	mg/L	-	-	-	-	-	-		-				-		-	-	-			-	-	-		
Benzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5
Benzene Bromodichloromothano	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0.0010	-	-	-	- 0.0010	-
Bromodichloromethane Bromodichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	
Bromodichloromethane Bromodichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Bromodichloromethane Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0.0010	-	-	-	- 0.0010	-
Bromoform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-

		MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Sampling Location			"""	1111105 05	1111105 05					1111103 03		1111103 03				"""			1111105 05		1111103 03	1111105 05	1111105 05
	Date Sampled	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-10	2019-05-29
	Lab Sample ID	K1H0536-02	K1J0685-01	2051369-03	2081484-01	2111131-01	3051354-01	3081378-01	3110772-01	4060249-06	4081094-06	4110161-06	5051773-06	5081710-04	5110693-03	6050336-01	6081698-01	6111141-03	7040434-03	7090074-01	7111886-01	8062674-01	8090975-01	9052874-01
	Sample Type			Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	
Analyte	Unit			1	1	1		ı											1					
Bromoform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	<0.0005	-
Carbon tetrachloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	<0.0020	-
Chloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Chloroform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Dibromochloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	<0.0010	-	-	-	<0.0010	-
Dibromomethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	<1
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-
Dichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	•	<0.0030	-	-	-	<0.0030	-
Dichloromethane	μg/L	-	-	-	-	-	-	-	-	-	1	-		-	-	-	-	-	-	-	-	-	-	<3
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	1	-		-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Ethylbenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Methyl tert-butyl ether	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Styrene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Styrene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
, Toluene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0066	-	-	-	<0.0010	-
Toluene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Trichlorofluoromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Vinyl chloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	<1
Vinyl chloride	ug/L	_	_	_	_	-	-	_	-	_	_	-	-	-	_	-	_	_	_	-	_	_	-	-
Xylenes (total)	μg/L	_	-	-	_	-	-	-		-	-		-	-	_	_	-		_	-	-	_	_	<2
Xylenes (total)	ug/L		-	 		_		-					-									-		
BCMOE Aggregate Hydrocarbons	l ng/r	<u> </u>	<u> </u>	<u> </u>		<u> </u>	I -	<u> </u>	-	<u> </u>	=	=	=		ı - I			<u> </u>	<u> </u>	<u> </u>	<u> </u>	· -	<u> </u>	1 -

																								Т
	Sampling Location	MW09-6S	MW09-6S	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW15-01
	Date Sampled	2019-08-13	2019-10-29	2010-11-16	2011-05-09	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2015-11-09
	Lab Sample ID	9081278-01	N000444-01	K0K0729-02	K1E0403-01	K1E0403-04	K1H0536-01	K1J0685-02	2051369-04	2081484-02	2111131-02	3051354-02	3081378-05	3110772-05	4060249-05	4081094-05	4110161-05	5051773-05	8090975-03	8120636-03	9052874-02	9081278-02	N000444-02	5110701-01
	Sample Type								Normal				Normal											
Analyte	Unit																							
Field Parameters																								
Depth to Water	m	32.574	32.566	14.14	13.903	-	13.945	13.78	13.59	13.85	14.109	14.252	14.381	16.281	15.19	13.84	14.99	15.37	15.91	14.72	13.834	13.792	14.572	11.04
Dissolved Oxygen	mg/L	1.75	2.56	-	-	-	-	-	-	-	-	-	-	-	7.43	7.85	8.3	7.05	10.98	9.05	7.3	9.5	9.28	1.42
Electrical Conductivity	μS/cm	3660	3607	2100	2800	-	2700	3100	3200	3500	340	2200	3300	2700	2740	2770	3150	2960	2910	2700	2444	2850	2945	1056
Elevation of Piezometric Surface	m	885.701	885.709	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	906.334	906.376	905.596	<u> </u>
Oxidation reduction potential	mV	-8.3	173	-138	2800	-	83	143	124	52	122	254	121	47	87	132	24	23	100	158	-17.1	42.1	175.3	50
рН	pH Units	6.72	7.04	8.44	7.85	-	7.51	7.33	7.43	7.54	7.6	7.4	7.37	7.23	3.1	7.3	7.4	7.3	7.57	7.23	7.5	7.47	7.59	6.5
Temperature	°C	11.9	11	5.9	8.7	-	8.1	6.9	7.9	8.4	7.1	8.9	8.6	7.5	8.1	9.5	7.5	9.7	8.3	6.8	7.9	9.1	6.4	9.3
Anions		1										1												↓
Bromide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10	<0.10	<0.10	- /	-	-	<0.10
Chloride	mg/L	388	391	523	663	-	844	873	834	888	988	762	820	815	672	672	700	666	509	580	605	651	736	125
Fluoride	mg/L	0.18	0.11	-	-	-	-	-	0.12	0.13	0.12	0.23	0.24	0.25	0.27	0.13	0.26	0.26	0.28	0.22	0.29	0.22	0.2	<0.10
Nitrate (as N)	mg/L	33.6	31	0.22	<0.010	-	0.341	0.58	0.59	0.141	0.339	0.566	0.929	<0.010	0.206	1.11	0.723	0.695	0.94	0.778	0.942	0.89	1.22	1.19
Nitrite (as N)	mg/L	0.154	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.01	<0.01	<0.01	<0.010
Sulfate	mg/L	698	700	72.9	44.3	-	44.4	55.2	36.5	37.4	57.6	53.2	45.1	56.2	38.1	44.7	47.5	39.4	48.6	51.8	47.5	48.8	43.5	45.8
Metals	<u> </u>					I																	2.20	
Aluminum, dissolved	mg/L	<0.005	<0.005	0.007	-	0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.006	0.01	<0.005	<0.0050	<0.0050	<0.005	<0.005	<0.005	0.008
Aluminum, total	mg/L			- 0.0000		-			-						- 0.0000	-		-						0.455
Antimony, dissolved	mg/L	<0.0002	<0.0002	0.0008	0.0015	-	0.001	<0.0020	0.0003	0.0016	0.0009	0.0007	0.0004	0.0007	0.0003	0.0003	0.0013	0.0019	0.00028	0.00029	<0.0002	<0.0002	<0.0002	<0.0001
Antimony, total	mg/L			0.0107	- 0.0140	-	0.0004	- 0.0024	- 0.0039	0.0020	0.0024	0.0024	0.0020	0.0040	0.0024	- 0.0042	0.0016	- 0.0000	0.000	0.00204	0.00245	- 0.0022	0.00353	<0.0001
Arsenic, dissolved	mg/L	<0.0005	<0.0005	0.0107	0.0149	-	0.0061	0.0031	0.0028	0.0039	0.0024	0.0024	0.0029	0.0018	0.0024	0.0042	0.0016	0.0039	0.002	0.00204	0.00215	0.0022	0.00353	<0.0005
Arsenic, total	mg/L	0.054	0.047	0.125	0.257	-	0.246	0.105	0.355	0.271	0.25	0 227	0.220	0.357	0.103	0.225	0.242	0.212	0 174	0.100	0.10	0.200	0 222	<0.0005
Barium, dissolved	mg/L	0.051	0.047	0.125	0.257	-	0.246	0.195	0.255	0.271	0.25	0.227	0.239	0.257	0.192	0.235	0.242	0.212	0.174	0.199	0.19	0.208	0.223	0.154 0.184
Barium, total	mg/L	<0.0001		<0.0001	<0.0001	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	1
Beryllium, dissolved Beryllium, total	mg/L mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-	<0.0001	\U.UUU1	<0.0001	<0.0001		\U.UUU1	<0.0001	\0.0001	<0.0001	<0.0001	<0.0001	-0.0001	~0.00010	<u></u>	\U.UUU1		<0.0001	<0.0001 0.0001
Bismuth, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth, total	mg/L	- 0.0001	- <0.0001	- 0.0001									- 0.0001		-	- 0.0001		- 0.0001	-		- 0.0001			<0.0001
Boron, dissolved	mg/L	1.85	2.22	0.093	0.034	-	0.028	0.027	0.031	0.017	0.024	0.025	0.051	0.041	0.031	0.035	0.024	0.02	0.0602	0.0413	0.0476	0.0574	0.196	0.029
Boron, total	mg/L	-	-	-	-	_	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	0.028
Cadmium, dissolved	mg/L	<0.00001	<0.00001	0.00009	0.00002	-	<0.00001	0.00008	<0.00001	<0.00001	0.00003	0.00004	0.00001	0.00002	0.00002	0.00003	0.00001	0.00004	<0.000010	<0.000010	<0.00001	0.000011	<0.00001	<0.0001
Cadmium, total	mg/L	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00001
Calcium, dissolved	mg/L	163	156	73.8	-	90.6	103	100	102	107	110	107	120	128	103	116	116	101	84	93.3	94.8	100	103	97.5
Calcium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	118
Chromium, dissolved	mg/L	<0.0005	<0.0005	0.0025	<0.0005	-	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0007	<0.00050	<0.00050	0.00104	<0.0005	<0.0005	<0.0005
Chromium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0018
Cobalt, dissolved	mg/L	0.00165	0.00157	0.00537	0.0198	-	0.00674	0.00078	0.00219	0.00342	0.00264	0.00126	0.00127	0.00151	0.00111	0.00024	0.00096	0.00012	<0.00010	<0.00010	0.00092	0.00039	<0.0001	0.00007
Cobalt, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00062
Copper, dissolved	mg/L	0.00199	0.00229	0.0031	<0.0002	-	<0.0002	0.0054	<0.0002	0.001	0.001	0.0014	<0.0002	0.0012	0.0011	0.004	0.0008	0.0051	0.00086	<0.00040	0.00076	0.00067	0.00146	0.0019
Copper, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0281
Iron, dissolved	mg/L	<0.01	<0.01	0.347	3.01	-	1.87	0.02	0.12	0.15	0.03	0.011	0.038	0.012	0.111	0.015	0.049	0.015	<0.010	<0.010	0.013	0.011	<0.01	0.019
Iron, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	1.07
Lead, dissolved	mg/L	<0.0002	0.00096	0.0002	<0.0001	-	<0.0001	0.0002	<0.0001	<0.0001	0.0007	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00020	0.00056	<0.0002	<0.0002	<0.0002	<0.0001
Lead, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0008
Lithium, dissolved	mg/L	0.0434	0.044	0.02	-	0.0248	0.0224	0.0193	0.0182	0.019	0.019	0.0203	0.022	0.0233	0.0223	0.0219	0.0212	0.0188	0.0198	0.0218	0.021	0.0217	0.0227	0.0049
Lithium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0061
Magnesium, dissolved	mg/L	268	292	96.5	160	-	144	130	139	129	139	139	151	155	132	132	130	117	120	128	115	125	125	48.5
Magnesium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	57.5
Manganese, dissolved	mg/L	0.0868	0.0864	0.219	0.492	-	0.349	0.035	0.0785	0.0546	0.172	0.0896	0.0336	0.0871	0.038	0.0049	0.027	0.0031	0.00139	0.00063	0.0174	0.0069	0.00106	0.0043
Manganese, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	0.0238
			1	1	1	1				1		1		1							1	1	· ——	0.0000
Mercury, dissolved	mg/L	<0.00001	<0.00001	<0.00005	-	0.00002	0.00002	0.00008	0.00003	0.00006	0.00003	0.00002	<0.00002	<0.00002	<0.00002	0.00002	0.00002	<0.00002	<0.000040	<0.000040	<0.00001	<0.00001	<0.00001	<0.00002

Part																					I				
Part		amnling Location	MW09-6S	MW09-6S	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW15-01
Part	ĺ	· · · ·	2019-08-13	2019-10-29	2010-11-16	2011-05-09	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2015-11-09
Part		•																							5110701-01
Section Continue		•																							I I
Section Continue	Analyte																								
Section	· · · · · · · · · · · · · · · · · · ·	mg/L	0.00033	0.00029	0.0149	0.0046	-	0.0019	0.0046	0.0009	0.0024	0.0011	0.0007	0.0004	0.0007	0.0006	0.0004	0.0007	0.0006	0.00072	0.00061	0.00053	0.00056	0.00035	0.0003
Mary Content	Molybdenum, total		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0008
Martine Mart	Nickel, dissolved	mg/L	0.012	0.0115	0.0175	0.0277	-	0.0093	0.0099	0.006	0.0087	0.0077	0.0053	0.0048	0.006	0.0045	0.0032	0.0039	0.0007	0.00298	0.00318	0.00309	0.00287	0.00098	0.0006
Profession Pro	Nickel, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0003
Marie Mari	Phosphorus, dissolved	mg/L	<0.05	<0.05	<0.020	<0.020	-	<0.02	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.050	<0.050	<0.05	<0.05	<0.05	<0.02
Manuse M	Phosphorus, total	mg/L	-	-	-	-	-	-	-	-	1	1	1	-	-	-	-	-	1	-	-	-	-	-	<0.02
Section Sect	Potassium, dissolved	mg/L	173	168	8.58	6.79	-	6.33	6.51	7.89	7.23	6.55	6.53	6.9	6.64	6.05	6.82	6.66	6.34	5.61	5.93	5.65	5.87	6.26	2.42
Seedlest	Potassium, total	mg/L	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	2.67
Mary State Mar	Selenium, dissolved	mg/L	<0.0005	<0.0005	0.0005	0.0007	-	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0006	<0.0005	<0.0005	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.0005
Part Part	Selenium, total	mg/L	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	•	-	-	-	-	-	<0.0005
Section	Silicon, dissolved	mg/L	12	13.2	4.21	10.1	-	9	8.1	10.3	9.6	9.7	9.4	9.6	9.1	9.2	9.9	10.4	10.4	8.8	9.8	8.6	9.2	10.6	4.8
December Perform Per	Silicon, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.3
Semi-surface Physical Phys	Silver, dissolved	mg/L	<0.00005	<0.00005	<0.00005	0.00007	-	0.00016	0.00006	<0.00005	<0.00005	0.00008	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005	<0.00005
Seminar Semi	Silver, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00005
Description of the proper series of the proper seri	Sodium, dissolved	mg/L	288	306	178	312	-	341	305	436	450	390	359	386	392	356	399	436	365	316	370	310	334	431	61
Section of the state of the s	Sodium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	72.3
Substitution	Strontium, dissolved	mg/L	1.7	1.54	1.03	1.66	-	1.6	1.49	1.53	1.6	1.64	1.52	1.61	1.64	1.43	1.52	1.56	1.35	1.3	1.44	1.29	1.45	1.31	0.542
Mathematical Mag Mag	Strontium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.634
Second column Second colum	Sulfur, dissolved	mg/L	271	277	-	-	-	-	-	19	17	23	21	20	18	18	17	20	16	17.2	20.2	17.1	19.1	17.5	17
Section Sect	Sulfur, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	21
Part Part	Tellurium, dissolved	mg/L	<0.0005	<0.0005	<0.0002	<0.0002	-	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.0002
Mathematic Mag.	Tellurium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002
Part	Thallium, dissolved	mg/L	0.000062	0.000061	<0.00002	<0.00002	-	<0.00002	0.00011	<0.00002	<0.00002	0.00003	0.00007	<0.00002	0.00008	<0.00002	0.00004	<0.00002	0.00002	0.000074	0.000062	<0.00002	0.000032	<0.00002	<0.00002
Part Part Part Part Part Part Part Part	Thallium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00002
Fig.	Thorium, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-	<0.0001	0.0003	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	
Fig. Fig.	·		-		-		-		-	-		-	-		-	-		-	-	-	-	-	-		
Parameter Para	<u> </u>		<0.0002	<0.0002	0.001	<0.0002	-	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.00020	<0.00020	<0.0002	<0.0002	0.00029	
Parametrise Parametrise		-			-		-					-			-										
Description Configuration			<0.005	<0.005	<0.005	<0.005	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.0050	<0.0050	<0.005	<0.005		
Programs Programs	,		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		0.005
Primium_dissolved			<0.001	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.006	0.0064	0.0043	0.0035	0.0012	-
Primium, total Margit Ma			-		-	-		-			-	-	-		-				-		-				-
Vanadium, dissolved mg/L < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001							0.00166					0.00206			0.00223	0.00205		0.00227			0.00238		0.00226		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·			l			-					-													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												<0.001			<0.001								<0.001		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				l	-							-0.004			<0.004							l	- -0.004		
Zirconium, dissolved	·																				<0.0040		<0.004		
2/1	· · · · · · · · · · · · · · · · · · ·			l	1										 						<0.00010	 	<0.0001		
Commitment Com	·																								
Alkalinity, Bicarbonate (as CaCO3)		I IIIg/L	<u> </u>		1		_	<u> </u>	<u> </u>	•	-	-						<u> </u>					<u> </u>	-	0.0003
Alkalinity, Carbonate (as CaCO3) mg/L <1 <1 <1		mø/l	915	1000	_	_	_	_	_	_	_	-	-	_	_		-	_	-	797	1100	544	500	518	
Alkalinity, Hydroxide (as CaCO3) mg/L <1 <1 <1 <-1	,, , , ,						_		_			-	_		_	_	_	_	_		1				_
Alkalinity, Phenolphthalein (as CaCO3) mg/L <1 <1 <1 · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				1							_													_
Alkalinity, Total (as CaCO3) mg/L 915 1000 425 459 - 462 446 515 768 731 619 516 598 514 476 592 492 797 1100 544 500 518 350 4 500 518 350 510 510 510 510 510 510 510 510 510 5												-													-
Ammonia, Total (as N) mg/L 1.18 1.14 0.05 0.04 - 0.04 0.05 < 0.020 0.11 0.023 0.03 < 0.023 0.03 < 0.020 0.052 0.061 0.118 0.075 - Bicarbonate (HCO3) mg/L 1120 1220 -			<u> </u>	†	 																	 			
Bicarbonate (HCO3) mg/L 1120 1220							-															†			
Carbonate (CO3) mg/L < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0	· · ·																								
Chemical Oxygen Demand mg/L	· · · · · · · · · · · · · · · · · · ·				1																				
Electrical Conductivity µS/cm 3990 3920 2250 - 2870 3150 3060 3340 3410 3500 3070 3300 3380 2940 3180 3310 2890 2770 2.2 2670 2990 3160 1020			-		1				-			-	-		-	-							-		-
			3990	3920	2250	-	2870	3150	3060	3340	3410	3500	3070	3300	3380	2940	3180	3310	2890	2770	2.2	2670	2990	3160	1020
	Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

				I																	I			$\overline{}$
	Sampling Location	MW09-6S	MW09-6S	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW15-01
	Date Sampled	2019-08-13	2019-10-29	2010-11-16	2011-05-09	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2015-11-09
	Lab Sample ID	9081278-01	1			K1E0403-04		K1J0685-02	2051369-04	2081484-02	2111131-02	3051354-02	3081378-05	3110772-05	4060249-05	4081094-05	4110161-05	5051773-05	8090975-03	8120636-03	9052874-02			
	Sample Type								Normal				Normal											
Analyte	Unit							'		•	•	•			'					•	•			
Hardness, Total (as CaCO3)	mg/L	1510	1590	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	712	767	772	532
Hydroxide (OH)	mg/L	<0.34	<0.34	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.340	<0.340	<0.34	<0.34	<0.34	-
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	pH Units	7.61	7.61	7.97	-	7.95	7.76	7.78	7.85	7.74	6.95	7.78	7.86	7.86	7.94	7.74	7.82	7.81	7.83	7.81	8.04	7.91	8.04	7.65
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.017
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	-
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Turbidity	NTU	248	77.2	87	641	-	-	71.1	-	2350	1910	620	664	1220	292	186	1180	122	-	3750	294	3080	671	37.8
Microbiological Parameters		_																					/	<u> </u>
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Coliforms, Fecal	MPN/100 mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<3.0
Coliforms, Total	MPN/100 mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	<3.0
E. coli, Total	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Volatile Organic Compounds (VOC)	<u> </u>	i			T	1	1	1 1			1			_			<u> </u>			1				├
1,1-Dichloroethane	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	- -	<1	-
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-
1,1-Dichloroethylene	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
1,1,1-Trichloroethane	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,1,1-Trichloroethane	ug/L	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-
1,1,2-Trichloroethane 1,1,2-Trichloroethane	μg/L ug/L	-	<1	-	-	-	-	-	-	-	-	-	-		-		-	-	_	-	<1	-	<1	-
1,1,2-Trichloroethane	μg/L		<0.5		_	_	-	_		-	_	_	-	_	_		_	_	_	-	<0.5	_	<0.5	
1,1,2,2-Tetrachloroethane	ug/L	_			-	_	_	_		_	_	_	-	_	_		_	_	_	-		_	-	
1,2-Dibromoethane	mg/L	_	-		_	_	_	_		_	_	_	-	_	_	_	_	_	<0.0003	_	_	_	_	
1,2-Dibromoethane	μg/L	_	<0.3		_	_	_	_		_	_	_	_	_	_	_	_	_	-	_	<0.3	_	<0.3	-
1,2-Dibromoethane	ug/L	_	-	<u> </u>	_	_	_	_	_	-	_	-	_	_	_	_	_	-	_	_	-	_	-	_
1,2-Dichlorobenzene	μg/L	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	<0.5	-	<0.5	-
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	_	-	-	-	-	_	-	_	-	-	-	-	_	-	-	-
1,2-Dichloroethane	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
1,2-Dichloropropane	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	-	<0.0005
Benzene	μg/L	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
			1		1	1	1	_		I	I			I	i l		i		ĺ	_	<1	_	<1	1 .
Bromodichloromethane	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	\1	<u> </u>		
Bromodichloromethane Bromodichloromethane	μg/L ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>

Sampling Loc Date San Lab Sample Analyte Bromoform Bromoform Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Chlorobenzene Chloroethane Chloroethane Chloroform	pocation pampled pampled pample ID pample ID pample ID pample IT pample ID p		<pre>MW09-6S 2019-10-29 N000444-01 <1 - - <0.5 - <1 - - <2 - - </pre>	МW10-8 2010-11-16 КОК0729-02	MW10-8 2011-05-09 K1E0403-01	MW10-8 2011-05-09 K1E0403-04	MW10-8 2011-08-10 K1H0536-01	MW10-8 2011-10-18 K1J0685-02	MW10-8 2012-05-24 2051369-04 Normal	MW10-8 2012-08-22 2081484-02 Normal	MW10-8 2012-11-20 2111131-02 Normal	MW10-8 2013-05-21 3051354-02 Normal	MW10-8 2013-08-20 3081378-05 Normal	MW10-8 2013-11-12 3110772-05 Normal	MW10-8 2014-06-02 4060249-05 Normal	MW10-8 2014-08-18 4081094-05 Normal	MW10-8 2014-11-04 4110161-05 Normal	MW10-8 2015-05-25 5051773-05 Normal	MW10-8 2018-09-11 8090975-03 Normal	MW10-8 2018-12-03 8120636-03 Normal	MW10-8 2019-05-29 9052874-02		MW10-8 2019-10-29 N000444-02	
Lab Sample Analyte Uni Bromoform Bromoform Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorobenzene Chloroethane Chloroethane Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Lg/	nple ID le Type nit g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	9081278-01	<1				- - - - -	K1J0685-02	2051369-04 Normal - - -	2081484-02 Normal	2111131-02	3051354-02	3081378-05 Normal	3110772-05	4060249-05	4081094-05	4110161-05	5051773-05	8090975-03	8120636-03				5110701-01
Sample Analyte Unit Bromoform	le Type nit g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	- - - - - - - -	<1 - <0.5 - <1 - <2	- - - - - -	- - - - -		- - -		Normal - -	Normal - -			Normal						1		9052874-02	9081278-02	N000444-02	1
Analyte Uni Bromoform µg/ Bromoform ug/ Carbon tetrachloride mg/ Carbon tetrachloride µg/ Carbon tetrachloride ug/ Chlorobenzene µg/ Chlorobenzene ug/ Chloroethane mg/ Chloroethane ug/ Chloroform mg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/	nit g/L g/L g/L g/L g/L g/L g/L g/		- <0.5 - <1 - <2			-	- - -		- - -	-	Normal - -	Normal -		Normal		<u> </u>	1	Normal						
Bromoform µg/ Bromoform ug/ Carbon tetrachloride mg/ Carbon tetrachloride µg/ Carbon tetrachloride ug/ Carbon tetrachloride ug/ Chlorobenzene µg/ Chlorobenzene ug/ Chloroethane mg/ Chloroethane ug/ Chloroform mg/ Chloroform µg/ Chloroform µg/ Chloroform ug/ cis-1,2-Dichloroethylene µg/	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L		- <0.5 - <1 - <2			-	- - -		-	-	-	-											1	-
Bromoform ug/ Carbon tetrachloride mg/ Carbon tetrachloride µg/ Carbon tetrachloride ug/ Carbon tetrachloride ug/ Chlorobenzene µg/ Chlorobenzene ug/ Chloroethane mg/ Chloroethane ug/ Chloroform mg/ Chloroform ug/ Chloroform ug/ cis-1,2-Dichloroethylene µg/	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L		- <0.5 - <1 - <2			-	- - -		-	-	-													<u> </u>
Carbon tetrachloride mg, Carbon tetrachloride µg/ Carbon tetrachloride ug/ Carbon tetrachloride ug/ Chlorobenzene µg/ Chlorobenzene mg, Chloroethane µg/ Chloroethane ug/ Chloroform mg, Chloroform µg/ Chloroform µg/ Chloroform µg/ Chloroform µg/	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L		- <0.5 - <1 - -	- - - -		-	-		-		-		-	-	-	-	-	-	-	-	<1	-	<1	-
Carbon tetrachloride	g/L g/L g/L g/L g/L g/L g/L g/L g/L		<0.5 - <1 <2	- - -	- - -	-	-	-		- !		-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride ug/ Chlorobenzene µg/ Chlorobenzene ug/ Chloroethane mg/ Chloroethane ug/ Chloroform mg/ Chloroform µg/ Chloroform ug/ cis-1,2-Dichloroethylene µg/	g/L g/L g/L g/L g/L g/L g/L g/L	- - - -	- <1 - - <2	-		-	-	-	-		-	-	-	-	-	-	-	-	<0.0005	-	-	-	-	-
Chlorobenzene	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	- - - -	<1 - - <2	-	-	-		-		-	-	-	-	-	-	-	-	-	-	- !	<0.5	-	<0.5	<u> </u>
Chlorobenzene ug/ Chloroethane mg, Chloroethane µg/ Chloroethane ug/ Chloroform mg, Chloroform µg/ Chloroform µg/ Chloroform µg/	g/L g/L g/L g/L g/L g/L g/L g/L	- - - -	<2	-	-				-	-	-	-	-	-	-	-	-	-	-	- !	-	-	-	-
Chloroethane mg,/ Chloroethane µg/ Chloroethane ug/ Chloroform mg, Chloroform µg/ Chloroform µg/ Chloroform ug/	g/L g/L g/L g/L g/L g/L g/L	- - -	- <2	-		1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Chloroethane	g/L g/L g/L g/L	- - -	<2		_		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane ug/ Chloroform mg, Chloroform μg/ Chloroform ug/ cis-1,2-Dichloroethylene μg/	g/L g/L g/L g/L	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	-	-
$ \begin{array}{ccc} \text{Chloroform} & \text{mg,} \\ \text{Chloroform} & \text{\mug/} \\ \text{Chloroform} & \text{ug/} \\ \text{cis-1,2-Dichloroethylene} & \text{\mug/} \end{array} $	g/L g/L g/L	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2	-	<2	-
Chloroform μg/ Chloroform ug/ cis-1,2-Dichloroethylene μg/	g/L g/L			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform ug/ cis-1,2-Dichloroethylene µg/	g/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
cis-1,2-Dichloroethylene µg/		-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1 2-Dichloroethylene		-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
cis 1,2 Dictrior octifyiche ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane mg,	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
Dibromochloromethane μg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Dibromochloromethane ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane mg,	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
Dibromomethane µg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Dibromomethane ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane mg/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0030	-	-	-	-	-
Dichloromethane μg/	g/L	-	<3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	-	<3	-
Dichloromethane ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene mg,	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	<0.0010
Ethylbenzene μg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Ethylbenzene ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether mg,	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	<0.0010
Methyl tert-butyl ether μg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Methyl tert-butyl ether ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene mg/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	<0.0010
Styrene µg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Styrene ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene μg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Tetrachloroethylene ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene mg,	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0602	-	-	-	-	0.005
Toluene μg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Toluene ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene μg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
trans-1,2-Dichloroethylene ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene μg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Trichloroethylene ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane mg,	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
Trichlorofluoromethane μg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Trichlorofluoromethane ug/	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride mg,	g/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
Vinyl chloride μg/	g/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Vinyl chloride ug/		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total) μg/		-	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2	-	<2	-
Xylenes (total) ug/		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	
BCMOE Aggregate Hydrocarbons								•																
VPHw mg,	g/L	-	-	-	_	_	_	_														$\overline{}$		<0.100

																					1			
	Sampling Location	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	MW18-11
	Date Sampled	2016-05-02	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11	2018-12-04	2019-05-29	2019-08-13	2019-10-29	2018-06-27	2018-09-10	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2018-12-04	2018-12-06	2019-05-29	2019-08-13	2019-10-29
	Lab Sample ID	6050110-01	6081657-01	6111045-01	7040391-01	7082760-01	7112039-01	8062805-01	8090971-01	8120631-01	9052867-01	9081228-01	N000451-01	8062805-02	8090975-02	8120636-02	9052874-03	9081278-03	N000444-03	8120636-08	8120644-01	9052874-04	9081278-04	N000444-04
	Sample Type		Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Supplementary	Supplementar	Supplementar	Normal	Normal	Normal				Normal	Normal			
Analyte	Unit																							
Field Parameters		-			1	1			1	1	1	1			1	1					1	1	1	
Depth to Water	m .	-	11.475	-	10.955	10.425	11.24	9.54	10.81	11.29	-	-	-	-	28.31	28.24	28.085	28.075	28.11	-	-	-	112.994	112.901
Dissolved Oxygen	mg/L	0.3	0.62	0.35	-	0.89	1.28	-	1.84	1.02	-	-	-	-	2.91	1.08	3.9	5	4.4	-	-	5.36	1.59	1.42
Electrical Conductivity	μS/cm	1062	1033	1031	1047	1122	1107	1050	1111	973	-	-	-	2480	2730	2380	2380	2462	2497	558	1036	1054	1172	1468
Elevation of Piezometric Surface	m m	-	- 477	- 462	- 220	-	-	-	-	- 20	-	-	-		- 426	- 420	888.228	888.238	888.203	-	-	- 40.2	796.94	797.033
Oxidation reduction potential	mV	-6 7.1	177	162	229	101	7.1	198	7.72	30	-	-	-	222	126	128	-4.5	3.6	148.5	- 0.2	-	18.2	-128.1	-196.2
Temperature	pH Units	7.1 9.2	7.1 9.8	7.3	7.6 8.7	7.2 9.5	7.1 8.7	7.39 9.3	7.73 9.2	7.08	_	-	-	7.62 13.8	7.35 13.9	6.92 12.4	7.3 14.6	7.15 13.3	7.32 11.1	9.8	-	7.74 9.4	7.52 10.5	7.93 9.1
Anions	'	3.2	3.8	0.0	6.7	9.5	0.7	9.5	9.2	1 0.0	_	_		13.8	13.9	12.4	14.0	13.3	11.1	3.6		3.4	10.5	9.1
Bromide	mg/L	<0.10	<0.10	<0.10	<0.10	0.12	0.11	<0.10	<0.10	<0.10	<0.10	0.15	<0.10	<0.10	<1.00	0.64	_	_	_	<0.10	<1.00	_	_	_
Chloride	mg/L	117	107	94.5	125	125	116	105	114	113	113	113	116	314	313	343	299	337	348	26.6	23.2	60.9	89.7	105
Fluoride	mg/L	<0.10	<0.10	<0.10	0.16	0.14	<0.10	<0.10	0.12	<0.10	<0.10	<0.10	<0.10	0.32	0.29	0.2	0.14	0.13	<0.1	0.9	1.42	0.31	0.65	0.94
Nitrate (as N)	mg/L	1.19	1.05	0.803	0.807	1.18	1.15	0.892	0.954	0.855	0.92	1.03	0.906	12.9	21.7	15.7	21	30	34.7	1.03	0.043	0.023	<0.01	<0.01
Nitrite (as N)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.134	0.02	<0.01	0.131	<0.01	0.068	0.275	<0.01	<0.01	<0.01
Sulfate	mg/L	43.2	45.1	42.3	46.5	46.6	47.3	43.5	46	44.6	43.5	43.5	44.2	89.5	89	76.5	76.9	73.5	74.2	39	156	72.3	70.7	70.2
Metals																								
Aluminum, dissolved	mg/L	<0.005	-	0.007	<0.005	-	-	0.0154	<0.0050	0.0081	<0.0050	<0.0050	<0.0050	0.0126	0.0124	<0.0050	<0.005	<0.005	<0.005	0.0134	0.032	0.006	<0.005	<0.005
Aluminum, total	mg/L	0.069	-	0.122	0.047	-	-	-	0.0181	0.0297	2.53	7.7	0.759	-	-	-	-	-	-	-	-	-	-	-
Antimony, dissolved	mg/L	0.0004	-	0.0001	<0.0001	-	-	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.0007	0.00072	0.00036	0.0003	<0.0002	0.00026	0.00072	0.00576	0.0057	0.00348	0.00284
Antimony, total	mg/L	0.0004	-	0.0001	<0.0001	-	-	-	<0.00020	<0.00020	<0.00020	0.00032	<0.00020	-	-	-	-	-	-	-	-	-	-	-
Arsenic, dissolved	mg/L	<0.0005	-	<0.0005	<0.0005	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00269	0.00212	0.00161	0.00164	0.00133	0.00143	<0.00050	0.0352	0.00373	0.00511	0.0045
Arsenic, total	mg/L	<0.0005	-	<0.0005	<0.0005	-	-	-	<0.00050	<0.00050	0.00184	0.00569	0.0007	-	-	-	-	-	-	-	-	-	-	-
Barium, dissolved	mg/L	0.156	-	0.157	0.165	-	-	0.152	0.159	0.161	0.162	0.166	0.172	0.14	0.167	0.227	0.303	0.316	0.296	0.0369	0.018	0.0424	0.0271	0.0202
Barium, total	mg/L	0.165	-	0.171	0.178	-	-	-	0.169	0.165	0.219	0.285	0.191	-	-	-	-	-	-	-	-	-	-	
Beryllium, dissolved	mg/L	<0.0001	-	<0.0001	<0.0001	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001
Beryllium, total	mg/L	<0.0001	-	0.0002	<0.0001	-	-	-	<0.00010	<0.00010	0.00017	0.00044	<0.00010	-	-	-	-	-	-	-	-	-	-	
Bismuth, dissolved	mg/L	<0.0001	-	<0.0001	<0.0001	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001
Bismuth, total	mg/L	<0.0001 0.033	-	<0.0001	<0.0001 0.036	-	-	0.0422	<0.00010	<0.00010	<0.00010	0.00012 0.026	<0.00010 0.0236	0.187	0.465	0.452	0.418	0.408	0.61	0.0339	0.418	0.152	0.17	0.301
Boron, dissolved Boron, total	mg/L	0.033	-	0.031	0.036	-	-	0.0432	0.0222	0.0291	0.0264	0.026	0.0256	0.187	0.405	0.452	0.418	0.408	0.61	0.0559	0.416	0.153	- 0.17	0.301
Cadmium, dissolved	mg/L mg/L	<0.0001		0.00001	<0.0001	<u> </u>		<0.000010	<0.00010	<0.00010	<0.000010	<0.000010	<0.00010	0.000032	0.00001	0.000045	0.000036	0.000032	0.000039	0.000015	0.000016	<0.00001	<0.00001	<0.00001
Cadmium, total	mg/L	<0.00001	_	<0.00001	<0.00001		_	-	<0.000010	<0.000010	0.000010	0.000055	<0.000010	- 0.000032	0.00001	-	-	-	-	- 0.000013	- 0.000010		-	
Calcium, dissolved	mg/L	88.1	_	86.4	92	_	_	91.9	78.3	88	94.1	90.8	93.6	136	97.8	86.3	94.5	92.5	92.9	14.9	23.7	46.1	43.2	48.7
Calcium, total	mg/L	89.6	_	92.2	102	_	-	-	91.8	89.2	119	193	104	-	-	-	-	-	-	-	-	-	-	-
Chromium, dissolved	mg/L	0.0018	-	<0.0005	<0.0005	_	-	<0.00050	<0.00050	0.00194	0.0008	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00106	0.00056	<0.0005	<0.00050	<0.00050	0.00266	<0.0005	<0.0005
Chromium, total	mg/L	<0.0005	-	<0.0005	<0.0005	-	-	-	<0.00050	<0.00050	0.00692	0.0167	0.00221	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	mg/L	0.00019	-	0.00006	<0.00005	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00273	0.00322	0.00402	0.00565	0.00559	0.00423	0.00046	0.00162	0.00076	0.00017	0.00013
Cobalt, total	mg/L	0.00022	-	0.00016	0.00006	-	-		<0.00010	<0.00010	0.00341	0.0105	0.00118			-	-				-			
Copper, dissolved	mg/L	0.0008	-	0.003	<0.0002	-	-	0.00052	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	0.00242	0.00263	0.00297	0.0019	0.00125	0.00186	0.00271	<0.00040	0.00044	<0.0004	<0.0004
Copper, total	mg/L	0.0024	-	0.0181	0.0004	-	-	-	0.00092	<0.00040	0.005	0.0172	0.00165	-	-	-	-	-	-	-	-	-	-	-
Iron, dissolved	mg/L	0.279	-	<0.010	<0.010	-	-	0.034	<0.010	0.013	<0.010	<0.010	<0.010	0.038	0.011	<0.010	<0.01	<0.01	<0.01	0.017	0.018	0.115	2.05	0.495
Iron, total	mg/L	0.36	-	0.27	0.06	-	-	-	0.039	0.047	5.6	20.4	2.2	-	-	-	-	-	-	-	-	-	-	-
Lead, dissolved	mg/L	<0.0001	-	<0.0001	<0.0001	-	-	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.0004	<0.0002	<0.0002	<0.0002	0.00031	<0.00020	<0.0002	<0.0002	<0.0002
Lead, total	mg/L	<0.0001	-	0.0002	<0.0001	-	-	-	<0.00020	0.00048	0.00327	0.0115	0.0011	-	-	-	-	-	-	-	-	-	-	-
Lithium, dissolved	mg/L	0.0058	-	0.0047	0.0054	-	-	0.00523	0.00539	0.00563	0.00585	0.00553	0.00593	0.0294	0.026	0.0232	0.0239	0.022	0.0243	0.0314	0.0871	0.0201	0.0212	0.0276
Lithium, total	mg/L	0.0059	-	0.005	0.0052	-	-	-	0.00573	0.00578	0.00989	0.0172	0.00677	-	-	-	-	-	-	-	-	-	-	-
Magnesium, dissolved	mg/L	45.6	-	45.3	48.7	-	-	45.6	46.8	50.1	46.5	45.9	51.8	138	188	204	193	192	204	58.4	28.5	87.9	105	147
Magnesium, total	mg/L	46.4	-	47.1	49	-	-		46.8	51.1	51.9	61.9	49.3	-	-	-	-	-		-	-	-		-
Manganese, dissolved	mg/L	0.0012	-	0.0013	0.0003	-	-	0.00291	<0.00020	0.00593	0.0011	0.00023	<0.00020	0.168	0.126	0.202	0.231	0.195	0.215	0.294	0.0149	0.106	0.152	0.132
Manganese, total	mg/L	0.0024	-	0.0046	0.0013	-	-	-0.000010	0.0017	0.00142	0.183	0.515	0.0782	-0.000010	-0.000040	-0.000040	-0.00004	-0.00001	-0.00001	-0.000040	-0.000040	-0.00001	-0.00001	-0.00001
Mercury, dissolved	mg/L	<0.00002 <0.00002	 	<0.00002	<0.00002 <0.00002	-	-	<0.00010	<0.000040 <0.000010	<0.000010 <0.000040	<0.000010 <0.000010	<0.000010 <0.000010	<0.000010	<0.000010	<0.000040	<0.000040	<0.00001	<0.00001	<0.00001	<0.000040	<0.000040	<0.00001	<0.00001	<0.00001
Mercury, total	mg/L	<0.00002	-	<0.00002	<0.00002		_	_	<0.000010	_ <0.000040	<0.000010	<0.000010	<0.000010			_	-	-	-	-			-	-

														1						l				
	Sampling Location	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	MW18-11
	Sampling Location Date Sampled	2016-05-02	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11	2018-12-04	2019-05-29	2019-08-13	2019-10-29	2018-06-27	2018-09-10	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2018-12-04	2018-12-06	2019-05-29	2019-08-13	2019-10-29
	Lab Sample ID	6050110-01		6111045-01	7040391-01	7082760-01	7112039-01	8062805-01	8090971-01	8120631-01	9052867-01	9081228-01				8120636-02	9052874-03	9081278-03		l	8120644-01		9081278-04	
	Sample Type	0030110-01	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Supplementary			Normal	Normal	Normal	3032874-03	3081278-03	11000444-03	Normal	Normal	3032874-04	3081278-04	11000444-04
Analyte	Unit		Normal	Normal	Normal	Normal	Normai	NOTITIAL	Normal	INOTITIAL	puppiememany	опрриентента	puppiementai	Normal	Normal	Normal			l	NOTITIAL	Normal			
Molybdenum, dissolved	mg/L	0.0003	_	0.0003	0.0002	_	_	0.00032	0.00023	0.00024	0.00023	0.00022	0.00022	0.00287	0.00257	0.0019	0.00152	0.00141	0.00127	0.0062	0.0364	0.00762	0.00344	0.00324
Molybdenum, total	mg/L	0.0003	_	0.0003	0.0002	_	_	0.00032	0.00023	0.00024	0.00023	0.00022	0.00022	0.00207	0.00257	0.0013	0.00132	0.00141	- 0.00127	0.0002	0.0304	0.00702	- 0.00344	- 0.00324
Nickel, dissolved	mg/L	0.0003	_	0.0005	0.0002	_	_	<0.00040	<0.00040	0.00023	<0.00043	<0.00123	<0.00040	0.0355	0.0388	0.0438	0.0442	0.0447	0.0409	0.00553	0.00589	0.0301	0.0111	0.01
Nickel, total	mg/L	0.0017		0.0005	0.0003		_	<0.00040	<0.00040	<0.00034	0.00548	0.018	0.00202	0.0333	0.0388	0.0438	0.0442	0.0447	0.0403	0.00333	0.00389	0.0301	0.0111	0.01
Phosphorus, dissolved	mg/L	<0.02	_	<0.02	<0.05	_	_	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.05	<0.05	<0.05	<0.050	<0.050	<0.05	<0.05	<0.05
Phosphorus, total	mg/L	<0.02	_	0.04	<0.05	_	_	- 0.030	<0.050	<0.050	0.182	0.417	<0.050			-		- 10.03			- 40.030	10.03		- 10.03
Potassium, dissolved	mg/L	2.33	_	2.35	2.32	_	_	2.21	2.1	2.14	2.14	2.18	2.31	13.7	20	19.9	20.3	24.4	25.7	5.73	38.1	5.39	4.78	4.51
Potassium, total	mg/L	2.23	_	2.31	2.31	_	_	-	2.11	2.15	2.57	3.22	2.41	-	-	-	-	-	-	-	- 30.1	3.33	-	
Selenium, dissolved	mg/L	<0.0005	_	<0.0005	<0.0005	_	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00109	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005
Selenium, total	mg/L	<0.0005	_	<0.0005	<0.0005	_	_		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	- 0.00103	\0.00030	-		<0.0003	-	-	- 10.00030	\0.0003	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Silicon, dissolved	mg/L	5.3	_	4	4.9	_	_	4.5	4.6	5	4.4	4.7	5	8.5	10.2	10.9	9.5	9.9	11.1	1.1	4.3	2.4	3.1	4.8
Silicon, total	mg/L	5.4	_	5.2	5	_	_	4.5	4.9	5.1	9.4	14.5	6.3	- 6.5	10.2	10.9	-		-		4.5	2.4	-	4.0
Silver, dissolved	mg/L	<0.00005	_	<0.0005	<0.00005	_	_	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005
Silver, total	mg/L	<0.00005		<0.00005	<0.00005	-	-	-0.000030	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050		-0.000030	-0.000030	-0.00003	-0.00003	-0.00003			-0.00003	-0.00003	-0.00003
Sodium, dissolved	mg/L	64		55.4	61.1			56.5	58	63	60.2	58.8	67.6	168	185	190	182	183	206	30.7	270	81.1	85.3	110
Sodium, total	mg/L	58.8	- -	57.5	66	-	<u> </u>		58.1	64.7	59.4	60	61.9	100	103	150	102	103	-	- 30.7		01.1		- 110
Strontium, dissolved	mg/L	0.592		0.548	0.561			0.532	0.555	0.562	0.563	0.579	0.617	0.842	1.18	1.43	1.44	1.46	1.34	0.0865	0.246	0.632	0.622	0.691
Strontium, total	mg/L	0.609		0.571	0.597			0.532	0.583	0.57	0.665	0.774	0.605	0.842	1.10	1.43	1.44	1.40	1.54	0.0803	0.240	0.032	- 0.022	0.091
Sulfur, dissolved	mg/L	17		14	14		_	16.4	15.6	16.6	16.6	15.8	16.5	37.5	31.3	30.9	29	28.2	29	16.1	62.1	27.5	25.2	28.8
Sulfur, total	mg/L	16	_	14	14		_	10.4	16	15.7	16.4	15.1	14.5	37.3	51.5	30.9	-	20.2	-	- 10.1	- 02.1	27.3	-	20.0
Tellurium, dissolved	mg/L	<0.0002	<u> </u>	<0.0002	<0.0002			<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005
Tellurium, total		<0.0002	<u> </u>	<0.0002	<0.0002	-		<0.00030	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00030	<0.00030	-	<0.0003	<0.0003	<0.0003	<0.00030	<0.00030	<0.0003		<0.0003
	mg/L	<0.0002		<0.0002	<0.0002	-	-	<0.000020	<0.00030	<0.00030			<0.00030	0.000088	0.000085	0.000071	0.000000	0.000001	0.000099	<0.000020	0.000141	-0.00003	<0.00002	-0.00003
Thallium, dissolved	mg/L		1			-		<0.000020			<0.000020	<0.000020		0.000088	0.000085	0.000071	0.000099	0.000091	0.000099		0.000141	<0.00002		<0.00002
Thallium, total	mg/L	<0.00002	-	<0.00002	<0.00002	-	-		<0.000020	<0.000020	0.000043	0.00007	<0.000020											
Thorium, dissolved	mg/L	<0.0001	-	<0.0001	<0.0001	-	-	<0.00010	<0.00010 <0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001
Thorium, total	mg/L	<0.0001	-	<0.0001	<0.0001 <0.0002		-	<0.00020		<0.00010 0.00033	0.00111		0.00031 <0.00020	0.00077	<0.00020	-0.00020	<0.0002	-0.0003	0.00022	<0.00020	0.00064	0.00022	<0.0002	-0.0002
Tin, dissolved	mg/L	<0.0002	-			-	-	<0.00020	<0.00020		<0.00020	<0.00020		0.00077	<0.00020	<0.00020		<0.0002	0.00023		0.00064	0.00022		<0.0002
Titanium dissalued	mg/L	<0.0002 <0.005	-	<0.0002 <0.005	0.0004 <0.005	-	-	<0.0050	<0.00020 <0.0050	<0.00020 <0.0050	<0.00020 <0.0050	<0.00020	<0.00020 <0.0050	<0.0050	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.0050	<0.0050	<0.005	<0.005	<0.005
Titanium, dissolved	mg/L	<0.005	-	<0.005	<0.005	-	-	<0.0030	<0.0050	<0.0050	0.0992	0.111	0.0652	<0.0030	<0.0030	<0.0030	\0.003	<0.003	<0.003	<0.0030	<0.0030	<0.003	-	V0.003
Titanium, total Tungsten, dissolved	mg/L	<0.005	-	<0.005		-	-	-0.0010	<0.0030	<0.0030			<0.0010	<0.0010	-0.0010	<0.0010	- -0.001	<0.001	-0.001	-0.0010	<0.0010	- -0.001		<0.001
	mg/L	-	-	-	-	-	-	<0.0010			<0.0010	<0.0010		<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.0010	<0.0010	<0.001	<0.001	<0.001
Tungsten, total Uranium, dissolved	mg/L	0.00115	-	0.00102	0.0011	-	-	0.00105	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.00003	0.00845					0.000448		0.000363	0.000084	0.0001
	mg/L	0.00115			0.0011	-	-	0.00105	0.00106	0.00114	0.00111	0.00108	0.00109	0.00902	0.00845	0.00597	0.00432	0.00442	0.00424	0.000448	0.00256	0.000262	0.000084	0.0001
Uranium, total	mg/L	0.00114	-	0.00111	0.00108	-	-	-0.0010	0.00107	0.00111	0.0013	0.00156	0.00111		-0.0010	-0.0010	- -0.001	-0.001	-0.001	-0.0010	- -0.0010	- -0.001	-0.001	<0.001
Vanadium, dissolved	mg/L	<0.001	-	<0.001	<0.001 <0.001	-	_	<0.0010	<0.0010 <0.0010	<0.0010	<0.0010	<0.0010 0.0096	<0.0010 0.0018	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.0010	<0.0010	<0.001	<0.001	<0.001
Vanadium, total	mg/L	<0.001	-	0.001	<0.001	-	-	- 0.0040	<0.0010	<0.0010 0.0174	0.0043		<0.0018	0.0065	<0.0040	0.006	0.021	- 0.0043	0.0111		<0.0040	- 0.004	0.0073	0.0081
Zinc, dissolved	mg/L	<0.004	-		<0.004	-	-	<0.0040	<0.0040	0.0174	0.0065	<0.0040	0.0040	0.0065	\0.0040	0.006	0.021	0.0043	0.0111	0.0092	<0.0040	<0.004	0.0073	0.0081
Zinc, total Zirconium, dissolved	mg/L mg/L	<0.004 <0.0001	-	0.011 <0.0001	<0.004	-	-	<0.00010	<0.0040	<0.0056	0.0156 <0.00010	0.045 <0.00010	<0.0071	0.0006	0.0006	0.00044	0.00027	0.00026	0.00029	<0.00010	0.00068	<0.0001	<0.0001	<0.0001
Zirconium, dissolved Zirconium, total	mg/L	<0.0001	-	<0.0001	<0.0001	-	-	<0.00010	<0.00010	<0.00010	0.00010	0.00010	0.00010	0.0000	0.0000	- 0.00044	0.00027	-	0.00029	~0.00010	- 0.00068	~0.0001	<0.0001	<0.0001
General Parameters	I IIIg/L	V0.0001		_ <0.0001	\0.0001			-		V0.00010	0.00008	0.00047	0.00014	 			_			- -			-	
Alkalinity, Bicarbonate (as CaCO3)	mg/L	332	335	335	364	356	126	330	372	363	366	349	364	667	992	876	810	785	802	494	8900	431	541	700
Alkalinity, Carbonate (as CaCO3)	mg/L	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1	/85 <1	<1	<1.0	<1.0	<1	<1	<1
Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	mg/L	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	<1.0	<1	<1	<1
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	<1.0	<1	<1	<1
Alkalinity, Phenoiphthalein (as cacos) Alkalinity, Total (as CaCO3)	mg/L	332	335	335	364	356	126	330	372	363	366	349	364	667	992	876	810	785	802	494	8900	431	541	700
Ammonia, Total (as N)	mg/L	- 332	- 333	- 333	-	330	- 120	<0.020	0.026	<0.020	0.102	0.118	<0.020	1.8	2.14	2.4	1.54	1.63	1.37	0.449	1.36	0.607	0.228	0.095
Bicarbonate (HCO3)	mg/L	404	408	409	444	434	154	402	453	443	446	425	444	813	1210	1070	988	957	978	603	10900	526	660	855
Carbonate (RCO3)	mg/L	<1	<0.6	<0.6	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.6	<0.6	<0.6	<0.600	<0.600	<0.6	<0.6	<0.6
Chemical Oxygen Demand	mg/L					-0.000		-0.000		- <0.600	\0.000	-0.000	- <0.600		-0.000	-					- <0.600			0.0
Electrical Conductivity	μS/cm	993	974	1030	1080	1110	327	999	1050	1080	-		-	2390	2590	2500	2590	2580	2650	193	1190	992	1330	1490
· · · · · · · · · · · · · · · · · · ·	uS/cm			1030			- 327	-		1080	1060	1050	1060			2500				193				
Electrical Conductivity	l us/cm		-		-	-		-	-		1000	1050	1 1000	-	-	_	-	-	-		-	-	-	-

S		MW15-01										_									_		_	l .
	Sampling Location	1010013-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	MW18-11
	Date Sampled	2016-05-02	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11	2018-12-04	2019-05-29	2019-08-13	2019-10-29	2018-06-27	2018-09-10	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2018-12-04	2018-12-06	2019-05-29	2019-08-13	2019-10-29
	Lab Sample ID	6050110-01	6081657-01	6111045-01	7040391-01	7082760-01	7112039-01	8062805-01	8090971-01	8120631-01	9052867-01	9081228-01	N000451-01	8062805-02	8090975-02	8120636-02	9052874-03	9081278-03	N000444-03	8120636-08	8120644-01	9052874-04	9081278-04	N000444-04
	Sample Type		Normal	Supplementary	Supplementary	Supplementar	Normal	Normal	Normal				Normal	Normal										
Analyte	Unit																							
Hardness, Total (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	427	416	447	-	-	-	1030	1020	1070	-	-	477	542	726
Hydroxide (OH)	mg/L	<1	<0.3	<0.3	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.34	<0.34	<0.34	<0.340	<0.340	<0.34	<0.34	<0.34
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	pH Units	7.86	-	-	-	-	-	7.74	7.88	7.74	-	-	-	7.81	7.7	7.62	8.11	7.88	8	8.07	7.93	8.18	8.1	8.2
рН	pH units	-	-	-	-	-	-	-	-	-	7.93	7.88	7.93	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	0.007	-	-	-	-	-	-	-	-	0.282	0.381	0.075	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	<0.0020	<0.0020	0.005	-	-	0.013	-	-	-	0.0053	0.0103	-	-	-
Total organic carbon	mg/L	<0.5	0.7	0.8	1	0.83	<0.50	0.71	<0.50	<0.50	0.7	<0.50	<0.50	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	2.5	12.1	7.28	1.6	1.3	2.48	1.41	-	3.69	153	81.8	60.5	267	-	661		3590		-	-	35.8	202	95.6
Microbiological Parameters		-																						
Coliforms, Fecal	CFU/100 mL	-	-	-	<1	<1	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	<3.0	<3.0	<3.0	-	-	-	<3.0	-	-	<1.1	<1.1	-	-	-	-	-	-	-		-	-	-	-
Coliforms, Total	MPN/100 mL	_	-	-	-	-	_	-	-	-	-	-	<1.0	-	-	-	_	-	-		-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	_	-	-	<1.1	<1.1		-	-	-	-	-	1	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	<3.0	<3.0	<3.0	-	-	-	<3.0	-	-	<1.1	<1.1	-	-	-	-	-	-	-	-	-	-	-	-
E. coli, Total	CFU/100 mL	-	-	-	<1	<1	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)						•																		
1,1-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-		-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-		-	-	-	<1	-	<1	-	-	<1	-	<1
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-	-	<0.5	-	<0.5
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	<0.0003	-	-	<0.0002	-	-	-	<0.0003	-	-	-	-	-	<0.0003	<0.0003	-	-	-	-	-	-	-	-
1,2-Dibromoethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.3	-	<0.3	-	-	<0.3	-	<0.3
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	<0.3	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-	-	<0.5	-	<0.5
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
1,2-Dichloropropane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	<1	-	<1	-	-	<1	-	<1
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	_	-	-	-	-	-	-	-	-	-	-
Benzene	mg/L	<0.0005	-	<0.0005	<0.0005	-	-	-	<0.0005	-	-	-	-	-	<0.0005	<0.0005	-	-	-	-	-	-	-	-
Benzene	μg/L	-	_	-	-	_	-	_	-	-	-	_	_	-	-	-	<0.5	_	<0.5	-	-	<0.5	-	<0.5
Benzene	ug/L	-	_	_	_	_	_	-	-	-	<0.5	_	-	_	_	-	-	_	-	_	_	-	-	-
Bromodichloromethane	mg/L	<0.0010	-	_	<0.0010	_	-	_	<0.0010	-		_	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Bromodichloromethane	μg/L		-	_	-	_	_	_			-	_					<1	-	<1		_	<1	-	<1
Bromodichloromethane	μg/L ug/L		-	_	_	-	-	_	-		<1.0	-		<u> </u>	-	-	- 1	-	-	-	_	-	-	-
5. 55dicilioromethane	mg/L	<0.0010	-	_	<0.0010	_	-	_	<0.0010		-	_			<0.0010	<0.0010	-		-		_	-	-	-

										1				I										
	Sampling Location	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	MW18-11
	Date Sampled	2016-05-02	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11	2018-12-04	2019-05-29	2019-08-13	2019-10-29	2018-06-27	2018-09-10	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2018-12-04	2018-12-06	2019-05-29	2019-08-13	2019-10-29
	Lab Sample ID	6050110-01	6081657-01	6111045-01	7040391-01	7082760-01	7112039-01	8062805-01	8090971-01	8120631-01	9052867-01	9081228-01	N000451-01	8062805-02	8090975-02	8120636-02	9052874-03	9081278-03	N000444-03	8120636-08	8120644-01	9052874-04	9081278-04	N000444-04
	Sample Type		Normal	Supplementary	upplementar	Supplementary	Normal	Normal	Normal				Normal	Normal										
Analyte	Unit																							
Bromoform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	<0.0010	-	-	<0.0005	-	-	-	<0.0005	-	-	-	-	-	<0.0005	<0.0005	-	-	-	-	-	-	-	-
Carbon tetrachloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-	-	<0.5	-	<0.5
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	<0.0020	-	-	<0.0020	-	-	-	<0.0020	-	-	-	-	-	<0.0020	<0.0020	-	-	-	-	-	-	-	-
Chloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2	-	<2	-	-	<2	-	<2
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	<2.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Chloroform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Dibromochloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Dibromomethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/L	<0.0030	-	-	<0.0030	-	-	-	<0.0030	-	-	-	-	-	<0.0030	<0.0030	-	-	-	-	-	-	-	-
Dichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	-	<3	-	-	<3	-	<3
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	<3.0	-	-	-	-	•	-	-	-	-	-	-	•	-
Ethylbenzene	mg/L	<0.0010	-	<0.0010	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Ethylbenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	<1	-	<1	-	-	<1	•	<1
Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	<0.0010	-	<0.0010	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	•	-	-	-	-	-	-	•	-
Styrene	mg/L	<0.0010	-	<0.0010	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	•	-
Styrene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	<1	-	<1	-	-	<1	•	<1
Styrene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/L	<0.0010	-	0.0076	<0.0010	-	-	-	0.0023	-	-	-	-	-	0.0108	0.0162	-	-	-	-	-	-	-	-
Toluene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	<1	-	<1	-	-	150	-	12.8
Toluene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	•	-	-	-	-	-	-	-	-
Trichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<1	-	<1	-	-	<1	-	<1
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Trichlorofluoromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	<0.0020	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Vinyl chloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Vinyl chloride	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2	-	<2	-	-	<2	-	<2
Xylenes (total)	ug/L	-	-	-	-	-	-	-	-	-	<2.0	-	-	-	-	-	-	-	-	-	-	-	-	-
BCMOE Aggregate Hydrocarbons	· · ·		-			-		l		-	· '													
VPHw	mg/L	<0.100	-	<0.100	<0.100	-	-	-	<0.100	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
-	,	•	•	•	•	•				•				-	•				•					

																			Town Well	Town Well	Town Well	Town Well	Town Well	Town Well
	Sampling Location	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-04	Runoff 1	Runoff 2	Runoff 3	#4	#4	#4	#4	#4	#4
	Date Sampled	2002-06-03	2002-08-26	2002-11-06	2003-03-07	2003-05-12	2003-11-03	2004-05-17	2004-11-08	2005-04-25	2005-11-02	2006-04-17	2006-11-05	2007-05-22	2004-05-17	2017-04-05	2017-04-05	2017-03-30	2002-06-03	2003-05-12	2004-05-17	2007-05-22	2007-11-05	2008-04-28
	Lab Sample ID													K705752-01		7040434-01	7040434-02	7040370-01				K705752-02	K7K0165-01	K8E0035-01
	Sample Type															Normal	Normal							
Analyte	Unit																							
Field Parameters																								
Depth to Water	m	9999	9999	9999	9999	21.25	21.25	21.3	21.82	21.28	9999	21.18	9999	21.27	26.6	-	-	-	8	-	-	-	-	-
Dissolved Oxygen	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2370	13170	-	-	-	-	-	-	-
Elevation of Piezometric Surface	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxidation reduction potential	mV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-2	-112	-	-	-	-	-	-	-
рН	pH Units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.4	7.6	-	-	-	-	-	-	-
Temperature	°C	-	-	-	-	11	11	13	11	12	-	10.3	-	10	13	4.2	4.3	-	-	10	12	7.5	5	-
Anions																								
Bromide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.82	<10.0	<0.10	-	-	-	-	-	-
Chloride	mg/L	-	-	-	-	57.5	63.8	72.5	75	128	-	159	-	90.5	298	708	1230	5.45	62.5	73.8	65	60.2	76.7	69.4
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.00	<1.00	0.47	-	-	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	27.8	16.3	34.5	32.5	65	-	77	-	12.5	55.5	2.78	<0.100	0.214	1.4	1.35	1.63	1.35	1.09	0.982
Nitrite (as N)	mg/L	-	-	-	-	<0.01	0.16	<0.01	0.04	<0.01	-	<0.01	-	1.44	0.01	<0.100	<0.100	0.021	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010
Sulfate	mg/L	-	-	-	-	51	78	71	79	104	-	150	-	254	640	153	32.7	13	44.5	43	40	37.5	38	38.6
Metals	T																			1				
Aluminum, dissolved	mg/L	-	-	-	-	<0.2	<0.2	<0.2	-	<0.4	-	<0.02	-	<0.050	<0.2	-	-	-	<0.2	<0.2	<0.2	<0.050	-	<0.050
Aluminum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.10	-	-	2.17	41.1	-	-	-	<0.10	-	
Antimony, dissolved	mg/L	-	-	-	-	<0.2	<0.2	<0.2	-	<0.4	-	<0.02	-	<0.0050	<0.2	-	-	-	<0.2	<0.2	<0.2	<0.0050	-	<0.0030
Antimony, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.006	-	-	0.0063	0.0008	-	-	-	<0.006	-	
Arsenic, dissolved	mg/L	-	-	-	-	<0.2	<0.2	<0.2	-	<0.4	-	<0.02	-	<0.0050	<0.2	-	-	-	<0.2	<0.2	<0.2	<0.0050	-	<0.0050
Arsenic, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	0.0524	0.0123	-	-	-	<0.010	-	-
Barium, dissolved	mg/L	-	-	-	-	0.2	0.19	0.19	-	0.21	-	0.15	-	0.124	0.12	-	-	-	0.2	0.2	0.21	0.191	-	0.191
Barium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.114	-	-	0.259	0.421	-	-	-	0.19	-	-
Beryllium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-	-	<0.0010	-	<0.0020
Beryllium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	0.0001	0.0014	-	-	-	<0.005	-	-
Bismuth, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-	-	<0.0010	-	<0.0005
Bismuth, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	<0.0001	0.0003	-	-	-	<0.001	-	-
Boron, dissolved	mg/L	-	-	-	-	0.6	0.58	0.59	-	0.6	-	0.6	-	0.632	0.65	-	-	-	<0.1	<0.1	<0.1	<0.020	-	<0.020
Boron, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.608	-	-	4.9	0.164	-	-	-	<0.020	-	<u> </u>
Cadmium, dissolved	mg/L	-	-	-	-	<0.01	<0.01	<0.01	-	<0.02	-	<0.01	-	<0.00010	<0.01	-	-	-	<0.01	<0.01	<0.01	<0.00010	-	<0.00010
Cadmium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.00010	-	-	0.00048	0.00011	-	-	-	<0.00010	-	
Calcium, dissolved	mg/L	-	-	-	-	174	177	175	-	210	-	210	-	215	165	-	-	-	90	104	88	84.6	88.4	91.2
Calcium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	206	-	-	382	174	-	-	-	85.1	-	-
Chromium, dissolved	mg/L	-	-	-	-	<0.01	<0.01	-	-	<0.02	-	<0.01	-	0.0054	<0.01	-	-	-	<0.01	<0.01	<0.01	<0.0050	-	0.006
Chromium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	0.126	0.053	-	-	-	<0.010	-	-
Cobalt, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.0037	-	-	-	-	-	-	-	<0.0010	-	<0.0005
Cobalt, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.0034	-	-	0.0371	0.0191	-	-	-	<0.0010	-	-
Copper, dissolved	mg/L	-	-	-	-	<0.01	<0.01	-	-	<0.02	-	<0.01	-	0.0057	<0.01	-	- 0.0227	- 0.022	<0.01	<0.01	<0.01	<0.0050	-	<0.0030
Copper, total	mg/L	-	-	-	-		0.00	0.02	-	0.00	-		-	<0.010	0.02	-	0.0227	0.033	0.02	0.03	0.02	<0.010	-	- 0.206
Iron, dissolved	mg/L	-	-	-	-	<0.03	<0.03	<0.03	-	<0.06	-	<0.06	-	0.655	<0.03	-	-	- 20.2	<0.03	<0.03	<0.03	0.267	-	0.386
Iron, total	mg/L	-	-	-	-		0.05	0.05	-	0.4	-		-	0.7		-	46	39.2	-		0.05	<0.30	-	
Lead, dissolved	mg/L	-	-	-	-	<0.05	<0.05	<0.05	-	<0.1	-	<0.05	-	<0.0020	<0.05	-	0.0460	- 0.0206	<0.01	<0.05	<0.05	<0.0020	-	<0.0010
Lead, total	mg/L	-	 -	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	0.0119	0.0296	-	-	-	<0.0020	-	- 0.000
Lithium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.0185	-	-	- 0.220	- 0.0403	-	-	-	0.0018	-	0.002
Lithium, total	mg/L	-	-	-	-	- 00.4	102	- 01.2	-	120	-	- 07	-	0.0179	-	-	0.238	0.0402	- 27	42.7	- 20.1	<0.0050	- 41.1	- 40.2
Magnesium, dissolved	mg/L	-	-	-	-	99.4	103	91.3	-	120	-	97	-	103	233	-	- 276	-	37	43.7	38.1	38.4	41.1	40.2
Magnesium, total	mg/L	-	-	-	-	- 0.000	- 0.002	- 0.02	-	- 0.04	-	- 0.007	-	97.2	- 0.000	-	276	40.6				37.9	-	
Manganese, dissolved	mg/L	-	-	-	-	0.009	0.083	0.02	-	0.04	-	0.007	-	0.107	0.009	-	- 1 41	- 0.71	<0.005	<0.005	<0.005	<0.0100	-	<0.0050
Manganese, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.107	-	-	1.41	0.71	-	-	-	<0.010	-	
Mercury, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.00050	-	-	-	-	-	-	-	<0.00050	-	<0.00030
Mercury, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.00050	-	-	0.00004	0.0001	-	-	-	<0.00050	-	-

		MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-04	Runoff 1	Runoff 2	Runoff 3	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well
	Sampling Location	1010035-02	1010095-02	10100 95-02	10100 95-02	1010093-02	1010093-02	1010093-02	1010093-02	1010095-02	1010093-02	1010093-02	1010095-02	1010095-02	10100 95-04	Kulloli 1	Kulloli 2	Kulloli 3	#4	#4	#4	#4	#4	#4
	Date Sampled	2002-06-03	2002-08-26	2002-11-06	2003-03-07	2003-05-12	2003-11-03	2004-05-17	2004-11-08	2005-04-25	2005-11-02	2006-04-17	2006-11-05	2007-05-22	2004-05-17	2017-04-05	2017-04-05	2017-03-30	2002-06-03	2003-05-12	2004-05-17	2007-05-22	2007-11-05	2008-04-28
	Lab Sample ID													K705752-01		7040434-01	7040434-02	7040370-01				K705752-02	K7K0165-01	K8E0035-01
	Sample Type															Normal	Normal							
Analyte	Unit						ı				1	ı										1	1	
Molybdenum, dissolved	mg/L	-	-	-	-	<0.03	<0.03	<0.03	-	<0.06	-	<0.03	-	<0.0020	<0.03	-	-	-	<0.03	<0.03	<0.03	<0.0020	-	<0.0010
Molybdenum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050	-	-	0.0061	0.0025	-	-	-	<0.0050	-	'
Nickel, dissolved	mg/L	-	-	-	-	<0.05	<0.05	<0.05	-	<0.1	-	<0.05	-	0.037	<0.05	-	-	-	<0.05	<0.05	<0.05	<0.010	-	<0.005
Nickel, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.020	-	-	0.19	0.04	-	-	-	<0.020	-	'
Phosphorus, dissolved	mg/L	-	-	-	-	<0.3	<0.3	<0.3	-	<0.6	-	<0.3	-	<0.500	<0.3	-	-	-	<0.3	<0.3	<0.3	<0.500	-	<0.200
Phosphorus, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.50	-	-	13.1	0.61	-	-	-	<0.50	-	-
Potassium, dissolved	mg/L	-	-	-	-	54	53	50	-	50	-	57	-	59.5	52	-	-	-	<2	<2	<2	1.66	-	2.17
Potassium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	56.4	-	-	852	16.6	-	-	-	1.53	-	-
Selenium, dissolved	mg/L	-	-	-	-	<0.2	<0.2	<0.2	-	<0.4	-	<0.2	-	<0.0100	<0.2	-	-	-	<0.2	<0.2	<0.2	<0.0100	-	<0.0050
Selenium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	0.0007	<0.0005	-	-	-	<0.010	-	
Silicon, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	9.58	-	-	-	-	-	-	-	3.88	-	5.01
Silicon, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	29.8	73.8	-	-	-	2.6	-	-
Silver, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0004	-	-	-	-	-	-	-	<0.0004	-	<0.00040
Silver, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.00050	-	-	0.00015	<0.00005	-	-	-	<0.00050	-	
Sodium, dissolved	mg/L	-	-	-	-	68	73.8	74	-	120	-	130	-	107	234	-	-	-	34	37	37	36.8	-	43.1
Sodium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	98	-	-	1460	8.12	-	-	-	34.8	-	-
Strontium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	1.12	-	-	-	-	-	-	-	0.414	-	0.434
Strontium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	1.1	-	-	2.4	0.579	-	-	-	0.405	-	-
Sulfur, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sulfur, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	31	4	-	-	-	-	-	-
Tellurium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050	-	-	-	-	-	-	-	<0.0050	-	<0.0030
Tellurium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	<0.0002	<0.0002	-	-	-	<0.005	-	-
Thallium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-	-	<0.0010	-	<0.0005
Thallium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	<0.00002	0.00032	-	-	-	<0.0010	-	-
Thorium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050	-	-	-	-	-	-	-	<0.0050	-	<0.0030
Thorium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	0.0004	0.0099	-	-	-	<0.005	-	-
Tin, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	•	-	-	-	<0.0020	-	<0.0020
Tin, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	0.0093	0.0013	-	-	-	<0.001	-	-
Titanium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0200	-	-	-	-	-	-	-	<0.0200	-	<0.100
Titanium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.050	-	-	0.069	1.4	-	-	-	<0.050	-	-
Tungsten, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tungsten, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.0025	-	-	-	-	-	-	-	0.0011	-	0.0012
Uranium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.0028	-	-	0.00069	0.00239	-	-	-	0.0012	-	-
Vanadium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050	-	-	-	1	-	-	-	<0.0050	-	<0.010
Vanadium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	0.011	0.042	-	-	-	<0.010	-	-
Zinc, dissolved	mg/L	-	-	-	-	0.017	0.0197	0.02	-	0.01	-	0.028	-	<0.040	0.02	-	-	1	0.01	0.021	0.039	<0.040	-	<0.030
Zinc, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.050	-	-	0.576	0.094	-	-	-	<0.050	-	-
Zirconium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	-	-	-	-	-	<0.010	-	<0.005
Zirconium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	0.0071	0.028	-	-	-	<0.010	-	-
General Parameters																								
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3050	9700	6010	-	-	-	-	-	-
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.0	<1.0	<1	-	-	-	-	-	-
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.0	<1.0	<1	-	-	-	-	-	-
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.0	<1.0	<1	-	-	-	-	-	-
Alkalinity, Total (as CaCO3)	mg/L	-	-	-	-	2800	5600	1720	7040	4100	-	3500	-	3000	900	3050	9700	6010	287	290	324	310	340	333
Ammonia, Total (as N)	mg/L	-	-	-	-	-	-	-	0.19	0.04	-	0.08	-	0.31	-	-	928	0.792	-	-	-	<0.02	<0.02	0.04
Bicarbonate (HCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3720	11800	7330	-	-	-	-	-	-
Carbonate (CO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.600	<0.600	<0.600	-	-	-	-	-	-
Chemical Oxygen Demand	mg/L	-	-	-	-	69	202	108	184	136	-	129	-	39	89	-	-	-	<5	5	10	<5	<5	-
Electrical Conductivity	μS/cm	-	-	-	-	1660	1620	1600	1900	2000	-	2200	-	1910	2810	8440	13800	324	845	866	791	822	881	842
Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

				T		T									l	l			Town Well	Town Well	Town Well	Town Well	Town Well	Town Well
	Sampling Location	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-04	Runoff 1	Runoff 2	Runoff 3	#4	#4	#4	#4	#4	#4
	Date Sampled	2002-06-03	2002-08-26	2002-11-06	2003-03-07	2003-05-12	2003-11-03	2004-05-17	2004-11-08	2005-04-25	2005-11-02	2006-04-17	2006-11-05	2007-05-22	2004-05-17	2017-04-05	2017-04-05	2017-03-30	2002-06-03	2003-05-12	2004-05-17	2007-05-22	2007-11-05	2008-04-28
	Lab Sample ID													K705752-01		7040434-01	7040434-02	7040370-01				K705752-02	K7K0165-01	K8E0035-01
	Sample Type															Normal	Normal							
Analyte	Unit																							
Hardness, Total (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydroxide (OH)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.340	<0.340	<0.340	-	-	-	-	-	-
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	14	-	-	-	-	-	-	-	1.35	1.09	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	2.92	13	3.7	4.7	5.12	-	5.1	-	7.12	0.84	-	-	-	0.05	<0.05	0.08	0.1	0.06	-
рН	pH Units	-	-	-	-	7.1	6.8	6.9	7.1	7.2	-	7	-	6.8	7	-	7.7	7.85	7.1	7.2	7.3	7.1	7.4	7.4
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	-	-	-	-	-	-	-	-	-	-	-	-	-	680	-	212	-	0.4	2.5	0.6	-	-	0.2
Microbiological Parameters	,																							
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	_	_	-	-	_	_	-	-	-	-	-	-	_	-	_	_	-	_	_	-	_	-	_
E. coli (MPN)	MPN/100 mL	_	_	_	-	_	_	_		-	_	-	_	_	_	_	_	_	_	_	_	_	_	_
E. coli, Total	CFU/100 mL	_	_	_	-	_	_	_	_	-	_	-	-	_	_	_	_	_	_	_	_	-	-	_
Volatile Organic Compounds (VOC)	0. 0, 200		ı			1		1		ı										1	1	ı	ı	
1,1-Dichloroethane	μg/L	_	_	_	_	_	_	_	_	-	_	-	_	_	-	_	_	-	_	_	_	_	-	_
1,1-Dichloroethane	ug/L	_	_	_	-	_	_	_		-	_	-	-	_	_	_	_	_	_	_	_	_	-	_
1,1-Dichloroethylene	μg/L	_	_	_	-	_	_	_		-	_	-	-	_	-	-	_	_	_	_	_	-	-	_
1,1-Dichloroethylene	ug/L	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
1,1,1-Trichloroethane	μg/L	_	_		_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_		_	_	_	_	-	<u> </u>
1,1,1-Trichloroethane	ug/L	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
1,1,2-Trichloroethane	μg/L		_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_			_			_	_	_
1,1,2-Trichloroethane	ug/L		_		_	_		_		_	_	_	_		_	_			_			_	-	 -
1,1,2,2-Tetrachloroethane	μg/L		_		_	_		_		_	_	_	_		_	_			_	_	_	_	-	 -
1,1,2,2-Tetrachloroethane	ug/L		_		_	_	_	_	-	_	_	_	_		_	_			_	_		_	-	 -
1,2-Dibromoethane	mg/L	_	_		_	_	_	_		_	_	-	_	_	_		<0.0002	<0.0002	-	_	_	_	-	<u> </u>
1,2-Dibromoethane	μg/L		_		_	_	_	_		_	_	_	_	_	_			-	_	_	_	_	_	_
1,2-Dibromoethane	ug/L	_	_		_	_	_	_		_	_	_	_	_	_	<u> </u>			_	_		_	_	_
1,2-Dichlorobenzene	μg/L	_	_		_	_	_	_	_	-	_	-	_	_	_	_			_	_	_	-	-	
1,2-Dichlorobenzene	ug/L		_		_	-	-	_		_	_	-	_		_	-		-	-		_	_	-	
1,2-Dichloroethane	μg/L	-	-	<u> </u>		-	-	_		-	-	-			_	-		 	-		 	-	-	- -
1,2-Dichloroethane	μg/L ug/L		-		-	-		_		-	-	-	-	_		-		-	-		-	-	-	 -
1,2-Dichloropropane	mg/L		<u> </u>	<u> </u>	-			_	-	-	-	-			_	<u> </u>	<0.0010	<0.0010	-		 	-	-	
1,2-Dichloropropane	μg/L	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-		- <0.0010	-	-	-	-	-	-
1,2-Dichloropropane	μg/L ug/L	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-		-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	- -
1,3-Dichlorobenzene	μg/L ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropenzene 1,3-Dichloropropene (cis + trans)	ug/L μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			-		-	†										1								
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene			-	-	-	-		-	-		-		-	-	-	-	0.0011	<0.0005	-	-	-		-	
Benzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0011		-	-	-	-	-	-
Benzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-
Bromodichloromethane Bromodichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Bromodichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-
Bromoform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-

March Marc			MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-04	Runoff 1	Runoff 2	Runoff 3	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well
Second		Sampling Location																		#4	#4	#4		#4	#4
Care Care		Date Sampled	2002-06-03	2002-08-26	2002-11-06	2003-03-07	2003-05-12	2003-11-03	2004-05-17	2004-11-08	2005-04-25	2005-11-02	2006-04-17	2006-11-05	2007-05-22	2004-05-17	2017-04-05	2017-04-05	2017-03-30	2002-06-03	2003-05-12	2004-05-17	2007-05-22	2007-11-05	2008-04-28
March Marc		Lab Sample ID													K705752-01		7040434-01	7040434-02	7040370-01				K705752-02	K7K0165-01	K8E0035-01
Second S		Sample Type															Normal	Normal							
Section Sect	Analyte	Unit																					1		
Contact Cont	Bromoform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- !
Section Assessment	Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Contraction of	Carbon tetrachloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	-	-	-	-	-	-
Notember 95	Carbon tetrachloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Procedure	Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Consistency	Chlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Description	Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
State Stat	Chloroethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	<0.0020	-	-	-	-	-	-
Condemina	Chloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Southern 1974 1975 197	Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Control Cont	Chloroform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
SEA SEASON SEA	Chloroform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
## 15-20 Processor	Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Deconocionamente mg	cis-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Descriptions Page	cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manufacture Manufacture	Dibromochloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Description Fig.	Dibromochloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Descripantable Mg/L	Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Decomposition March Marc	Dibromomethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Control of the cont	Dibromomethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Self-conformance Self-confor	Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Definition	Dichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0030	<0.0030	-	-	-	-	-	-
Explorations mg/L	Dichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Explanamen	Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Explanare with term of might with the study either with the study either with the study either with the study either with the study either with the study either with the study either with the study either with the study either	Ethylbenzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0028	<0.0010	-	-	-	-	-	-
Methylater study ether mg/L	Ethylbenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylater duply ether 19/4	Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methy terts tury et her Mg/L	Methyl tert-butyl ether	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Spree mg/L	Methyl tert-butyl ether	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Syrene	Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Syrene	Styrene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Tetrachloroethylene	Styrene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	Styrene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene mg/L	Tetrachloroethylene	μg/L	-	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	_	_	-	-	-	-	_	_	_	-	-	-	-	-	-	-
Toluene	Toluene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.104	<0.0010	-	-	-	-	-	-
trans-1,2-Dichloroethylene	Toluene	μg/L	-		-	-	-	-	-		-	-	-	-	-	-	_	-	_	-	-	-	-	-	-
trans-1,2-Dichloroethylene μg/L	Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Trichloroethylene μg/L	trans-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene μg/L	trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	Trichloroethylene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	Trichloroethylene		-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	_	-
Trichlorofluoromethane	Trichlorofluoromethane	mg/L	-	-	-	-	-	-	-		-	-	-	-	-	-		<0.0010	<0.0010	-	-	-	-	_	-
Trichlorofluoromethane	Trichlorofluoromethane	μg/L		_	-	_	-	-	-		_	-		-	-				_	_	_	-	-	_	-
Vinyl chloride mg/L	Trichlorofluoromethane		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Vinyl chloride μg/L	Vinyl chloride		-	-	-	-	-	-	-		-	-		-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Vinyl chloride	Vinyl chloride		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total) μg/L			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total) ug/L -			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BCMOE Aggregate Hydrocarbons			-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-
		, 5			•	•															•				-
	VPHw	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

				1			1			1	1		1	1	1		1	1			1			
		Town Well	Town Well	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well	Town Well #4	Town Well	Town Well	Town Well	Town Well	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well	Town Well #4	Town Well	Town Well	Town Well	Town Well	Town Well #4
	Sampling Location	***				1		***			"'	#4	***					***			"'	***	***	
	Date Sampled			2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20		2013-11-12	2014-06-02		2014-11-04	2015-05-25	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-11-20
	Lab Sample ID	K8J0452-01	K9E0816-01	K9K0184-03	K0B0397-03	K0F0788-02	K0K0729-03	K1E0403-02	K1H0536-04	K1J0685-04	2051369-02	2081484-04	2111131-04		3110772-02	4060249-02		4110161-01	5051773-02		6081698-04	6111141-02	7040434-04	
	Sample Type										Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit																							
Field Parameters		-	T					1				1			,				T	Т			1	
Depth to Water	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	-	2.01	3.7	-	-	-	-	-	-	-	-	-	-	-	4.5	3.93	4.38	4.85	4.24	4.67	-	-	-
Electrical Conductivity	μS/cm	-	900	890	870	970	890	-	690	930	740	860	800	640	710	799	805	756	813	1013	986	932	63	1050
Elevation of Piezometric Surface	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxidation reduction potential	mV	-	-	-	-	49	159	-	62	119	111	221	188	258	74	165	201	47	68	156	240	293	261	-
рН	pH Units	-	6.85	7.48	7.2	7.41	7.49	-	7.35	7.39	7.43	7.59	7.6	7.36	7.2	7.5	7.5	7.2	7.2	7.4	7.3	7.5	7.5	7.2
Temperature	°C	-	8.4	8.4	7.4	12.2	8.2	-	9.4	7.6	8.2	8.8	8.1	8.4	8.1	7.9	8.5	8.4	12.9	8.31	8.6	8.3	8	8.2
Anions																								
Bromide	mg/L	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chloride	mg/L	86.9	74	57.6	91.1	76.7	75.7	79.2	72.9	77.2	63	67.2	65.6	69.1	68.5	67	69.7	70.2	81.2	97.3	88.5	88.6	90.4	105
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Nitrate (as N)	mg/L	1.17	1.12	1.21	1.3	1.17	1.14	0.895	1.26	1.21	1.19	1.2	0.755	1.36	1.33	1.26	1.55	1.57	1.53	1.72	1.48	1.19	1.39	1.61
Nitrite (as N)	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Sulfate	mg/L	40.6	38.8	39.8	42.9	41.2	36.1	37.6	35.8	40	37.2	36.6	40.4	36.6	38.8	37.6	39.7	40.7	40	40.3	41.5	40.2	42.8	43.8
Metals	·																							
Aluminum, dissolved	mg/L	<0.010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.014	<0.005	<0.005	<0.005	<0.005	0.021	<0.005	-	-	<0.005	<0.005	-	-
Aluminum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	-	-	<0.005	<0.0050
Antimony, dissolved	mg/L	<0.0006	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0004	0.0001	<0.0020	<0.0001	0.0007	0.0003	0.0003	0.0007	0.0004	0.0005	0.0002	-	-	<0.0001	<0.0001	-	-
Antimony, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	-	-	<0.0001	<0.00020
Arsenic, dissolved	mg/L	<0.0010	<0.0005	<0.0005	<0.0005	<0.0005	0.0006	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	<0.0005	<0.0005	-	-
Arsenic, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	-	-	<0.0005	<0.00050
Barium, dissolved	mg/L	0.211	0.227	0.173	0.244	0.216	0.217	0.189	0.195	0.184	0.189	0.193	0.191	0.195	0.2	0.192	0.195	0.21	-	-	0.247	0.219	-	-
Barium, total	mg/L	-	_	-	-	_	-	-	-	_	_	-	-	-	-	-	_	-	0.193	0.227	_	_	0.214	0.228
Beryllium, dissolved	mg/L	<0.0004	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	_	<0.0001	<0.0001	-	-
Beryllium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	-	-	<0.0001	<0.00010
Bismuth, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	_	_	<0.0001	<0.0001	_	_
Bismuth, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	-	-	<0.0001	<0.00010
Boron, dissolved	mg/L	0.013	0.015	0.02	0.02	0.015	0.042	0.016	0.018	0.017	0.018	0.012	0.018	0.018	0.032	0.021	0.024	0.014	_	_	0.031	0.014	_	-
Boron, total	mg/L	-	-		-	-	-	-	-	-	-	-	-	-		-	-		0.015	0.021	-	-	0.025	0.014
Cadmium, dissolved	mg/L	<0.00002	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00005	0.00009	<0.0001	0.00001	<0.00001	<0.00001	0.00001	<0.00001	<0.00001	0.00003	0.00002	-	-	0.00002	<0.00001	-	-
Cadmium, total	mg/L	-	- 0.00001	-	-		-	-	-		-	-	-	- 0.00001	-	-		- 0.00002	<0.00001	<0.00001			<0.00001	<0.000010
Calcium, dissolved	mg/L	87	83.8	80	87.4	79.1	81.3	90	83.8	84.7	74.7	80.7	82	82.5	88.6	90.2	92.1	88.7	10.00001	-	100	86.1	- 40.00001	-
Calcium, total	mg/L	-		-	-	-		-	-	-	-	-			-	- 30.2		-	91.7	99.5	-	-	93.7	91.1
Chromium, dissolved	mg/L	0.006	0.0033	0.0028	0.0116	0.0022	0.0007	<0.0005	0.0007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	<0.0005	<0.0005	-	-
Chromium, total	mg/L	-	- 0.0033	-	-	-	-	-	-	-	-	-		-	-	-	-	-	<0.0005	<0.0005	-	-	0.0005	0.00052
Cobalt, dissolved	-	<0.0001	0.00009	0.00006	0.00007	0.0001	0.00013	<0.00005	0.00018	<0.00005	<0.00005	<0.0005	<0.00005	<0.00005	<0.00005	<0.00005	0.00007	0.00006		-	0.00006	<0.00005	-	-
Cobalt, dissolved	mg/L mg/L	<0.0001	0.00009	0.00006		0.0001	0.00013	-0.00003						- <0.00005	-0.00003	-0.00003	0.00007	- 0.00000	<0.00005	<0.00005		-	<0.0005	<0.00010
Copper, dissolved	mg/L	0.0046	0.0038	0.0016	0.0045	0.0025	0.0025	0.0008	0.0038	0.0016	0.0007	0.0013	0.001	0.0008	0.0006	0.0009	0.0014	0.0014		-	0.0016	0.0012	-0.00003	- 0.00010
Copper, dissolved	mg/L	0.0046	0.0036	0.0016	0.0045	0.0025	0.0025	0.0008	0.0038	0.0016	0.0007	0.0013	0.001	0.0008	0.0006	0.0009	0.0014	0.0014	0.0039	0.0009	0.0016	0.0012	0.0015	0.00073
			0.002	0.07			+	- -0.010						-	-		+	- -0.010		0.0009	<0.010		0.0015	- 0.00073
Iron, dissolved	mg/L mg/L	0.079	0.082	- 0.07	0.063	0.147	0.166	<0.010	0.02	<0.01	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	0.031	<0.010		<0.01		<0.010		
Iron, total			+		- 0.0003	+	+			 				-			+		<0.01				<0.01	<0.010
Lead, dissolved	mg/L	0.0002	0.0001	<0.0001	0.0002	0.0002	0.0002	0.0001	0.0005	0.0001	<0.0001	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	0.0001	0.0001	0.0004	<0.0001	0.0001	0.0001	
Lead, total	mg/L	0.0015	0.0021	0.0012	0.0017	0.0021	- 0.004	- 0.003	0.0017	0.0018	0.0017	- 0.0016	0.0019	0.0018	0.0018	- 0.003	0.0022	- 0.002	0.0001	0.0004	0.0010	0.0010	0.0001	<0.00020
Lithium, dissolved	mg/L	0.0015	0.0021	0.0013	0.0017	0.0021	0.004	0.002	0.0017	0.0018	0.0017	0.0016	0.0018	0.0018	0.0018	0.002	0.0022	0.002	- 0.003	- 0.0022	0.0019	0.0019	- 0.003	- 0.00100
Lithium, total	mg/L	- 20.0	- 24.0	- 20.0			- 40.5	- 20.7	- 27.2	- 24.0	- 20.4	- 27.7	- 26.0	- 20.0		-	- 20.4	-	0.002	0.0022	- 40.2	- 44.5	0.002	0.00199
Magnesium, dissolved	mg/L	38.9	34.9	39.8	39.7	35	40.5	39.7	37.3	34.9	39.1	37.7	36.8	38.9	39.3	41.8	39.4	38	- 20.0	-	49.3	41.5	- 20.6	- 20.2
Magnesium, total	mg/L	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	39.8	45.4	-	-	39.6	39.2
Manganese, dissolved	mg/L	<0.0010	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0006	0.0008	<0.0002	0.0007	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0068	0.0012	-	-	0.0003	<0.0002	-	-
Manganese, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	-	-	<0.0002	<0.00020
Mercury, dissolved	mg/L	<0.00006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00002	<0.00002	<0.00002	<0.00002	0.00005	0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	-	<0.00002	<0.00002	-	-
Mercury, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00002	<0.00002	-	-	<0.00002	<0.000010

		Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well
	Sampling Location	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4
	Date Sampled	2008-10-14	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-11-20
	Lab Sample ID	K8J0452-01	K9E0816-01	K9K0184-03	КОВОЗ97-ОЗ	K0F0788-02	коко729-03	K1E0403-02	K1H0536-04	K1J0685-04	2051369-02	2081484-04	2111131-04	3051354-04	3110772-02	4060249-02	4081094-01	4110161-01	5051773-02	6050336-05	6081698-04	6111141-02	7040434-04	7111886-03
	Sample Type										Normal													
Analyte	Unit																							
Molybdenum, dissolved	mg/L	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0002	0.0003	0.0012	0.0003	0.0005	0.0003	0.0002	0.0003	0.0003	0.0003	0.0002	-	-	0.0002	0.0002	-	-
Molybdenum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0003	0.0003	-	-	0.0002	0.00019
Nickel, dissolved	mg/L	0.001	0.0014	0.001	0.0012	0.0016	0.0037	0.0002	0.0011	<0.0002	<0.0002	0.0003	<0.0002	<0.0002	0.0002	<0.0002	0.0015	0.0004	-	-	<0.0002	<0.0002	-	-
Nickel, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	0.0002	-	-	<0.0002	<0.00040
Phosphorus, dissolved	mg/L	<0.040	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.11	<0.02	-	-	<0.02	<0.02	-	-
Phosphorus, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.020	<0.02	-	-	<0.05	<0.050
Potassium, dissolved	mg/L	1.82	2.08	1.48	1.93	2.33	1.95	1.74	1.75	1.5	2.04	1.62	1.61	1.69	1.67	1.7	1.84	1.9	-	-	2.2	1.93	-	-
Potassium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.86	2.05	-	-	1.85	1.89
Selenium, dissolved	mg/L	<0.0010	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	<0.0005	<0.0005	-	-
Selenium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	-	-	<0.0005	<0.00050
Silicon, dissolved	mg/L	5.35	4.1	3.53	7.83	4	2.33	4.89	4.8	4.4	4.8	4.6	4.9	4.6	4.2	4.5	4.6	4.9	-	-	4.5	4.9	-	-
Silicon, total	mg/L	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		4.8	5.3	-	-	4.7	4.4
Silver, dissolved	mg/L	<0.00008	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	0.00007	<0.00005	<0.00005	<0.00005	0.00006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	-	-	<0.00005	<0.00005	1	-
Silver, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00005	<0.00005	-	-	<0.00005	<0.000050
Sodium, dissolved	mg/L	42.1	36.7	44.4	45.6	37.8	37.8	44	39.9	38.2	40.8	39.4	38.7	41.7	42.4	42.5	44.5	48.5	-	-	58.2	50	1	-
Sodium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	46.9	56.5	-	-	52.7	52.1
Strontium, dissolved	mg/L	0.442	0.481	0.409	0.409	0.451	0.628	0.423	0.436	0.37	0.441	0.405	0.399	0.432	0.4	0.421	0.457	0.438	-	-	0.527	0.462	-	-
Strontium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.425	0.49	-	-	0.446	0.486
Sulfur, dissolved	mg/L	-	-	-	-	-	-	-	-	-	16	17	15	13	9	16	12	13	-	-	18	15	-	-
Sulfur, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14	16	-	-	12	14
Tellurium, dissolved	mg/L	<0.0006	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	<0.0002	<0.0002	-	-
Tellurium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	-	-	<0.0002	<0.00050
Thallium, dissolved	mg/L	<0.0001	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	-	<0.00002	<0.00002	-	-
Thallium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00002	<0.00002	-	-	<0.00002	<0.000020
Thorium, dissolved	mg/L	<0.0006	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	<0.0001	<0.0001	-	-
Thorium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	-	-	<0.0001	<0.00010
Tin, dissolved	mg/L	<0.0004	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	<0.0002	<0.0002	-	-
Tin, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	-	-	<0.0002	<0.00020
Titanium, dissolved	mg/L	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-	<0.005	<0.005	-	-
Titanium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	-	-	<0.005	<0.0050
Tungsten, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Tungsten, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010
Uranium, dissolved	mg/L	0.0014	0.00124	0.00114	0.00102	0.00115	0.00127	0.00113	0.00107	0.00104	0.00103	0.00109	0.00103	0.00112	0.00105	0.00114	0.00143	0.00123	-	-	0.0013	0.00115	-	-
Uranium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00115	0.00134	-	-	0.00124	0.00127
Vanadium, dissolved	mg/L	<0.002	<0.0010	<0.0010	0.0046	0.0018	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-	-	<0.001	<0.001	-	-
Vanadium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	<0.001	-	-	<0.001	<0.0010
Zinc, dissolved	mg/L	0.008	0.0088	0.0021	0.0051	0.0058	0.0032	<0.0040	0.016	<0.004	<0.004	0.006	<0.004	<0.004	<0.004	<0.004	<0.004	0.005	-	-	<0.004	<0.004	-	-
Zinc, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.004	<0.004	-	-	<0.004	<0.0040
Zirconium, dissolved	mg/L	<0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	<0.0001	<0.0001	-	-
Zirconium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	0.0002	-	-	<0.0001	<0.00010
General Parameters	<u> </u>		1			ı							ı		I		1							
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	336	338	336	343	361
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	245	- 227	- 220	- 225	- 220	- 242	- 224	-	- 227	- 204	- 242	- 222	- 226	- 214	- 240	- 220	- 240	- 220	<1	<1	<1	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	345	337	330	325	328	313	331	332	327	304	313	332	326	314	319	320	319	328	336	338	336	343	361
Ammonia, Total (as N)	mg/L	0.06	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	0.02	<0.020	0.03	0.025	0.024	0.029	<0.020	<0.020	<0.020	0.038	<0.020	0.031	<0.020	0.026	0.024
Bicarbonate (HCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	410	412	410	418	441
Carbonate (CO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.6	<0.6	<0.600	<0.600
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	884	899	902	905	874	854	869	835	873	825	836	838	833	859	857	880	900	911	966	948	966	959	1050
Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Part			Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well
Part		Sampling Location		1	1		1	1 1							1			1							1 1
Part				2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-11-20
Segregation of the segretary of the segr		Lab Sample ID	K8J0452-01	K9E0816-01	K9K0184-03	K0B0397-03	K0F0788-02	КОКО729-03	K1E0403-02	K1H0536-04	K1J0685-04	2051369-02	2081484-04	2111131-04	3051354-04		4060249-02	4081094-01	4110161-01	5051773-02	6050336-05	6081698-04	6111141-02	7040434-04	7111886-03
Second processes Second proc		Sample Type										Normal													
Property Property	Analyte	Unit		•	•	•					•	•	•		•		•								
Profession Pro	Hardness, Total (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	393	-	-	-	-	389
See See See See See See See See See See	Hydroxide (OH)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.3	<0.3	<0.340	<0.340
Best 1 19 1 19 1 19 1 19 1 19 1 19 1 19 1	Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Second Control	Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
The control (16) 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	рН	pH Units	6.9	7.7	7.76	7.81	7.93	7.79	7.85	7.81	7.82	7.87	7.8	6.94	7.86	7.82	7.92	7.65	7.85	7.83	7.53	7.77	7.97	7.85	7.91
Mathematical Math	рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Part Part	Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mathemate Mathemate Mathematic Mathe	Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Noveleting from the manufacture of the manufacture	Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Column Free Pric	Turbidity	NTU	0.1	<0.1	0.3	0.2	<0.1	0.1	<0.1	0.11	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.10	0.26
Coloning Coloning	Microbiological Parameters		-																						
Column Find Marghan Ma	Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Callery, Scal MPACKS or	Coliforms, Fecal	MPN/100 mL	-	-	-	_	_		-			-	-	-	-	-	-	_	-	-	-	-	-	-	
Conformation May M	Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	_	_	-	-		_	_	-	-	-	-	-	_	-	-	-	-	-	-	
Fig. 16 May	Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Control Cont	Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Note Note	E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13 Debinement	E. coli, Total	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Albehrechene Spil	Volatile Organic Compounds (VOC)																								
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1,1-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11.0-bit container	1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1 fring principation 1,1,2 fring princip	1,1-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.1.1-Trichpropriate	1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3,1 Friederschanne	1,1,1-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.3.1.7 Technic procedure	1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11.12.2 Fernandrombane 1961 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.0 Sernandrombane 12.	1,1,2-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.1.2.2 Price networkshape	1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12-Discromote thane	1,1,2,2-Tetrachloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.2 Otherwise 1.2 Otherwis	1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12.Dishorobenzene	1,2-Dibromoethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-
1,20ichiorobensene	1,2-Dibromoethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichiorostenare	1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,20 Chioroethane	1,2-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorgoepane ug/L	1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane mg/L	1,2-Dichloroethane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,2-Dichloropropane	1,2-Dichloroethane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
1,2-Dichloropropane	1,2-Dichloropropane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	
1,3-Dichlorobenzene	1,2-Dichloropropane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,3-Dichloropene (cis+ trans)	1,2-Dichloropropane	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,3-Dichloropropene (cis + trans) 4μ/1	1,3-Dichlorobenzene	1	-		<u> </u>	-			-	-		-	-		-	-			-						
1,3-Dichloropropene (cis + trans) 1,4-Dichloropropene (cis + trans) 1,4-Dichloropene (cis +	1,3-Dichlorobenzene	1																							
1,4-Dichlorobenzene μg/L			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1.4-Dichloroberzene				<u> </u>								-													
Benzene mg/L	1,4-Dichlorobenzene			+		-	-		-	-		-	-		-	-		-	-		-	-			
Benzene	1,4-Dichlorobenzene			+																					
Benzene	Benzene _			-																					
Bromodichloromethane mg/L	Benzene _																								
Bromodichloromethane	Benzene		-			-			-	-		-	-		-	-		-	-		-	-			
Bromodichloromethane ug/L	Bromodichloromethane				<u> </u>				-			-	-			-			-			-			
	Bromodichloromethane			-	-		-		-	-		-	-		-	-	-	-	-	-	-	-	-	-	-
Bromoform mg/L - - - - - - - - -	Bromodichloromethane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	Bromoform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	<0.0010	

Marie Mari	Well Town We	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well		
Mathematical Ma	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	ling Location	Samp
Mary Mary	4-05 2017-11-2	2017-04-05	2016-11-14	2016-08-22	2016-05-03	2015-05-25	2014-11-04	2014-08-18	2014-06-02	2013-11-12	2013-05-21	2012-11-20	2012-08-22	2012-05-24	2011-10-18	2011-08-10	2011-05-09	2010-11-16	2010-06-15	2010-02-09	2009-11-04	2009-05-25	2008-10-14	ate Sampled	ι
March Marc	4-04 7111886-0	7040434-04	6111141-02	6081698-04	6050336-05	5051773-02	4110161-01	4081094-01	4060249-02	3110772-02	3051354-04	2111131-04	2081484-04	2051369-02	K1J0685-04	K1H0536-04	K1E0403-02	коко729-03	K0F0788-02	K0B0397-03	К9К0184-03	K9E0816-01	K8J0452-01	ab Sample ID	L
Marchane 19 19 19 19 19 19 19 1	nal Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal										Sample Type	
Manufacture Mg																								Unit	Analyte
Cash stretchores	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	μg/L	Bromoform
Control Stration	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ug/L	Bromoform
Case instantation Age	05 -	<0.0005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	mg/L	Carbon tetrachloride
Orienselezer 의 경우 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	μg/L	Carbon tetrachloride
Orienselezer 의 경우 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	ug/L	Carbon tetrachloride
Chancelenne	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	μg/L	Chlorobenzene
Description	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	ug/L	Chlorobenzene
Shoredome	20 -	<0.0020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	mg/L	Chloroethane
Consisten	-	-	_	-	-	_	-	_	-	-	_	_	-	-	-	-	-	_	-	_	-	-	_		Chloroethane
Chardram	-	-	_	-	-	-	-	-	-	_	-	_	_	-	-	-	-	-	-	_	-	-	_		
Substitution Supplication Supp	10 -	<0.0010	_	-	-	_	-	_		_	_	_	_	_	-	_	-	-	_	-	_	_	-		
Description Mail		-	-	_	_	-	-	_	-	-	_		-	-		-	-		-		-		-		
Call Delitions between March Mar		_												_											
62-1 10-1	-	-								-			-												
Descriptions Description	-	_								_			_												· '
Description formathene 1967 1.0 1.		<0.0010								_															· '
Decompose than Unit		-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_		
Discrimentation mg/L	_	_	_			_	_			_	_		_	_			_		_			_			
Dichoromethane μg/L	_	<0.0010	_			_	_			_	_		_	_			_		_			_			
Deformmentance mg/L		-			_	_	_			_			_	_			_		_		_	_		-	
Dichloromethane mg/L	_	<u> </u>			_	_	_			_				_			_		_		_				
Dichloromethane		<0.0030			_	_	_			_				_			_		_		_				
Dichloromethane Ug/L		-								_															
Ethylbenzene mg/L		_																							
Ethylbenzene	_	<0.0010								_															
Ethylbenzene		-				_				_				_											·
Methyl tert-butyl ether mg/L -<	-	_								_															·
Methyl tert-butyl ether μg/L <th>_</th> <th><0.0010</th> <th></th>	_	<0.0010																							
Methyl tert-butyl ether ug/L <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th>		-								_				_											· · · · · · · · · · · · · · · · · · ·
Styrene μg/L - <td< th=""><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th>_</th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		_								_			_	_											
Styrene µg/L -		<0.0010								_															
Styrene ug/L - <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>·</th></th<>										_															·
Tetrachloroethylene μg/L		_																							·
Tetrachloroethylene		_																							·
Toluene mg/L														-											'
Toluene μg/L		<0.0010												-											,
Toluene																									
trans-1,2-Dichloroethylene μg/L		_																						- 1	
trans-1,2-Dichloroethylene ug/L		_																							
Trichloroethylene µg/L		_																						1	·
	_	-																							·
																									·
Trichlorofluoromethane mg/L		<0.0010																							·
		-																							
		<0.0010																							
		-																							
		-																							·
	-	-			-	-		-		-	-		-	-				-			-	-			
Xylenes (total) ug/L			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ug/L	· · · · · · · · · · · · · · · · · · ·
BCMOE Aggregate Hydrocarbons						_	I	_			_	_					-							- 1	
VPHw mg/L - - - - - - - - - -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	mg/L	/PHw

		Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Well ID
	Sampling Location	#4	#4	#4	#4	#4	#4	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	22653
	Date Sampled	2018-06-26	2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2013-08-20	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2019-05-29	2019-08-13	2018-12-04
	Lab Sample ID	8062674-04	8090975-06	8120636-05	9052874-05	9081278-05	N000444-05	3081378-02	4060249-01	4081094-02	4110161-02	5051773-01	5081710-01	5110693-04	6050336-04	6081698-05	6111141-01	7040434-05	7090074-02	7111886-02	8062674-05	9052874-06	9081278-06	8120636-07
	Sample Type	Normal	Normal	Normal				Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal			Normal
Analyte	Unit																							
Field Parameters				T								1			T	1			1					
Depth to Water	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.82
Dissolved Oxygen	mg/L	-	5.59	5.67	4.89	6.47	5.47	-	8.14	7.68	7.38	6.4	7.04	6.51	5.61	6.13	5.71	-	9.27	9.21	-	10.26	8.83	2.87
Electrical Conductivity	μS/cm	1055	1043	904	923	932	834	650	577	577	677	587	401	670	693	695	723	635	680	726	727	634	713	352
Elevation of Piezometric Surface	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxidation reduction potential	mV	218	123	102	-14.1	185.9	100.6	246	183	172	66	211	46	74	122	234	163	265	31		204	-20	150.6	-
pH Tomporature	pH Units	7.46 8.3	7.52 8.4	7.26	7.34 9.7	7.28 9.3	7.42 7.4	7.15 7.9	7.3 7.7	7.9 8.1	7.4 8.1	7.4 7.8	7.4 10.2	8.2	7.3 8.2	7.2 8.4	7.3	7.3 7.9	9.5	7.5 7.9	7.45 8.1	7.58 9.9	7.38 9.3	8.65 7.8
Temperature Anions		0.3	0.4	0.3	3.7] 3.3	7.4	7.5	7.7	0.1	0.1	7.0	10.2	0.2	0.2	0.4	0	7.5	9.5	1.5	0.1	3.3	3.3	7.0
Bromide	mg/L	<0.10	<0.10	<0.10	_	Π.	_		_			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	_	_	<0.10
Chloride	mg/L	103	87.4	97	97.9	92.7	92.8	22.9	23.7	26.2	34.5	28.7	24.8	28.6	24.4	29.2	30.5	31	34.4	36.2	39.7	41	42.1	29.4
Fluoride	mg/L	0.15	<0.10	<0.10	<0.1	<0.1	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.11	0.18	<0.10	<0.1	<0.1	0.13
Nitrate (as N)	mg/L	1.26	1.76	1.6	1.72	1.65	1.76	0.781	0.839	0.993	1.23	0.89	1.01	0.925	0.978	1.03	0.976	1.09	1.11	1.3	0.933	1.28	1.32	<0.010
Nitrite (as N)	mg/L	<0.010	<0.010	<0.010	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.01	<0.01	<0.010
Sulfate	mg/L	38.8	42.3	42.9	43.5	41.4	41.8	20.4	23.5	24.1	24.3	24.3	23.8	24.8	25.2	27.1	24.9	27.6	24.4	23	25.2	30.8	28.6	23.5
Metals																								
Aluminum, dissolved	mg/L	0.0057	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005	<0.005	0.011	<0.005	-	-	-	-	<0.005	<0.005	-	<0.0050	-	0.0069	<0.005	<0.005	0.0068
Aluminum, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	<0.05	<0.005	-	-	<0.005	-	<0.0050	-	-	1	-
Antimony, dissolved	mg/L	<0.00020	<0.00020	<0.00020	<0.0002	<0.0002	<0.0002	0.0005	0.0005	0.0003	0.0002	-	-	-	-	<0.0001	<0.0001	-	<0.00020	-	<0.00020	<0.0002	<0.0002	<0.00020
Antimony, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00020	-	-	-	-
Arsenic, dissolved	mg/L	<0.00050	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	-	<0.00050	-	<0.00050	<0.0005	<0.0005	<0.00050
Arsenic, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.005	<0.0005	-	-	<0.0005	-	<0.00050	-	-	-	-
Barium, dissolved	mg/L	0.196	0.219	0.214	0.217	0.218	0.205	0.133	0.126	0.136	0.146	-	-	-	-	0.169	0.155	-	0.133	-	0.133	0.165	0.161	0.0224
Barium, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.142	0.146	0.14	0.162	-	-	0.15	-	0.146	-	-	-	<u> </u>
Beryllium, dissolved	mg/L	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010	-	<0.00010	<0.0001	<0.0001	<0.00010
Beryllium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-	-	-
Bismuth, dissolved	mg/L	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001					<0.0001	<0.0001		<0.00010		<0.00010	<0.0001	<0.0001	<0.00010
Bismuth, total	mg/L	0.0335	0.0357	0.0293	0.0221	0.0225	0.0665	- 0.05	0.015	0.012	0.006	<0.0001	<0.0001	<0.001	<0.0001	0.014	0.007	<0.0001	0.142	<0.00010	0.017	0.0099	0.0106	0.0156
Boron, dissolved Boron, total	mg/L mg/L	0.0333	0.0357	0.0293	0.0221	0.0225	0.0005	0.05	0.015	0.012	0.006	0.006	0.007	<0.04	0.012	0.014	0.007	0.016	0.143	0.0068	0.017	0.0099	- 0.0106	0.0156
Cadmium, dissolved	mg/L	<0.000010	<0.000010	<0.000010	<0.00001	<0.00001	<0.00001	0.00002	<0.00001	0.00002	<0.00001	0.000	0.007	<0.04	0.012	0.00002	<0.00001	0.010	<0.000010	0.0008	<0.000010	<0.00001	<0.00001	<0.000010
Cadmium, total	mg/L	-	-	-	-	-	-	-	-	- 0.00002	-	<0.00001	<0.00001	<0.0001	<0.00001	-	-	<0.00001	-	<0.000010	-	-	-	-
Calcium, dissolved	mg/L	93.1	90.1	86.2	93.4	93.5	89.6	81.5	82.8	82.7	84.3	-	-	-	-	96.8	85.7	-	84.4	-	85.5	99.2	93.4	20.4
Calcium, total	mg/L	-	-	-	-	-	-	-	-	-	-	90.4	87.9	87	105	-	-	89.6	-	83.6	-	-	-	-
Chromium, dissolved	mg/L	<0.00050	<0.00050	<0.00050	0.00085	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	-	<0.00050	-	<0.00050	0.0009	<0.0005	<0.00050
Chromium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.005	<0.0005	-	-	0.0006	-	0.00062	-	-	-	-
Cobalt, dissolved	mg/L	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.00005	<0.00005	0.00007	0.00006	-	-	-	-	0.00007	<0.00005	-	<0.00010	-	<0.00010	<0.0001	<0.0001	<0.00010
Cobalt, total	mg/L	-		-	-	-	-	-	-	-		<0.00005	<0.00005	<0.0005	<0.00005	-	-	<0.00005	-	<0.00010	-	-	-	
Copper, dissolved	mg/L	0.00099	0.00182	0.00065	0.00984	0.0014	0.0013	0.0008	0.0013	0.0028	0.0024	-	-	-	-	0.0014	0.0008	-	0.00143	-	0.00106	0.00231	0.00228	<0.00040
Copper, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.001	0.0016	<0.002	0.0008	-	-	0.0013	-	0.00153	-	-	-	-
Iron, dissolved	mg/L	<0.010	<0.010	<0.010	<0.01	<0.01	<0.01	<0.010	<0.010	0.033	0.013	-	-	-	-	0.012	<0.010	-	0.019	-	0.018	0.016	<0.01	1.93
Iron, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.01	0.01	<0.10	<0.01	-	-	<0.01	-	<0.010	-	-	-	
Lead, dissolved	mg/L	<0.00020	<0.00020	0.00025	0.00066	<0.0002	<0.0002	<0.0001	<0.0001	0.0002	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00020	-	<0.00020	<0.0002	<0.0002	<0.00020
Lead, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.0001	0.0001	<0.001	0.0001	-	-	<0.0001	-	<0.00020	-	-	-	-
Lithium, dissolved	mg/L	0.00226	0.00212	0.00231	0.00228	0.00224	0.00228	0.0013	0.0013	0.0014	0.0013	-	-	-	-	0.0012	0.0012	-	0.0014	-	0.00132	0.0016	0.00146	0.00204
Lithium, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.0014	0.0012	0.001	0.0017	-	-	0.0013	-	0.00115	-	-	-	-
Magnesium, dissolved	mg/L	42.6	42.3	44.1	41.9	41.1	44.5	28.1	28.5	28.7	27.1	-	-	-	-	33.6	28.8	-	28.2	-	27.7	31.6	29.3	26.2
Magnesium, total	mg/L	- 0.004.63					0.000	- 0.000		- 0.000		29.2	27.1	26.8	33	- 0.0044	- 0.000	26.8		24				
Manganese, dissolved	mg/L	0.00162	<0.00020	0.00517	<0.0002	<0.0002	<0.0002	0.0009	0.0013	0.0082	0.0014	0.0011	0.001		0.0007	0.0011	0.0008	0.0007	0.00294	0.00077	0.00229	0.00175	0.00077	0.0986
Manganese, total	mg/L	-0.000010	<0.000040	<0.000010	-0.00001	-0.00001	-0.00001	-0.00003	-0.00003	<0.00003	-0.00003	0.0011	0.001	<0.002	0.0007	-0.00003	<0.00003	0.0007	<0.000010	0.00077	<0.000040	-0.00001	-0.00001	<0.000010
Mercury, dissolved	mg/L	<0.000010	<0.000040	<0.000010	<0.00001	<0.00001	<0.00001	<0.00002	<0.00002	<0.00002	<0.00002	<0.0002	-	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.000010	<0.00010	<0.000040	<0.00001	<0.00001	<0.00010
Mercury, total	mg/L		-		-	-		-	-		_	<0.00002		<0.00002	<0.00002	-		<0.00002	-	<0.000010		-	-	

		Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Well ID
Sa	mpling Location	#4	#4	#4	#4	#4	#4	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	22653
	Date Sampled	2018-06-26	2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2013-08-20	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2019-05-29	2019-08-13	2018-12-04
	Lab Sample ID	8062674-04	8090975-06	8120636-05	9052874-05	9081278-05	N000444-05	3081378-02	4060249-01	4081094-02	4110161-02	5051773-01	5081710-01	5110693-04	6050336-04	6081698-05	6111141-01	7040434-05	7090074-02	7111886-02	8062674-05	9052874-06	9081278-06	8120636-07
	Sample Type	Normal	Normal	Normal				Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal			Normal						
Analyte	Unit			•		•					•	•	•	•	•						•	•		
Molybdenum, dissolved	mg/L	0.00018	0.00021	0.00023	0.00021	0.0002	0.00018	0.0003	0.0004	0.0004	0.0004	-	-	-	-	0.0003	0.0002	-	0.0003	-	0.00044	0.00036	0.00031	0.00025
Molybdenum, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.0005	0.0003	<0.001	0.0003	-	-	0.0003	-	0.00026	-	-	-	-
Nickel, dissolved	mg/L	<0.00040	<0.00040	<0.00040	<0.0004	<0.0004	<0.0004	0.0003	<0.0002	0.0012	0.0004	-	-	-	-	0.0002	0.0003	-	<0.00040	-	<0.00040	<0.0004	<0.0004	<0.00040
Nickel, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0002	0.0006	<0.002	0.0002	1	-	0.0002	-	<0.00040	-	-	-	-
Phosphorus, dissolved	mg/L	<0.050	<0.050	<0.050	<0.05	<0.05	<0.05	<0.02	<0.02	0.07	<0.02	-	-	-	-	<0.02	<0.02	-	<0.050	-	<0.050	<0.05	<0.05	<0.050
Phosphorus, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.020	0.03	<0.2	<0.02	-	-	<0.05	-	<0.050	-	-	-	-
Potassium, dissolved	mg/L	1.95	1.77	2.12	1.78	1.86	1.65	1	0.89	0.95	0.94	-	-	-	-	1.1	0.99	-	0.89	-	1.01	1.02	1	0.95
Potassium, total	mg/L	-	-	-	-	-	-	-	-	-	-	1.03	0.99	0.8	1.06	-	-	0.93	-	0.91	-	-	-	-
Selenium, dissolved	mg/L	<0.00050	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	-	<0.00050	-	<0.00050	<0.0005	<0.0005	<0.00050
Selenium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.005	<0.0005	-	-	<0.0005	-	<0.00050	-	-	-	-
Silicon, dissolved	mg/L	4.9	4.6	4.9	4.4	5	5.6	4.1	4	4.4	4.5	-	-	-	-	4.2	4.5	-	4	-	4.3	4.4	4.5	<1.0
Silicon, total	mg/L	-	-	-	-	-	-	-	-	-	-	4.7	4.3	<5	5.2	•	-	4.3	-	3.7	-	-	-	-
Silver, dissolved	mg/L	<0.000050	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	-	-	<u> </u>	-	<0.00005	<0.00005	-	<0.000050	-	<0.000050	<0.00005	<0.00005	<0.000050
Silver, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.00005	0.00154	<0.0005	<0.00005	-	-	<0.00005	-	<0.000050	-	-	-	-
Sodium, dissolved	mg/L	57.8	56.9	58.5	56.9	55.9	62	15.2	13.9	15.4	17.9	-	-	-	-	17.9	16.7	-	17	-	20.3	23.1	22.6	14.7
Sodium, total	mg/L	-	-	-	-	-	-	-	-	-	-	18.9	15.1	15.9	17.9	-	-	17.1	-	15.7	-	-	-	
Strontium, dissolved	mg/L	0.492	0.46	0.471	0.459	0.479	0.439	0.282	0.269	0.301	0.29	-	-	-	-	0.344	0.312	-	0.258	-	0.281	0.328	0.331	0.115
Strontium, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.296	0.298	0.27	0.325	-	-	0.294	-	0.285	-	-	-	<u> </u>
Sulfur, dissolved	mg/L	16.1	14.3	15	15.7	15.7	16.1	8	10	8	7	-	-	-	-	13	9	-	7.8	-	9.8	12	10.7	7.1
Sulfur, total	mg/L	-	-	-	-	-	-	-	-	-	-	9	8	<10	11	-	-	6	-	7.9	-	-	-	-
Tellurium, dissolved	mg/L	<0.00050	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	<0.0002	<0.0002	-	<0.00050	-	<0.00050	<0.0005	<0.0005	<0.00050
Tellurium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	<0.002	<0.0002	-	-	<0.0002	-	<0.00050	-	-	-	-
Thallium, dissolved	mg/L	<0.000020	<0.000020	<0.000020	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	-	-	-	<0.00002	<0.00002	-	<0.000020	-	<0.000020	<0.00002	<0.00002	<0.000020
Thallium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.00002	<0.00002	<0.0002	<0.00002	-	-	<0.00002	-	<0.000020	-	-	-	-
Thorium, dissolved	mg/L	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010	-	<0.00010	<0.0001	<0.0001	<0.00010
Thorium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-	-	
Tin, dissolved	mg/L	<0.00020	<0.00020	0.00022	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	<0.0002	<0.0002	-	<0.00020	-	<0.00020	<0.0002	<0.0002	0.00077
Tin, total	mg/L			-	-	-		-	-		-	<0.0002	<0.0002	<0.002	<0.0002	-		<0.0002		<0.00020		-		
Titanium, dissolved	mg/L	<0.0050	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			0.05	0.005	<0.005	<0.005	0.005	<0.0050		<0.0050	<0.005	<0.005	<0.0050
Titanium, total	mg/L							-	-	-	-	<0.005	<0.005	<0.05	<0.005	-	-	<0.005	-	<0.0050				
Tungsten, dissolved	mg/L	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	-	-	-	-	-	-	 	-	-	-	-	-	-0.0010	<0.0010	<0.001	<0.001	<0.0010
Tungsten, total Uranium, dissolved	mg/L	0.00117	0.00132	0.00133	0.00128	0.00128	0.00124	0.00105	0.00103	0.00114	0.00114	-	-	 	-	0.00117	0.00106	-	0.00109	<0.0010	0.001	0.0013	0.00121	<0.000020
<u> </u>	mg/L	0.00117	0.00132	0.00133	0.00128	0.00128	- 0.00124	0.00103	0.00103	0.00114	0.00114	0.00112	0.00111	0.0011	0.00133	0.00117	- 0.00100	0.00109	0.00109	0.00107	0.001	0.0013	0.00121	<0.000020
Uranium, total	mg/L	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			0.0011		<0.001	<0.001		<0.0010		<0.0010	<0.001	<0.001	<0.0010
Vanadium, dissolved Vanadium, total	mg/L mg/L	-		-	-				<0.001	- <0.001	-	<0.001	<0.001	<0.01	<0.001		-	<0.001	-	<0.0010		<0.001	- <0.001	
Zinc, dissolved	mg/L	0.0062	<0.0040	0.0063	0.0265	<0.004	<0.004	<0.004	<0.004	0.01	0.005	-		- <0.01		<0.004	<0.004	-	0.01	- 0.0010	0.0052	0.0055	0.0094	0.0043
Zinc, total	mg/L	- 0.0002	-	-	-	-	-	-	-	-	-	<0.004	0.016	<0.04	<0.004	-	-	0.004	-	<0.0040	- 0.0032	-	-	-
Zirconium, dissolved	mg/L	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010	-	<0.00010	<0.0001	<0.0001	<0.00010
Zirconium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-	-	-
General Parameters	101 -																		1					
Alkalinity, Bicarbonate (as CaCO3)	mg/L	336	378	355	357	346	409	-	-	-	-	-	-	-	292	296	308	314	288	304	288	331	317	142
Alkalinity, Carbonate (as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1	<1	<1	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1	<1	<1	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1.0
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1	<1	<1	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1.0
Alkalinity, Total (as CaCO3)	mg/L	336	378	355	357	346	409	268	276	277	291	303	288	295	292	296	308	314	288	304	288	331	317	142
Ammonia, Total (as N)	mg/L	<0.020	0.02	<0.020	0.063	0.07	<0.02	<0.020	0.024	<0.020	<0.020	<0.020	<0.020	0.02	<0.020	0.02	0.037	0.03	0.021	0.028	<0.020	0.089	0.067	0.326
Bicarbonate (HCO3)	mg/L	410	461	433	435	423	498	-	-	-	-	-	-	-	356	361	375	383	352	371	351	404	387	173
Carbonate (CO3)	mg/L	<0.600	<0.600	<0.600	<0.6	<0.6	<0.6	-	-	-	-	-	-	-	<1	<0.6	<0.6	<0.600	<0.600	<0.600	<0.600	<0.6	<0.6	<0.600
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	1010	1020	1000	973	989	961	620	621	634	679	672	618	661	658	666	712	692	655	704	702	739	759	387
Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
·	<u> </u>												-											

		Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Well ID
	Sampling Location		#4	#4	#4	#4	#4	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	22653
	Date Sampled		2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2013-08-20	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2019-05-29	2019-08-13	2018-12-04
	Lab Sample ID					9081278-05		3081378-02	4060249-01	4081094-02	4110161-02	5051773-01		5110693-04	6050336-04	6081698-05		7040434-05		7111886-02		9052874-06	9081278-06	
	Sample Type	Normal	Normal	Normal				Normal			Normal													
Analyte	Unit		•		•	•					•	•		•	•	•		•	•	•			•	
Hardness, Total (as CaCO3)	mg/L	-	-	-	406	403	407	-	-	-	-	346	332	328	-	-	-	-	-	308	-	378	354	-
Hydroxide (OH)	mg/L	<0.340	<0.340	<0.340	<0.34	<0.34	<0.34	-	-	-	-	-	-	-	<1	<0.3	<0.3	<0.340	<0.340	<0.340	<0.340	<0.34	<0.34	<0.340
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	pH Units	7.88	7.83	7.92	7.99	7.92	8.16	7.94	7.87	7.7	7.86	7.81	7.79	7.72	7.74	7.76	7.89	7.89	8.03	8	7.93	8.02	7.95	8
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	<0.0020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	<0.10	-	<0.10	0.19	<0.1	0.1	0.6	<0.1	<0.1	0.1	<0.1	0.2	0.1	<0.1	0.11	0.13	0.16	0.12	0.1	<0.10	3.63	23.7	142
Microbiological Parameters																								
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
E. coli, Total	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)																								
1,1-Dichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,1,2,2-Tetrachloroethane	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	<0.0003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-	-	-	-	-	-
1,2-Dibromoethane	μg/L	-	-	-	<0.3	-	<0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.3	-	-
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- /
1,2-Dichlorobenzene	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
1,2-Dichloropropane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	mg/L	-	<0.0005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	-	-	-
Benzene	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Bromodichloromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Bromodichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-

		Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Well ID
	Sampling Location		#4	#4	#4	#4	#4	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	22653
	Date Sampled		2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2013-08-20	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2019-05-29	2019-08-13	2018-12-04
	Lab Sample ID	8062674-04	8090975-06	8120636-05	9052874-05	9081278-05	N000444-05	3081378-02	4060249-01	4081094-02	4110161-02	5051773-01	5081710-01	5110693-04	6050336-04	6081698-05	6111141-01	7040434-05	7090074-02	7111886-02	8062674-05	9052874-06	9081278-06	8120636-07
	Sample Type	Normal	Normal	Normal				Normal			Normal													
Analyte	Unit																							
Bromoform	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	-	<0.0005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	-	-	-
Carbon tetrachloride	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	<0.0020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	-	-	-
Chloroethane	μg/L	-	-	-	<2	-	<2	-		-	-	-	-	-	-	-	-	-	-	-	-	<2	-	-
Chloroethane	ug/L	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Chloroform	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
cis-1,2-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	
Dibromochloromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	
Dibromomethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Dichloromethane	mg/L	-	<0.0030	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0030	-	-	-	-	-	-
Dichloromethane	μg/L	-	-	-	<3	-	<3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	-	-
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L	-	<0.0010	-		-		-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-		-	-
Ethylbenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Ethylbenzene Methyl tort butyl ethor	ug/L	-	-0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0.0010	-	-	-	-	-	-
Methyl tert-butyl ether Methyl tert-butyl ether	mg/L	_	<0.0010	-	<1	-	<1	-	_	-	-		-		_	-	-	<0.0010	-	-	<u> </u>	<1	_	- -
Methyl tert-butyl ether	μg/L ug/L	_	-	-	\1	-	-		_	-	-	_	_		_	-		-	-		<u> </u>	-	-	- -
Styrene Styrene	mg/L		<0.0010		_	_	_		_		-	_	_		_	_		<0.0010	-			_	_	
Styrene	μg/L			_	<1	_	<1		_		_	_	_		_	_		10.0010	_	_		<1	_	
Styrene	ug/L	_	_	_	-	-	-	_	_	_	_	_	-	_	_	_	_	_	_	_	-	-	-	
Tetrachloroethylene	μg/L	_	_	_	<1	-	<1	_	-	_	_	_	_	_	_	_	_	_	-	_	<u> </u>	<1	-	-
Tetrachloroethylene	ug/L	_	_	-	-	-	-	_	-	-	_	-	-	_	_	-	-	-	-	_	-	-	-	-
Toluene	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Toluene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Trichlorofluoromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Vinyl chloride	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Vinyl chloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	μg/L	-	-	-	<2	-	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2	-	-
Xylenes (total)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BCMOE Aggregate Hydrocarbons																								
VPHw	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

APPENDIX E HISTORICAL GAS MONITORING DATA

	I		ı	ı	1
Gas Probe	Date	% CH4	% CO2	% O2	% Balance
	9-Aug-2013	0.2	2.2	18	79.6
	15-Apr-2014	0	4.1	13.6	82.3
	17-Jun-2015	0.1	4.3	15.9	79.7
GP6D	24-Nov-2016	0.1	3.3	17.3	79.3
GPOD	7-Dec-2017	0	2.8	17	78.7
	15-Nov-2018	0	3.2	17.1	78.2
	13-Nov-2019	0	4.5	13.6	81.9
	10-Mar-2020	0	4.7	13.6	81.7
	9-Aug-2013	0.2	2.6	17.7	79.5
	15-Apr-2014	0	5.1	12.4	82.5
	17-Jun-2015	0.1	5.3	14.8	79.8
CDCC	24-Nov-2016	0.1	4	17.2	78.7
GP6S	7-Dec-2017	0	4.2	17.4	78.3
	15-Nov-2018	0	3.1	15.5	81.4
	13-Nov-2019	0	4	14.8	81.2
	10-Mar-2020	0	4.4	13.1	82.5
	9-Aug-2013	0.2	0.3	19.3	80.2
	15-Apr-2014	0	1.7	12.4	85.9
	17-Jun-2015	0.1	1.3	16.1	82.5
GP7D	24-Nov-2016	0.1	1.7	12.7	85.5
GP7D	7-Dec-2017	0	1.2	13.1	85.4
	15-Nov-2018	0	1.5	13.4	86.0
	13-Nov-2019	0	0.7	16.4	82.9
	10-Mar-2020	0	0.9	16.2	82.9
	9-Aug-2013	0.2	1.1	11.9	86.8
	15-Apr-2014	0	1.4	11.4	87.2
	17-Jun-2015	0.1	1.3	11.4	87.2
GP7S	24-Nov-2016	0.1	1.4	11.8	86.7
GP/3	7-Dec-2017	0	1.7	11.2	86.4
	15-Nov-2018	0	1.9	11.1	86.3
	13-Nov-2019	0	0.7	15.1	84.2
	10-Mar-2020	0	0.8	15.4	83.8

APPENDIX F LABORATORY CERITIFCATES OF ANALYSIS

CERTIFICATE OF ANALYSIS

REPORTED TO Ecoscape Environmental Ltd.

#102 - 450 Neave Court Kelowna, BC V1V 2M2

ATTENTION Kelsey Tanaka

PO NUMBER 19-2850

PROJECT 19-2850 - Golden

PROJECT INFO Golden

WORK ORDER 20K0317

RECEIVED / TEMP 2020-11-03 15:04 / 3°C

REPORTED 2020-11-10 16:16

COC NUMBER No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

Ahead of the Curve

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at acrump@caro.ca

Authorized By:

Alana Crump Team Lead, Client Service MEGT

1-888-311-8846 | www.caro.ca

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	20K0317
PROJECT	19-2850 - Golden	REPORTED	2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-06S (20K0317-01) Matrix: \	Vater Sampled: 2020-11-03				
Anions					
Bromide	1.86	0.10	mg/L	2020-11-04	
Chloride	371		mg/L	2020-11-04	
Fluoride	< 0.10		mg/L	2020-11-04	
Nitrate (as N)	34.2	0.010		2020-11-04	
Nitrite (as N)	< 0.010	0.010		2020-11-04	
Sulfate	636	1.0	mg/L	2020-11-04	
Calculated Parameters					
Hardness, Total (as CaCO3)	1520	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0404	0.00010	mg/L	2020-11-10	
Aluminum, dissolved	< 0.0050	0.0050		2020-11-10	
Antimony, dissolved	0.00023	0.00020		2020-11-10	
Arsenic, dissolved	< 0.00050	0.00050		2020-11-10	
Barium, dissolved	0.0509	0.0050		2020-11-10	
Beryllium, dissolved	< 0.00010	0.00010		2020-11-10	
Bismuth, dissolved	< 0.00010	0.00010		2020-11-10	
Boron, dissolved	1.74	0.0500		2020-11-10	
Cadmium, dissolved	< 0.000010	0.000010		2020-11-10	
Calcium, dissolved	167		mg/L	2020-11-10	
Chromium, dissolved	< 0.00050	0.00050		2020-11-10	
Cobalt, dissolved	0.00170	0.00010	mg/L	2020-11-10	
Copper, dissolved	0.00262	0.00040	mg/L	2020-11-10	
Iron, dissolved	< 0.010	0.010		2020-11-10	
Lead, dissolved	< 0.00020	0.00020		2020-11-10	
Magnesium, dissolved	268	0.010		2020-11-10	
Manganese, dissolved	0.0968	0.00020	mg/L	2020-11-10	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-11-06	
Molybdenum, dissolved	0.00034	0.00010	mg/L	2020-11-10	
Nickel, dissolved	0.0125	0.00040	mg/L	2020-11-10	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-11-10	
Potassium, dissolved	168	0.10	mg/L	2020-11-10	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-11-10	
Silicon, dissolved	11.8		mg/L	2020-11-10	
Silver, dissolved	< 0.000050	0.000050		2020-11-10	
Sodium, dissolved	286		mg/L	2020-11-10	
Strontium, dissolved	1.59	0.0010		2020-11-10	
Sulfur, dissolved	234		mg/L	2020-11-10	
Tellurium, dissolved	< 0.00050	0.00050		2020-11-10	
Thallium, dissolved	0.000054	0.000020		2020-11-10	
Thorium, dissolved	< 0.00010	0.00010		2020-11-10	
Tin, dissolved	< 0.00020	0.00020		2020-11-10	
Titanium, dissolved	< 0.0050	0.0050		2020-11- <u>10</u>	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	20K0317
PROJECT	19-2850 - Golden	REPORTED	2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-06S (20K0317-01) Matrix: Water	Sampled: 2020-11-03, C	ontinued			
Dissolved Metals, Continued					
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Uranium, dissolved	0.00755	0.000020	mg/L	2020-11-10	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-11-10	
Zirconium, dissolved	0.00016	0.00010	mg/L	2020-11-10	
General Parameters					
Alkalinity, Total (as CaCO3)	942	1.0	mg/L	2020-11-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Bicarbonate (as CaCO3)	942	1.0	mg/L	2020-11-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-11-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-11-05	
Bicarbonate (HCO3)	1150		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	1.61	0.050		2020-11-04	
BOD, 5-day	< 5.8		mg/L	2020-11-09	
Chemical Oxygen Demand	46		mg/L	2020-11-04	
Conductivity (EC)	3970		μS/cm	2020-11-05	
pH	7.89		pH units	2020-11-05	HT2
Solids, Total Dissolved	2550		mg/L	2020-11-06	
Solids, Total Suspended	315		mg/L	2020-11-05	
Turbidity	170		NTU	2020-11-04	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-11-07	
Bromodichloromethane	< 1.0		μg/L	2020-11-07	
Bromoform	< 1.0		μg/L	2020-11-07	
Carbon tetrachloride	< 0.5		μg/L	2020-11-07	
Chlorobenzene	< 1.0		μg/L	2020-11-07	
Chloroethane	< 2.0		μg/L	2020-11-07	
Chloroform	< 1.0		μg/L	2020-11-07	
Dibromochloromethane	< 1.0		μg/L	2020-11-07	
1,2-Dibromoethane	< 0.3		μg/L	2020-11-07	
Dibromomethane	< 1.0		μg/L	2020-11-07	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-11-07	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-11-07	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,2-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethylene	< 1.0		μg/L	2020-11-07	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
Dichloromethane	< 3.0		μg/L	2020-11-07	
	Caring About Pa		1 3 =	=====	Page 3 of

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	20K0317
PROJECT	19-2850 - Golden	REPORTED	2020-11-10 16:16

MW09-065 (20K0317-01) Matrix: Water Sampled: 2020-11-03, Continued	Qualifi
1,2-Dichloropropane < 1.0 1.0 μg/L 2020-11-07 1,3-Dichloropropene (cis + trans) < 1.0 1.0 μg/L 2020-11-07 1,3-Dichloropropene (cis + trans) < 1.0 1.0 μg/L 2020-11-07 Methyl tert-butyl ether < 1.0 1.0 μg/L 2020-11-07 Styrene < 1.0 1.0 μg/L 2020-11-07 Styrene < 1.0 1.0 μg/L 2020-11-07 Styrene < 1.0 1.0 μg/L 2020-11-07 Tetrachloroethylene < 1.0 1.0 μg/L 2020-11-07 Totlacene < 1.0 1.0 μg/L 2020-11-07 Totlacene < 1.0 1.0 μg/L 2020-11-07 Totlacene < 1.0 1.0 μg/L 2020-11-07 1,1,1-Trichloroethane < 1.0 1.0 μg/L 2020-11-07 1,1,1-Trichloroethane < 1.0 1.0 μg/L 2020-11-07 1,1,2-Trichloroethane < 1.0 1.0 μg/L 2020-11-07 1,1,1-Trichloroethane < 1.0 1.0 μg/L 2020-11-07 1,1,1-Trichloroethylene < 1.0 1.0 μg/L 2020-11-07 1,1,2-Trichloroethylene < 1.0 1.0 μg/L 2020-11-07 1,1,1-Trichloroethylene < 1.0 1.0 μg/L 2020-11-07 2,10-11-01 2020-11-07 2,10-11-02 2020-11-07 2,10-11-02 2020-11-07 2,10-11-03 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2,10-11-04 2020-11-07 2	
1,3-Dichloropropene (cis + trans)	
1,3-Dichloropropene (dis + trans)	
Ethylbenzene	
Methyl tert-butyl ether	
1,1,2,2-Tetrachloroethane <0.5 0.5 µg/L 2020-11-07 Tetrachioroethylene <1.0 1.0 µg/L 2020-11-07 Totluene <1.0 1.0 µg/L 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,1-Trichloroethane <1.0 70-130 % 2020-11-07 1,1,2-Trichloroethane <1.0 70-130 % 2020-11-07 1,1	
Tetrachloroethylene	
Toluene	
1,1,1-Trichloroethane < 1.0	
1,1,2-Trichloroethane < 1.0	
Trichloroethylene < 1.0 1.0 kg/L 2020-11-07 Trichloroffuoromethane < 1.0	
Trichlorofluoromethane < 1.0 1.0 µg/L 2020-11-07 Vinyl chloride < 1.0	
Vinyl chloride < 1.0 1.0 µg/L 2020-11-07 Xylenes (total) < 2.0	
Xylenes (total) <2.0 2.0 µg/L 2020-11-07 Surrogate: Toluene-d8 64 70-130 % 2020-11-07 Surrogate: A-Bromofluorobenzene 71 70-130 % 2020-11-07 Surrogate: 1,4-Dichlorobenzene-d4 77 70-130 % 2020-11-07 Surrogate: 1,4-Dichlorobenzene-d4 77 70-130 % 2020-11-07 XMV10-08 (20K0317-02) Matrix: Water Sampled: 2020-11-03 Xmoins Xmo	
Surrogate: Toluene-d8 64 70-130 % 2020-11-07 Surrogate: 4-Bromofluorobenzene 71 70-130 % 2020-11-07 Surrogate: 1,4-Dichlorobenzene-d4 77 70-130 % 2020-11-07 AW10-08 (20K0317-02) Matrix: Water Sampled: 2020-11-03 AW10-08 (20K0317-02) Matrix: Water Sampled: 2020-11-03 Water Sampled: 2020-11-03 Water Sampled: 2020-11-03 Water Sampled: 2020-11-03 Water Sampled: 2020-11-03 Water Sampled: 2020-11-03 Water Sampled: 2020-11-04 Chloride \$0.10 0.10 mg/L 2020-11-04 Water Sampled: 2020-11-04 0.01 mg/L 2020-11-04 Water Sampled: 2020-11-04 0.00 mg/L N/A <td< td=""><td></td></td<>	
Surrogate: 4-Bromofluorobenzene 71 70-130 % 2020-11-07 Surrogate: 1,4-Dichlorobenzene-d4 77 70-130 % 2020-11-07 AW10-08 (20K0317-02) Matrix: Water Sampled: 2020-11-03 Sample Sampled: 2020-11-03 Sample Sampled: 2020-11-03 Anions Sample Sampled: 2020-11-03 Sample Sampled: 2020-11-04 Sample Sampled: 2020-11-04 Chloride 558 0.10 mg/L 2020-11-04 Fluoride < 0.10	
MV10-08 (20K0317-02) Matrix: Water Sampled: 2020-11-03 MV10-08 (20K0317-02) Matrix: Water Sampled: 2020-11-03 MV10-08 (20K0317-02) Matrix: Water Sampled: 2020-11-03 MV10-08 (20K0317-02) Matrix: Water Sampled: 2020-11-03 MV10-08 (20K0317-02) Matrix: Water Sampled: 2020-11-03 MV10-08 (20K0317-02) MV10-08 (20K03	S02
Nation N	
Name	
Chloride 558 0.10 mg/L 2020-11-04 Fluoride < 0.10 0.10 mg/L 2020-11-04 Nitrate (as N) 1.08 0.010 mg/L 2020-11-04 Nitrite (as N) < 0.010 0.010 mg/L 2020-11-04 Sulfate 49.7 1.0 mg/L 2020-11-04 Calculated Parameters Hardness, Total (as CaCO3) 766 0.500 mg/L N/A Dissolved Metals Lithium, dissolved 0.0202 0.00010 mg/L 2020-11-10 Aluminum, dissolved < 0.0050 0.0050 mg/L 2020-11-10 Arsenic, dissolved < 0.00020 0.00020 mg/L 2020-11-10 Barium, dissolved < 0.00010 0.0050 mg/L 2020-11-10 Beryllium, dissolved < 0.00010 0.00010 mg/L 2020-11-10 Bismuth, dissolved < 0.00010 0.00010 mg/L 2020-11-10 Boron, dissolved < 0.0500 0.0500 mg/L 2020-11-10 Cadmium, dissolved < 0.00012 0.000010 mg/L 2020-11-10 Cadmium, dissolv	
Fluoride < 0.10 0.10 mg/L 2020-11-04 Nitrate (as N) 1.08 0.010 mg/L 2020-11-04 Nitrite (as N) < 0.010	
Nitrate (as N) 1.08 0.010 mg/L 2020-11-04 Nitrite (as N) < 0.010 0.010 mg/L 2020-11-04 Sulfate 49.7 1.0 mg/L 2020-11-04 Calculated Parameters Hardness, Total (as CaC03) 766 0.500 mg/L N/A Dissolved Metals Lithium, dissolved 0.0202 0.00010 mg/L 2020-11-10 Aluminum, dissolved < 0.0050 0.0050 mg/L 2020-11-10 Arsenic, dissolved 0.00432 0.00050 mg/L 2020-11-10 Barium, dissolved 0.200 0.0050 mg/L 2020-11-10 Beryllium, dissolved < 0.00010 0.00010 mg/L 2020-11-10 Bismuth, dissolved < 0.00010 0.00010 mg/L 2020-11-10 Boron, dissolved < 0.0500 0.0500 mg/L 2020-11-10 Cadmium, dissolved < 0.0500 0.0500 mg/L 2020-11-10 Cadmium, dissolved < 0.05	
Nitrite (as N) < 0.010 0.010 mg/L 2020-11-04 Sulfate 49.7 1.0 mg/L 2020-11-04 Calculated Parameters Hardness, Total (as CaCO3) 766 0.500 mg/L N/A Dissolved Metals Lithium, dissolved 0.0202 0.00010 mg/L 2020-11-10 Aluminum, dissolved < 0.0050	
Sulfate 49.7 1.0 mg/L 2020-11-04 Calculated Parameters Hardness, Total (as CaCO3) 766 0.500 mg/L N/A Dissolved Metals Lithium, dissolved 0.0202 0.00010 mg/L 2020-11-10 Aluminum, dissolved < 0.0050 0.0050 mg/L 2020-11-10 Antimony, dissolved < 0.00020 0.00020 mg/L 2020-11-10 Arsenic, dissolved 0.00432 0.00050 mg/L 2020-11-10 Barium, dissolved 0.00010 0.00050 mg/L 2020-11-10 Beryllium, dissolved < 0.00010 0.00010 mg/L 2020-11-10 Bismuth, dissolved < 0.00010 0.00010 mg/L 2020-11-10 Boron, dissolved < 0.0500 0.0500 mg/L 2020-11-10 Cadmium, dissolved < 0.000012 0.000010 mg/L 2020-11-10 Calcium, dissolved < 102 0.000010 mg/L 2020-11-10	
Calculated Parameters Hardness, Total (as CaCO3) 766 0.500 mg/L N/A Dissolved Metals Lithium, dissolved 0.0202 0.00010 mg/L 2020-11-10 Aluminum, dissolved < 0.0050	
Hardness, Total (as CaCO3) 766 0.500 mg/L N/A Dissolved Metals Lithium, dissolved 0.0202 0.00010 mg/L 2020-11-10 Aluminum, dissolved < 0.0050	
Dissolved Metals Lithium, dissolved 0.0202 0.00010 mg/L 2020-11-10 Aluminum, dissolved < 0.0050	
Lithium, dissolved 0.0202 0.00010 mg/L 2020-11-10 Aluminum, dissolved < 0.0050	
Aluminum, dissolved < 0.0050 0.0050 mg/L 2020-11-10 Antimony, dissolved < 0.00020	
Antimony, dissolved < 0.00020 0.00020 mg/L 2020-11-10 Arsenic, dissolved 0.00432 0.00050 mg/L 2020-11-10 Barium, dissolved 0.200 0.0050 mg/L 2020-11-10 Beryllium, dissolved < 0.00010	
Arsenic, dissolved 0.00432 0.00050 mg/L 2020-11-10 Barium, dissolved 0.200 0.0050 mg/L 2020-11-10 Beryllium, dissolved < 0.00010	
Barium, dissolved 0.200 0.0050 mg/L 2020-11-10 Beryllium, dissolved < 0.00010	
Beryllium, dissolved < 0.00010 0.00010 mg/L 2020-11-10 Bismuth, dissolved < 0.00010	
Bismuth, dissolved < 0.00010 0.00010 mg/L 2020-11-10 Boron, dissolved < 0.0500	
Boron, dissolved < 0.0500 0.0500 mg/L 2020-11-10 Cadmium, dissolved 0.000012 0.000010 mg/L 2020-11-10 Calcium, dissolved 102 0.20 mg/L 2020-11-10	
Cadmium, dissolved 0.000012 0.000010 mg/L 2020-11-10 Calcium, dissolved 102 0.20 mg/L 2020-11-10	
Calcium, dissolved 102 0.20 mg/L 2020-11-10	
Chromium, dissolved < 0.00050 0.00050 mg/L 2020-11-10	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

20K0317

2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifie
//////////////////////////////////////	Sampled: 2020-11-03, Co	entinued			
Dissolved Metals, Continued					
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-11-10	
Copper, dissolved	0.00125	0.00040	mg/L	2020-11-10	
Iron, dissolved	< 0.010	0.010	mg/L	2020-11-10	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-11-10	
Magnesium, dissolved	124	0.010	mg/L	2020-11-10	
Manganese, dissolved	0.00037	0.00020	mg/L	2020-11-10	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-11-06	
Molybdenum, dissolved	0.00043	0.00010	mg/L	2020-11-10	
Nickel, dissolved	0.00136	0.00040		2020-11-10	
Phosphorus, dissolved	< 0.050	0.050		2020-11-10	
Potassium, dissolved	6.26		mg/L	2020-11-10	
Selenium, dissolved	< 0.00050	0.00050		2020-11-10	
Silicon, dissolved	9.1		mg/L	2020-11-10	
Silver, dissolved	< 0.000050	0.000050		2020-11-10	
Sodium, dissolved	334		mg/L	2020-11-10	
Strontium, dissolved	1.33	0.0010		2020-11-10	
Sulfur, dissolved	18.4		mg/L	2020-11-10	
Tellurium, dissolved	< 0.00050	0.00050		2020-11-10	
Thallium, dissolved	< 0.00030	0.00030		2020-11-10	
Thorium, dissolved	< 0.00010	0.00010		2020-11-10	
Tin, dissolved	< 0.00010	0.00010		2020-11-10	
Titanium, dissolved	< 0.0050	0.0020		2020-11-10	
·		0.0030		2020-11-10	
Tungsten, dissolved Uranium, dissolved	0.0018	0.00020		2020-11-10	
· · · · · · · · · · · · · · · · · · ·	0.00231			2020-11-10	
Vanadium, dissolved	< 0.0010	0.0010			
Zinc, dissolved	< 0.0040	0.0040		2020-11-10	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-11-10	
eneral Parameters					
Alkalinity, Total (as CaCO3)	518	1.0	mg/L	2020-11-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Bicarbonate (as CaCO3)	518	1.0	mg/L	2020-11-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Bicarbonate (HCO3)	632		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	0.056	0.050		2020-11-04	
BOD, 5-day	< 5.8		mg/L	2020-11-09	
Chemical Oxygen Demand	< 20		mg/L	2020-11-04	
Conductivity (EC)	2880		μS/cm	2020-11-05	
pH	8.09		pH units	2020-11-05	HT2
•	1460		mg/L	2020-11-06	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

20K0317

REPORTED

2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifie
MW10-08 (20K0317-02) Matrix: Water	Sampled: 2020-11-03, Continued				
General Parameters, Continued					
Solids, Total Suspended	185	2.0	mg/L	2020-11-05	
Turbidity	230		NTU	2020-11-04	
/olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-11-07	
Bromodichloromethane	< 1.0		μg/L	2020-11-07	
Bromoform	< 1.0		μg/L	2020-11-07	
Carbon tetrachloride	< 0.5		μg/L	2020-11-07	
Chlorobenzene	< 1.0		μg/L	2020-11-07	
Chloroethane	< 2.0		μg/L	2020-11-07	
Chloroform	< 1.0	1.0		2020-11-07	
Dibromochloromethane	< 1.0		μg/L	2020-11-07	
1,2-Dibromoethane	< 0.3		μg/L	2020-11-07	
Dibromomethane	< 1.0	1.0		2020-11-07	
1.2-Dichlorobenzene	< 0.5		μg/L	2020-11-07	
1,3-Dichlorobenzene	< 1.0	1.0		2020-11-07	
1,4-Dichlorobenzene	< 1.0	1.0		2020-11-07	
1,1-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,2-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethylene	< 1.0		μg/L	2020-11-07	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
Dichloromethane	< 3.0		μg/L	2020-11-07	
1,2-Dichloropropane	< 1.0		μg/L	2020-11-07	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-11-07	
Ethylbenzene	< 1.0		μg/L	2020-11-07	
Methyl tert-butyl ether	< 1.0		μg/L	2020-11-07	
Styrene	< 1.0		μg/L	2020-11-07	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-11-07	
Tetrachloroethylene	< 1.0		μg/L	2020-11-07	
Toluene	< 1.0		μg/L	2020-11-07	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-11-07	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-11-07	
Trichloroethylene	< 1.0		μg/L	2020-11-07	
Trichlorofluoromethane	< 1.0		μg/L	2020-11-07	
Vinyl chloride	< 1.0		μg/L	2020-11-07	
Xylenes (total)	< 2.0		μg/L	2020-11-07	
Surrogate: Toluene-d8	65	70-130		2020-11-07	S02
Surrogate: 4-Bromofluorobenzene	74	70-130		2020-11-07	
Surrogate: 1,4-Dichlorobenzene-d4	83	70-130		2020-11-07	

MW18-10 (20K0317-03) | Matrix: Water | Sampled: 2020-11-03

REPORTED TOEcoscape Environmental Ltd.WORK ORDERPROJECT19-2850 - GoldenREPORTED

WORK ORDER 20K0317 **REPORTED** 2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-10 (20K0317-03) Matrix: Wa	ter Sampled: 2020-11-03, Co	ntinued			
Anions					
Bromide	0.62	0.10	mg/L	2020-11-04	
Chloride	376	0.10	mg/L	2020-11-04	
Fluoride	< 0.10	0.10	mg/L	2020-11-04	
Nitrate (as N)	67.9	0.010	mg/L	2020-11-04	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-11-04	
Sulfate	78.9	1.0	mg/L	2020-11-04	
Calculated Parameters					
Hardness, Total (as CaCO3)	1150	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0249	0.00010	mg/L	2020-11-10	
Aluminum, dissolved	< 0.0050	0.0050		2020-11-10	
Antimony, dissolved	0.00020	0.00020	mg/L	2020-11-10	
Arsenic, dissolved	0.00140	0.00050	mg/L	2020-11-10	
Barium, dissolved	0.353	0.0050	mg/L	2020-11-10	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-11-10	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-11-10	
Boron, dissolved	0.708	0.0500	mg/L	2020-11-10	
Cadmium, dissolved	0.00039	0.000010	mg/L	2020-11-10	
Calcium, dissolved	122	0.20	mg/L	2020-11-10	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-11-10	
Cobalt, dissolved	0.00500	0.00010	mg/L	2020-11-10	
Copper, dissolved	0.00923	0.00040	mg/L	2020-11-10	
Iron, dissolved	< 0.010	0.010	mg/L	2020-11-10	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-11-10	
Magnesium, dissolved	204	0.010	mg/L	2020-11-10	
Manganese, dissolved	0.198	0.00020	mg/L	2020-11-10	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-11-06	
Molybdenum, dissolved	0.00109	0.00010	mg/L	2020-11-10	
Nickel, dissolved	0.0447	0.00040	mg/L	2020-11-10	
Phosphorus, dissolved	< 0.050	0.050		2020-11-10	
Potassium, dissolved	45.4	0.10	mg/L	2020-11-10	
Selenium, dissolved	< 0.00050	0.00050		2020-11-10	
Silicon, dissolved	10.5	1.0	mg/L	2020-11-10	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-11-10	
Sodium, dissolved	239	0.10	mg/L	2020-11-10	
Strontium, dissolved	1.57	0.0010	mg/L	2020-11-10	
Sulfur, dissolved	29.1	3.0	mg/L	2020-11-10	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-11-10	
Thallium, dissolved	0.000127	0.000020	mg/L	2020-11-10	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-11-10	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-11-10	
Titanium, dissolved	< 0.0050	0.0050		2020-11- <u>10</u>	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	20K0317
PROJECT	19-2850 - Golden	REPORTED	2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifier
MW18-10 (20K0317-03) Matrix: Water S	ampled: 2020-11-03, Co	ntinued			
Dissolved Metals, Continued					
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Uranium, dissolved	0.00440	0.000020	mg/L	2020-11-10	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Zinc, dissolved	0.0087	0.0040	mg/L	2020-11-10	
Zirconium, dissolved	0.00026	0.00010	mg/L	2020-11-10	
General Parameters					
Alkalinity, Total (as CaCO3)	856	1.0	mg/L	2020-11-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Bicarbonate (as CaCO3)	856	1.0	mg/L	2020-11-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Bicarbonate (HCO3)	1040	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	2.60	0.050		2020-11-04	
BOD, 5-day	< 5.8	2.0	mg/L	2020-11-09	
Chemical Oxygen Demand	54		mg/L	2020-11-04	
Conductivity (EC)	3240		μS/cm	2020-11-05	
pH	7.89		pH units	2020-11-05	HT2
Solids, Total Dissolved	1820		mg/L	2020-11-06	
Solids, Total Suspended	194		mg/L	2020-11-05	
Turbidity	172		NTU	2020-11-04	
/olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-11-07	
Bromodichloromethane	< 1.0		μg/L	2020-11-07	
Bromoform	< 1.0		μg/L	2020-11-07	
Carbon tetrachloride	< 0.5		μg/L	2020-11-07	
Chlorobenzene	< 1.0		μg/L	2020-11-07	
Chloroethane	< 2.0		μg/L	2020-11-07	
Chloroform	< 1.0		μg/L	2020-11-07	
Dibromochloromethane	< 1.0		μg/L	2020-11-07	
1,2-Dibromoethane	< 0.3		μg/L	2020-11-07	
Dibromomethane	< 1.0		µg/L	2020-11-07	
1,2-Dichlorobenzene	< 0.5		µg/L	2020-11-07	
1,3-Dichlorobenzene	< 1.0		µg/L	2020-11-07	
1,4-Dichlorobenzene	< 1.0		µg/L	2020-11-07	
1,1-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,2-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethylene	< 1.0		μg/L	2020-11-07	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
Dichloromethane	< 3.0		μg/L	2020-11-07	
	3.0	0.0	1 3 -	=====	Page 8 of 4

REPORTED TO Ecoscape Environmental Ltd.

WORK ORDER 20K0317 **PROJECT** 19-2850 - Golden **REPORTED** 2020-11-10 16:16

1W18-10 (20K0317-03) Matrix: Water 9	Result	RL	Units	Analyzed	Qualifie
100 10 (2010317-03) Matrix: Water C	Sampled: 2020-11-03, Conti	nued			
olatile Organic Compounds (VOC), Continu	ed				
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-11-07	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-11-07	
Ethylbenzene	< 1.0		μg/L	2020-11-07	
Methyl tert-butyl ether	< 1.0		μg/L	2020-11-07	
Styrene	< 1.0		μg/L	2020-11-07	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-11-07	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-11-07	
Toluene	< 1.0	1.0	μg/L	2020-11-07	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-11-07	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-11-07	
Trichloroethylene	< 1.0	1.0		2020-11-07	
Trichlorofluoromethane	< 1.0	1.0		2020-11-07	
Vinyl chloride	< 1.0	1.0		2020-11-07	
Xylenes (total)	< 2.0	2.0	μg/L	2020-11-07	
Surrogate: Toluene-d8	65	70-130	%	2020-11-07	S02
Surrogate: 4-Bromofluorobenzene	77	70-130	%	2020-11-07	
Surrogate: 1,4-Dichlorobenzene-d4	89	70-130	%	2020-11-07	
Anions					
Bromide	0.20	0.10	ma/l	2020-11-04	
Bromide	0.20 84.1		mg/L	2020-11-04	
Chloride	84.1	0.10	mg/L	2020-11-04	
Chloride Fluoride	84.1 0.49	0.10 0.10	mg/L mg/L	2020-11-04 2020-11-04	
Chloride Fluoride Nitrate (as N)	84.1 0.49 < 0.010	0.10 0.10 0.010	mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04	
Chloride Fluoride Nitrate (as N) Nitrite (as N)	84.1 0.49 < 0.010 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	84.1 0.49 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters	84.1 0.49 < 0.010 < 0.010 105	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	84.1 0.49 < 0.010 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals	84.1 0.49 < 0.010 < 0.010 105	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved	84.1 0.49 < 0.010 < 0.010 105 684	0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved	84.1 0.49 < 0.010 < 0.010 105 684 0.0245 < 0.0050	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved	84.1 0.49 < 0.010 < 0.010 105 684 0.0245 < 0.0050 0.00048	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	84.1 0.49 < 0.010 < 0.010 105 684 0.0245 < 0.0050 0.00048 0.0208	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved	84.1 0.49 < 0.010 < 0.010 105 684 0.0245 < 0.0050 0.00048 0.0208 0.0266	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.00050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved	84.1 0.49 < 0.010 < 0.010 105 684 0.0245 < 0.0050 0.00048 0.0208 0.0266 < 0.00010	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.0050 0.0050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved	84.1 0.49 < 0.010 < 0.010 105 684 0.0245 < 0.0050 0.00048 0.0208 0.0266 < 0.00010 < 0.00010	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved	84.1 0.49 < 0.010 < 0.010 105 684 0.0245 < 0.0050 0.00048 0.0208 0.0266 < 0.00010 < 0.00010 0.261	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.0050 0.00010 0.00010 0.00500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved	84.1 0.49 < 0.010 < 0.010 105 684 0.0245 < 0.0050 0.00048 0.0208 0.0266 < 0.00010 < 0.00010	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050 0.00050 0.00010 0.00500 0.00500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

20K0317

REPORTED 2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-11 (20K0317-04) Matrix: Water	Sampled: 2020-11-03, C	ontinued			
Dissolved Metals, Continued					
Cobalt, dissolved	0.00015	0.00010	mg/L	2020-11-10	
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-11-10	
Iron, dissolved	0.640	0.010	mg/L	2020-11-10	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-11-10	
Magnesium, dissolved	130	0.010	mg/L	2020-11-10	
Manganese, dissolved	0.0286	0.00020	mg/L	2020-11-10	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-11-06	
Molybdenum, dissolved	0.00098	0.00010	mg/L	2020-11-10	
Nickel, dissolved	0.00745	0.00040	mg/L	2020-11-10	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-11-10	
Potassium, dissolved	6.82		mg/L	2020-11-10	
Selenium, dissolved	< 0.00050	0.00050		2020-11-10	
Silicon, dissolved	3.8		mg/L	2020-11-10	
Silver, dissolved	< 0.000050	0.000050		2020-11-10	
Sodium, dissolved	113		mg/L	2020-11-10	
Strontium, dissolved	0.856	0.0010		2020-11-10	
Sulfur, dissolved	37.2		mg/L	2020-11-10	
Tellurium, dissolved	< 0.00050	0.00050		2020-11-10	
Thallium, dissolved	< 0.000020	0.000020		2020-11-10	
Thorium, dissolved	< 0.00010	0.00010		2020-11-10	
Tin, dissolved	< 0.00020	0.00020		2020-11-10	
Titanium, dissolved	< 0.0050	0.0050		2020-11-10	
Tungsten, dissolved	< 0.0010	0.0010		2020-11-10	
Uranium, dissolved	0.000068	0.000020		2020-11-10	
Vanadium, dissolved	< 0.0010	0.0010		2020-11-10	
Zinc, dissolved	0.0150	0.0040		2020-11-10	
Zirconium, dissolved	0.0018	0.00010		2020-11-10	
General Parameters	0.00016	0.00010	IIIg/L	2020-11-10	
Alkalinity, Total (as CaCO3)	671		mg/L	2020-11-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-11-05	
Alkalinity, Bicarbonate (as CaCO3)	671		mg/L	2020-11-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-11-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-11-05	
Bicarbonate (HCO3)	819		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	0.361	0.050	mg/L	2020-11-04	
BOD, 5-day	< 5.8	2.0	mg/L	2020-11-09	
Chemical Oxygen Demand	< 20	20	mg/L	2020-11-04	
Conductivity (EC)	1580	2.0	μS/cm	2020-11-05	
рН	8.06	0.10	pH units	2020-11-05	HT2
Solids, Total Dissolved	899	15	mg/L	2020-11-06	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

20K0317

EPORTED 2020-

2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-11 (20K0317-04) Matrix: Water \$	Sampled: 2020-11-03, Continued				
General Parameters, Continued					
Solids, Total Suspended	27.7	2.0	mg/L	2020-11-05	
Turbidity	37.0	0.10	NTU	2020-11-04	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-11-07	
Bromodichloromethane	< 1.0		μg/L	2020-11-07	
Bromoform	< 1.0		μg/L	2020-11-07	
Carbon tetrachloride	< 0.5		μg/L	2020-11-07	
Chlorobenzene	< 1.0		μg/L	2020-11-07	
Chloroethane	< 2.0		μg/L	2020-11-07	
Chloroform	< 1.0	1.0		2020-11-07	
Dibromochloromethane	< 1.0	1.0		2020-11-07	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-11-07	
Dibromomethane	< 1.0		μg/L	2020-11-07	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-11-07	
1,3-Dichlorobenzene	< 1.0	1.0		2020-11-07	
1,4-Dichlorobenzene	< 1.0	1.0		2020-11-07	
1,1-Dichloroethane	< 1.0	1.0		2020-11-07	
1,2-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethylene	< 1.0		μg/L	2020-11-07	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
Dichloromethane	< 3.0		μg/L	2020-11-07	
1,2-Dichloropropane	< 1.0		μg/L	2020-11-07	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-11-07	
Ethylbenzene	< 1.0	1.0		2020-11-07	
Methyl tert-butyl ether	< 1.0		μg/L	2020-11-07	
Styrene	< 1.0		μg/L	2020-11-07	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-11-07	
Tetrachloroethylene	< 1.0		μg/L	2020-11-07	
Toluene	< 1.0		μg/L	2020-11-07	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-11-07	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-11-07	
Trichloroethylene	< 1.0		μg/L	2020-11-07	
Trichlorofluoromethane	< 1.0		μg/L	2020-11-07	
Vinyl chloride	< 1.0		μg/L	2020-11-07	
Xylenes (total)	< 2.0		μg/L	2020-11-07	
Surrogate: Toluene-d8	69	70-130		2020-11-07	S02
Surrogate: 4-Bromofluorobenzene	77	70-130		2020-11-07	302
Surrogate: 1,4-Dichlorobenzene-d4	89	70-130		2020-11-07	

Town Well #4 (20K0317-05) | Matrix: Water | Sampled: 2020-11-03

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	20K0317
PRO IECT	19-2850 - Golden	REPORTED	2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifier
Town Well #4 (20K0317-05) Matrix:	Water Sampled: 2020-11-03,	Continued			
Anions					
Bromide	< 0.10	0.10	mg/L	2020-11-04	
Chloride	92.5		mg/L	2020-11-04	
Fluoride	< 0.10		mg/L	2020-11-04	
Nitrate (as N)	1.50	0.010	mg/L	2020-11-04	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-11-04	
Sulfate	40.7	1.0	mg/L	2020-11-04	
Calculated Parameters					
Hardness, Total (as CaCO3)	441	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.00241	0.00010	mg/L	2020-11-10	
Aluminum, dissolved	< 0.0050	0.0050		2020-11-10	
Antimony, dissolved	< 0.00020	0.00020		2020-11-10	
Arsenic, dissolved	< 0.00050	0.00050		2020-11-10	
Barium, dissolved	0.224	0.0050		2020-11-10	
Beryllium, dissolved	< 0.00010	0.00010		2020-11-10	
Bismuth, dissolved	< 0.00010	0.00010		2020-11-10	
Boron, dissolved	< 0.0500	0.0500		2020-11-10	
Cadmium, dissolved	< 0.00010	0.000010		2020-11-10	
Calcium, dissolved	104		mg/L	2020-11-10	
Chromium, dissolved	< 0.00050	0.00050		2020-11-10	
Cobalt, dissolved	< 0.00010	0.00010		2020-11-10	
Copper, dissolved	0.00301	0.00040		2020-11-10	
Iron, dissolved	< 0.010	0.010		2020-11-10	
Lead, dissolved	0.00021	0.00020		2020-11-10	
Magnesium, dissolved	44.0	0.010		2020-11-10	
Manganese, dissolved	< 0.00020	0.00020		2020-11-10	
Mercury, dissolved	< 0.00010	0.000010		2020-11-06	
Molybdenum, dissolved	0.00021	0.00010		2020-11-10	
Nickel, dissolved	< 0.00040	0.00040		2020-11-10	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-11-10	
Potassium, dissolved	2.14		mg/L	2020-11-10	
Selenium, dissolved	< 0.00050	0.00050		2020-11-10	
Silicon, dissolved	5.2		mg/L	2020-11-10	
Silver, dissolved	< 0.000050	0.000050		2020-11-10	
Sodium, dissolved	60.4		mg/L	2020-11-10	
Strontium, dissolved	0.487	0.0010		2020-11-10	
Sulfur, dissolved	15.3		mg/L	2020-11-10	
Tellurium, dissolved	< 0.00050	0.00050		2020-11-10	
Thallium, dissolved	< 0.000020	0.000020		2020-11-10	
Thorium, dissolved	< 0.00010	0.00010		2020-11-10	
Tin, dissolved	< 0.00020	0.00020		2020-11-10	
Titanium, dissolved	< 0.0050	0.0050		2020-11-10	
a.nam, alcoortod	- 5.0000	0.0000			age 12 of 4

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	20K0317
PROJECT	19-2850 - Golden	REPORTED	2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifier
Town Well #4 (20K0317-05) Matrix: Wate	er Sampled: 2020-11-03,	Continued			
Dissolved Metals, Continued					
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Uranium, dissolved	0.00133	0.000020	mg/L	2020-11-10	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Zinc, dissolved	0.0053	0.0040	mg/L	2020-11-10	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-11-10	
General Parameters					
Alkalinity, Total (as CaCO3)	358	1.0	mg/L	2020-11-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-11-05	
Alkalinity, Bicarbonate (as CaCO3)	358		mg/L	2020-11-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-11-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-11-05	
Bicarbonate (HCO3)	437		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	< 0.050	0.050		2020-11-04	
BOD, 5-day	< 5.8		mg/L	2020-11-09	
Chemical Oxygen Demand	< 20		mg/L	2020-11-04	
Conductivity (EC)	1040		μS/cm	2020-11-05	
pH	8.04		pH units	2020-11-05	HT2
Solids, Total Dissolved	559		mg/L	2020-11-06	
Solids, Total Suspended	< 2.0		mg/L	2020-11-05	
Turbidity	0.23		NTU	2020-11-04	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-11-07	
Bromodichloromethane	< 1.0		μg/L	2020-11-07	
Bromoform	< 1.0		μg/L	2020-11-07	
Carbon tetrachloride	< 0.5		µg/L	2020-11-07	
Chlorobenzene	< 1.0		μg/L	2020-11-07	
Chloroethane	< 2.0		μg/L	2020-11-07	
Chloroform	< 1.0		µg/L	2020-11-07	
Dibromochloromethane	< 1.0		μg/L	2020-11-07	
1,2-Dibromoethane	< 0.3		μg/L	2020-11-07	
Dibromomethane	< 1.0		µg/L	2020-11-07	
1,2-Dichlorobenzene	< 0.5		µg/L	2020-11-07	
1,3-Dichlorobenzene	< 1.0		µg/L	2020-11-07	
1,4-Dichlorobenzene	< 1.0		µg/L	2020-11-07	
1,1-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,2-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethylene	< 1.0		μg/L	2020-11-07	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
Dichloromethane	< 3.0		μg/L	2020-11-07	
	3.0	0.0	ı- <i>ɔ</i> ' =	2020 11	Page 13 of 4

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	20K0317
PROJECT	19-2850 - Golden	REPORTED	2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualific
own Well #4 (20K0317-05) Matrix: Wa	ter Sampled: 2020-11-03, Co	ontinued			
olatile Organic Compounds (VOC), Contin	ued				
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-11-07	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-11-07	
Ethylbenzene	< 1.0	1.0	μg/L	2020-11-07	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-11-07	
Styrene	< 1.0	1.0	μg/L	2020-11-07	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-11-07	
Tetrachloroethylene	< 1.0		μg/L	2020-11-07	
Toluene	< 1.0		μg/L	2020-11-07	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-11-07	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-11-07	
Trichloroethylene	< 1.0		μg/L	2020-11-07	
Trichlorofluoromethane	< 1.0		μg/L	2020-11-07	
Vinyl chloride	< 1.0		μg/L	2020-11-07	
Xylenes (total)	< 2.0		μg/L	2020-11-07	
Surrogate: Toluene-d8	65	70-130	%	2020-11-07	S02
Surrogate: 4-Bromofluorobenzene	74	70-130	%	2020-11-07	
Surrogate: 1,4-Dichlorobenzene-d4	83	70-130	%	2020-11-07	
Fown Well #6 (20K0317-06) Matrix: Wa					
Fown Well #6 (20K0317-06) Matrix: Wa	ter Sampled: 2020-11-03	0.40			
Town Well #6 (20K0317-06) Matrix: Wa Anions Bromide	ter Sampled: 2020-11-03		mg/L	2020-11-04	
Town Well #6 (20K0317-06) Matrix: War Anions Bromide Chloride	<pre>cer Sampled: 2020-11-03 < 0.10 60.2</pre>	0.10	mg/L	2020-11-04	
Fluoride	<pre>cter Sampled: 2020-11-03 < 0.10 60.2 < 0.10</pre>	0.10 0.10	mg/L mg/L	2020-11-04 2020-11-04	
Town Well #6 (20K0317-06) Matrix: Wathins Anions Bromide Chloride Fluoride Nitrate (as N)	<pre>< 0.10 60.2 < 0.10 1.03</pre>	0.10 0.10 0.010	mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04	
Fown Well #6 (20K0317-06) Matrix: Wathins Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	<pre>< 0.10</pre>	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04	
Fluoride Nitrate (as N) Sulfate	<pre>< 0.10 60.2 < 0.10 1.03</pre>	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04	
Fown Well #6 (20K0317-06) Matrix: War Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters	<pre>< 0.10</pre>	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04	
Fown Well #6 (20K0317-06) Matrix: Wathins Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	<pre>< 0.10</pre>	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04	
Fown Well #6 (20K0317-06) Matrix: War Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters	<pre>< 0.10</pre>	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04	
Fluoride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals	<pre>< 0.10 60.2 < 0.10 1.03 0.012 37.9</pre>	0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A	
Fluoride Chloride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved	<pre>< 0.10</pre>	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10	
Fown Well #6 (20K0317-06) Matrix: Wath Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved	<pre>< 0.10</pre>	0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A	
Fown Well #6 (20K0317-06) Matrix: Wath Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved	<pre>cer Sampled: 2020-11-03 < 0.10 60.2 < 0.10 1.03 0.012 37.9 437 0.00191 < 0.0050 < 0.00020 < 0.00050</pre>	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10	
Fown Well #6 (20K0317-06) Matrix: War Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	<pre>cer Sampled: 2020-11-03</pre> <pre> < 0.10 60.2 < 0.10 1.03 0.012 37.9 437 0.00191 < 0.0050 < 0.00020</pre>	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.00050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Fluoride Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Arsenic, dissolved Barium, dissolved	<pre>cer Sampled: 2020-11-03 < 0.10 60.2 < 0.10 1.03 0.012 37.9 437 0.00191 < 0.0050 < 0.00020 < 0.00050 0.196</pre>	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.0050 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Flown Well #6 (20K0317-06) Matrix: Wath Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved	<pre>cer Sampled: 2020-11-03 < 0.10 60.2 < 0.10 1.03 0.012 37.9 437 0.00191 < 0.0050 < 0.00020 < 0.00050 0.196 0.00031</pre>	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Fown Well #6 (20K0317-06) Matrix: Wa Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved Bismuth, dissolved	<pre>cer Sampled: 2020-11-03 < 0.10</pre>	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.0050 0.00010 0.00010 0.00500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Flown Well #6 (20K0317-06) Matrix: War Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Boron, dissolved	 40.10 60.2 0.10 1.03 0.012 37.9 437 0.0050 0.00050 0.196 0.00010 0.00500 0.00010 0.0500 	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050 0.00010 0.00500 0.00500 0.00500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

20K0317

PORTED 2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualific
Fown Well #6 (20K0317-06) Matrix: Wa	ter Sampled: 2020-11-03,	Continued			
Dissolved Metals, Continued					
Cobalt, dissolved	0.00028	0.00010	mg/L	2020-11-10	
Copper, dissolved	0.0141	0.00040	mg/L	2020-11-10	
Iron, dissolved	0.119	0.010	mg/L	2020-11-10	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-11-10	
Magnesium, dissolved	36.0	0.010		2020-11-10	
Manganese, dissolved	0.0430	0.00020		2020-11-10	
Mercury, dissolved	< 0.000010	0.000010		2020-11-06	
Molybdenum, dissolved	0.00116	0.00010	mg/L	2020-11-10	
Nickel, dissolved	0.00154	0.00040		2020-11-10	
Phosphorus, dissolved	< 0.050	0.050		2020-11-10	
Potassium, dissolved	1.34		mg/L	2020-11-10	
Selenium, dissolved	< 0.00050	0.00050		2020-11-10	
Silicon, dissolved	5.1		mg/L	2020-11-10	
Silver, dissolved	< 0.000050	0.000050		2020-11-10	
Sodium, dissolved	34.8		mg/L	2020-11-10	
Strontium, dissolved	0.383	0.0010		2020-11-10	
Sulfur, dissolved	14.5		mg/L	2020-11-10	
Tellurium, dissolved	< 0.00050	0.00050		2020-11-10	
Thallium, dissolved	< 0.00030	0.00030		2020-11-10	
Thorium, dissolved	< 0.00010	0.00010		2020-11-10	
Tin, dissolved	< 0.00010	0.00010		2020-11-10	
Titanium, dissolved	< 0.0050	0.0050		2020-11-10	
Tungsten, dissolved	< 0.0030	0.0030		2020-11-10	
Uranium, dissolved	0.00155	0.000020		2020-11-10	
Vanadium, dissolved	< 0.0010	0.00020		2020-11-10	
Zinc, dissolved	< 0.0010	0.0040		2020-11-10	
· · · · · · · · · · · · · · · · · · ·	< 0.0040	0.00010			
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-11-10	
General Parameters Alkalinity, Total (as CaCO3)	363	1.0	mg/L	2020-11-05	
Alkalinity, Phenolphthalein (as CaCO3)					
	< 1.0		mg/L	2020-11-05	
Alkalinity, Bicarbonate (as CaCO3)	363 < 1.0		mg/L	2020-11-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-11-05	
Alkalinity, Hydroxide (as CaCO3)			mg/L	2020-11-05	
Bicarbonate (HCO3)	443		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	0.117	0.050		2020-11-04	
BOD, 5-day	< 5.8		mg/L	2020-11-09	
Chemical Oxygen Demand	< 20		mg/L	2020-11-04	
Conductivity (EC)	857		μS/cm	2020-11-05	
pH	7.93		pH units	2020-11-05	HT2
Solids, Total Dissolved	507	15	mg/L	2020-11-06	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

20K0317

REPORTED 2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifie
Town Well #6 (20K0317-06) Matrix: Wat	er Sampled: 2020-11-03, Cor	itinued			
General Parameters, Continued					
Solids, Total Suspended	221	2.0	mg/L	2020-11-05	
Turbidity	171		NTU	2020-11-04	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-11-07	
Bromodichloromethane	< 1.0		µg/L	2020-11-07	
Bromoform	< 1.0		µg/L	2020-11-07	
Carbon tetrachloride	< 0.5		µg/L	2020-11-07	
Chlorobenzene	< 1.0		µg/L	2020-11-07	
Chloroethane	< 2.0		μg/L	2020-11-07	
Chloroform	< 1.0		μg/L	2020-11-07	
Dibromochloromethane	< 1.0		μg/L	2020-11-07	
1,2-Dibromoethane	< 0.3		μg/L	2020-11-07	
Dibromomethane	< 1.0		μg/L	2020-11-07	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-11-07	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-11-07	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethane	< 1.0			2020-11-07	
1,2-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethylene	< 1.0		μg/L	2020-11-07	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
Dichloromethane	< 3.0		μg/L	2020-11-07	
1,2-Dichloropropane	< 1.0		μg/L	2020-11-07	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-11-07	
Ethylbenzene	< 1.0		μg/L	2020-11-07	
Methyl tert-butyl ether	< 1.0		μg/L	2020-11-07	
Styrene	< 1.0		μg/L	2020-11-07	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-11-07	
Tetrachloroethylene	< 1.0		μg/L	2020-11-07	
Toluene	< 1.0		μg/L	2020-11-07	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-11-07	
1,1,2-Trichloroethane	< 1.0		µg/L	2020-11-07	
Trichloroethylene	< 1.0		µg/L	2020-11-07	
Trichlorofluoromethane	< 1.0		µg/L	2020-11-07	
Vinyl chloride	< 1.0		μg/L	2020-11-07	
Xylenes (total)	< 2.0		μg/L	2020-11-07	
Surrogate: Toluene-d8	69			2020-11-07	S02
Surrogate: 4-Bromofluorobenzene	77	70-130		2020-11-07	
Surrogate: 1,4-Dichlorobenzene-d4	 89	70-130		2020-11-07	

DWM-1b (20K0317-07) | Matrix: Water | Sampled: 2020-11-03

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

20K0317

REPORTED

2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifier
DWM-1b (20K0317-07) Matrix: Wat	er Sampled: 2020-11-03, Continu	ued			
Anions					
Bromide	< 0.10	0.10	mg/L	2020-11-04	
Chloride	8.98	0.10	mg/L	2020-11-04	
Fluoride	0.47		mg/L	2020-11-04	
Nitrate (as N)	0.489	0.010	mg/L	2020-11-04	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-11-04	
Sulfate	224	1.0	mg/L	2020-11-04	
Calculated Parameters					
Hardness, Total (as CaCO3)	598	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0450	0.00010	mg/L	2020-11-10	
Aluminum, dissolved	< 0.0050	0.0050		2020-11-10	
Antimony, dissolved	0.00025	0.00020	mg/L	2020-11-10	
Arsenic, dissolved	0.00117	0.00050	mg/L	2020-11-10	
Barium, dissolved	0.0159	0.0050	mg/L	2020-11-10	
Beryllium, dissolved	0.00022	0.00010	mg/L	2020-11-10	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-11-10	
Boron, dissolved	0.352	0.0500	mg/L	2020-11-10	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-11-10	
Calcium, dissolved	81.3	0.20	mg/L	2020-11-10	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-11-10	
Cobalt, dissolved	0.00076	0.00010	mg/L	2020-11-10	
Copper, dissolved	0.0109	0.00040	mg/L	2020-11-10	
Iron, dissolved	< 0.010	0.010	mg/L	2020-11-10	
Lead, dissolved	0.00021	0.00020	mg/L	2020-11-10	
Magnesium, dissolved	95.8	0.010	mg/L	2020-11-10	
Manganese, dissolved	0.00276	0.00020	mg/L	2020-11-10	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-11-06	
Molybdenum, dissolved	0.00073	0.00010	mg/L	2020-11-10	
Nickel, dissolved	0.00154	0.00040	mg/L	2020-11-10	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-11-10	
Potassium, dissolved	8.64	0.10	mg/L	2020-11-10	
Selenium, dissolved	< 0.00050	0.00050		2020-11-10	
Silicon, dissolved	6.5	1.0	mg/L	2020-11-10	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-11-10	
Sodium, dissolved	41.8	0.10	mg/L	2020-11-10	
Strontium, dissolved	4.76	0.0010		2020-11-10	
Sulfur, dissolved	82.7		mg/L	2020-11-10	
Tellurium, dissolved	< 0.00050	0.00050		2020-11-10	
Thallium, dissolved	< 0.000020	0.000020		2020-11-10	
Thorium, dissolved	< 0.00010	0.00010		2020-11-10	
Tin, dissolved	< 0.00020	0.00020		2020-11-10	
Titanium, dissolved	< 0.0050	0.0050		2020-11-10	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	20K0317
PROJECT	19-2850 - Golden	REPORTED	2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifier
DWM-1b (20K0317-07) Matrix: Water S	ampled: 2020-11-03, Continue	ed			
Dissolved Metals, Continued					
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Uranium, dissolved	0.00146	0.000020	mg/L	2020-11-10	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Zinc, dissolved	0.0245	0.0040	mg/L	2020-11-10	
Zirconium, dissolved	0.00052	0.00010	mg/L	2020-11-10	
General Parameters					
Alkalinity, Total (as CaCO3)	429	1.0	mg/L	2020-11-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Bicarbonate (as CaCO3)	429	1.0	mg/L	2020-11-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Bicarbonate (HCO3)	523		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	0.481	0.050		2020-11-04	
BOD, 5-day	< 5.8	2.0	mg/L	2020-11-09	
Chemical Oxygen Demand	< 20		mg/L	2020-11-04	
Conductivity (EC)	1180		μS/cm	2020-11-05	
pH	8.08		pH units	2020-11-05	HT2
Solids, Total Dissolved	758		mg/L	2020-11-06	
Solids, Total Suspended	< 2.0		mg/L	2020-11-05	
Turbidity	0.31		NTU	2020-11-04	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-11-07	
Bromodichloromethane	< 1.0		μg/L	2020-11-07	
Bromoform	< 1.0		μg/L	2020-11-07	
Carbon tetrachloride	< 0.5		μg/L	2020-11-07	
Chlorobenzene	< 1.0		μg/L	2020-11-07	
Chloroethane	< 2.0		μg/L	2020-11-07	
Chloroform	< 1.0		μg/L	2020-11-07	
Dibromochloromethane	< 1.0		μg/L	2020-11-07	
1,2-Dibromoethane	< 0.3		μg/L	2020-11-07	
Dibromomethane	< 1.0		μg/L	2020-11-07	
1,2-Dichlorobenzene	< 0.5		µg/L	2020-11-07	
1,3-Dichlorobenzene	< 1.0		µg/L	2020-11-07	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,2-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethylene	< 1.0		μg/L	2020-11-07	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
Dichloromethane	< 3.0		μg/L	2020-11-07	
	5.5	0.0	r- æ' =		age 18 of 4

REPORTED TO Ecoscape Environmental Ltd. **WORK ORDER**

20K0317 **PROJECT** 19-2850 - Golden REPORTED 2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifie
DWM-1b (20K0317-07) Matrix: Water	Sampled: 2020-11-03, Continu	ued			
/olatile Organic Compounds (VOC), Contir	nued				
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-11-07	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-11-07	
Ethylbenzene	< 1.0	1.0	μg/L	2020-11-07	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-11-07	
Styrene	< 1.0	1.0	μg/L	2020-11-07	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-11-07	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-11-07	
Toluene	< 1.0	1.0	μg/L	2020-11-07	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-11-07	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-11-07	
Trichloroethylene	< 1.0	1.0	μg/L	2020-11-07	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-11-07	
Vinyl chloride	< 1.0	1.0	μg/L	2020-11-07	
Xylenes (total)	< 2.0	2.0	μg/L	2020-11-07	
Surrogate: Toluene-d8	67	70-130	%	2020-11-07	S02
Surrogate: 4-Bromofluorobenzene	73	70-130	%	2020-11-07	
Surrogate: 1,4-Dichlorobenzene-d4	83	70-130	%	2020-11-07	
-	r Sampled: 2020-11-03				
//////////////////////////////////////	<u>· · · · · · · · · · · · · · · · · · · </u>	0.40		0000 44 04	
//////////////////////////////////////	1.84		mg/L	2020-11-04	
IW09-06D (20K0317-08) Matrix: Wate Inions Bromide Chloride	1.84 366	0.10	mg/L	2020-11-04	
None (20K0317-08) Matrix: Wate (Anions) Matrix: Wate (Anions) Bromide (Chloride) Fluoride	1.84 366 < 0.10	0.10 0.10	mg/L mg/L	2020-11-04 2020-11-04	
MW09-06D (20K0317-08) Matrix: Wate Anions Bromide Chloride Fluoride Nitrate (as N)	1.84 366 < 0.10 34.6	0.10 0.10 0.010	mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04	
IW09-06D (20K0317-08) Matrix: Wate Inions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	1.84 366 < 0.10 34.6 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04	
IW09-06D (20K0317-08) Matrix: Wate Inions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	1.84 366 < 0.10 34.6	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04	
IW09-06D (20K0317-08) Matrix: Wate unions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters	1.84 366 < 0.10 34.6 < 0.010 642	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04	
IW09-06D (20K0317-08) Matrix: Wate unions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	1.84 366 < 0.10 34.6 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04	
Alwons Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	1.84 366 < 0.10 34.6 < 0.010 642	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A	
MW09-06D (20K0317-08) Matrix: Wate Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved	1.84 366 < 0.10 34.6 < 0.010 642 1510	0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A	
Alimons Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved	1.84 366 < 0.10 34.6 < 0.010 642 1510 0.0404 < 0.0050	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10	
Alwons Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Antimony, dissolved Antimony, dissolved	1.84 366 < 0.10 34.6 < 0.010 642 1510 0.0404 < 0.0050 0.00029	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10	
MW09-06D (20K0317-08) Matrix: Wate Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved	1.84 366 < 0.10 34.6 < 0.010 642 1510 0.0404 < 0.0050	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Amions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved	1.84 366 < 0.10 34.6 < 0.010 642 1510 0.0404 < 0.0050 0.00029	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.00050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Alwonson (20K0317-08) Matrix: Wate Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved	1.84 366 < 0.10 34.6 < 0.010 642 1510 0.0404 < 0.0050 0.00029 < 0.00050	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.0050 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
IW09-06D (20K0317-08) Matrix: Wate Inions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved	1.84 366 < 0.10 34.6 < 0.010 642 1510 0.0404 < 0.0050 0.00029 < 0.00050 0.0457	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.00050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Amions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved	1.84 366 < 0.10 34.6 < 0.010 642 1510 0.0404 < 0.0050 0.00029 < 0.00050 0.0457 < 0.00010	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050 0.00010 0.00010 0.00500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Antimony, dissolved Arsenic, dissolved Beryllium, dissolved Beryllium, dissolved Bismuth, dissolved	1.84 366 < 0.10 34.6 < 0.010 642 1510 0.0404 < 0.0050 0.00029 < 0.00050 0.0457 < 0.00010 < 0.00010	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Antimony, dissolved Arsenic, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Boron, dissolved Boron, dissolved Boron, dissolved	1.84 366 < 0.10 34.6 < 0.010 642 1510 0.0404 < 0.0050 0.00029 < 0.00050 0.0457 < 0.00010 < 0.00010 1.75	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050 0.00010 0.00500 0.00500 0.00500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

20K0317

REPORTED 2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-06D (20K0317-08) Matrix: Water	Sampled: 2020-11-03, C	ontinued			
Dissolved Metals, Continued					
Cobalt, dissolved	0.00178	0.00010	mg/L	2020-11-10	
Copper, dissolved	0.00220	0.00040	mg/L	2020-11-10	
Iron, dissolved	< 0.010	0.010	mg/L	2020-11-10	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-11-10	
Magnesium, dissolved	263	0.010	mg/L	2020-11-10	
Manganese, dissolved	0.111	0.00020	mg/L	2020-11-10	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-11-06	
Molybdenum, dissolved	0.00030	0.00010	mg/L	2020-11-10	
Nickel, dissolved	0.0129	0.00040	mg/L	2020-11-10	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-11-10	
Potassium, dissolved	168		mg/L	2020-11-10	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-11-10	
Silicon, dissolved	11.6	1.0	mg/L	2020-11-10	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-11-10	
Sodium, dissolved	286	0.10	mg/L	2020-11-10	
Strontium, dissolved	1.57	0.0010	mg/L	2020-11-10	
Sulfur, dissolved	227	3.0	mg/L	2020-11-10	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-11-10	
Thallium, dissolved	0.000055	0.000020	mg/L	2020-11-10	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-11-10	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-11-10	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-11-10	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Uranium, dissolved	0.00759	0.000020	mg/L	2020-11-10	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-11-10	
Zirconium, dissolved	0.00017	0.00010	mg/L	2020-11-10	
General Parameters					
Alkalinity, Total (as CaCO3)	946	1.0	mg/L	2020-11-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Bicarbonate (as CaCO3)	946	1.0	mg/L	2020-11-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Bicarbonate (HCO3)	1150	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	1.90	0.050		2020-11-04	
BOD, 5-day	< 5.8		mg/L	2020-11-09	
Chemical Oxygen Demand	49		mg/L	2020-11-04	
Conductivity (EC)	4050		μS/cm	2020-11-05	
pH	7.89		pH units	2020-11-05	HT2
Solids, Total Dissolved	2460		mg/L	2020-11-06	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

20K0317

REPORTED 2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifi
MW09-06D (20K0317-08) Matrix: Water	Sampled: 2020-11-03, Continued				
General Parameters, Continued					
Solids, Total Suspended	16.8	2.0	mg/L	2020-11-05	
Turbidity	13.2		NTU	2020-11-04	
/olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-11-07	
Bromodichloromethane	< 1.0		μg/L	2020-11-07	
Bromoform	< 1.0		μg/L	2020-11-07	
Carbon tetrachloride	< 0.5		μg/L	2020-11-07	
Chlorobenzene	< 1.0		μg/L	2020-11-07	
Chloroethane	< 2.0		μg/L	2020-11-07	
Chloroform	< 1.0		μg/L μg/L	2020-11-07	
Dibromochloromethane	< 1.0		μg/L	2020-11-07	
1,2-Dibromoethane	< 0.3		μg/L	2020-11-07	
Dibromomethane	< 1.0	1.0		2020-11-07	
1.2-Dichlorobenzene	< 0.5		μg/L	2020-11-07	
1,3-Dichlorobenzene	< 1.0	1.0		2020-11-07	
1,4-Dichlorobenzene	< 1.0	1.0		2020-11-07	
1,1-Dichloroethane	< 1.0		μg/L μg/L	2020-11-07	
1,2-Dichloroethane	< 1.0	1.0		2020-11-07	
1,1-Dichloroethylene	< 1.0	1.0		2020-11-07	
cis-1,2-Dichloroethylene	< 1.0	1.0		2020-11-07	
trans-1,2-Dichloroethylene	< 1.0			2020-11-07	
Dichloromethane	< 3.0		μg/L	2020-11-07	
	< 1.0		μg/L		
1,2-Dichloropropane			μg/L	2020-11-07	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-11-07	
Ethylbenzene	< 1.0		μg/L	2020-11-07	
Methyl tert-butyl ether	< 1.0		μg/L	2020-11-07	
Styrene	< 1.0	1.0	10	2020-11-07	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-11-07	
Tetrachloroethylene	< 1.0		μg/L	2020-11-07	
Toluene	< 1.0	1.0		2020-11-07	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-11-07	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-11-07	
Trichloroethylene	< 1.0		μg/L	2020-11-07	
Trichlorofluoromethane	< 1.0	1.0		2020-11-07	
Vinyl chloride	< 1.0		μg/L	2020-11-07	
Xylenes (total)	< 2.0		μg/L	2020-11-07	
Surrogate: Toluene-d8	68	70-130		2020-11-07	S02
Surrogate: 4-Bromofluorobenzene	75	70-130		2020-11-07	
Surrogate: 1,4-Dichlorobenzene-d4	87	70-130	%	2020-11-07	

DUP A (20K0317-09) | Matrix: Water | Sampled: 2020-11-03

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

20K0317

REPORTED

2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifie
DUP A (20K0317-09) Matrix: Water	Sampled: 2020-11-03, Continued	i			
Anions					
Bromide	1.81	0.10	mg/L	2020-11-04	
Chloride	365	0.10	mg/L	2020-11-04	
Fluoride	< 0.10	0.10	mg/L	2020-11-04	
Nitrate (as N)	34.3	0.010	mg/L	2020-11-04	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-11-04	
Sulfate	643	1.0	mg/L	2020-11-04	
Calculated Parameters					
Hardness, Total (as CaCO3)	1540	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0401	0.00010	mg/L	2020-11-10	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-11-10	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-11-10	
Arsenic, dissolved	< 0.00050	0.00050	mg/L	2020-11-10	
Barium, dissolved	0.0466	0.0050	mg/L	2020-11-10	
Beryllium, dissolved	< 0.00010	0.00010		2020-11-10	
Bismuth, dissolved	< 0.00010	0.00010		2020-11-10	
Boron, dissolved	1.75	0.0500	mg/L	2020-11-10	
Cadmium, dissolved	< 0.000010	0.000010		2020-11-10	
Calcium, dissolved	171		mg/L	2020-11-10	
Chromium, dissolved	< 0.00050	0.00050		2020-11-10	
Cobalt, dissolved	0.00165	0.00010		2020-11-10	
Copper, dissolved	0.00225	0.00040		2020-11-10	
Iron, dissolved	< 0.010	0.010		2020-11-10	
Lead, dissolved	0.00024	0.00020		2020-11-10	
Magnesium, dissolved	269	0.010		2020-11-10	
Manganese, dissolved	0.0961	0.00020		2020-11-10	
Mercury, dissolved	< 0.000010	0.000010		2020-11-06	
Molybdenum, dissolved	0.00032	0.00010		2020-11-10	
Nickel, dissolved	0.0125	0.00040		2020-11-10	
Phosphorus, dissolved	< 0.050	0.050		2020-11-10	
Potassium, dissolved	169		mg/L	2020-11-10	
Selenium, dissolved	< 0.00050	0.00050		2020-11-10	
Silicon, dissolved	11.6		mg/L	2020-11-10	
Silver, dissolved	< 0.000050	0.000050		2020-11-10	
Sodium, dissolved	287		mg/L	2020-11-10	
Strontium, dissolved	1.57	0.0010		2020-11-10	
Sulfur, dissolved	234		mg/L	2020-11-10	
Tellurium, dissolved	< 0.00050	0.00050		2020-11-10	
Thallium, dissolved	0.000049	0.00030		2020-11-10	
Thorium, dissolved	< 0.00010	0.000020		2020-11-10	
Tin, dissolved	< 0.00010	0.00010			
Titanium, dissolved	< 0.0020	0.00020		2020-11-10 2020-11- <u>10</u>	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	20K0317
DDO IECT	10.3950 Coldon	DEDODTED	2020 44 40

PROJECT 19-2850 - Golden **REPORTED** 2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualifier
DUP A (20K0317-09) Matrix: Water Sam	npled: 2020-11-03, Continued				
Dissolved Metals, Continued					
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Uranium, dissolved	0.00757	0.000020	mg/L	2020-11-10	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-11-10	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-11-10	
Zirconium, dissolved	0.00015	0.00010	mg/L	2020-11-10	
General Parameters					
Alkalinity, Total (as CaCO3)	954	1.0	mg/L	2020-11-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Bicarbonate (as CaCO3)	954	1.0	mg/L	2020-11-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-11-05	
Bicarbonate (HCO3)	1160	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	1.64	0.050		2020-11-04	
BOD, 5-day	< 5.8		mg/L	2020-11-09	
Chemical Oxygen Demand	44		mg/L	2020-11-04	
Conductivity (EC)	4000		μS/cm	2020-11-05	
pH	7.81		pH units	2020-11-05	HT2
Solids, Total Dissolved	2520		mg/L	2020-11-06	
Solids, Total Suspended	312		mg/L	2020-11-05	
Turbidity	184		NTU	2020-11-04	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-11-07	
Bromodichloromethane	< 1.0		μg/L	2020-11-07	
Bromoform	< 1.0		μg/L	2020-11-07	
Carbon tetrachloride	< 0.5		μg/L	2020-11-07	
Chlorobenzene	< 1.0		μg/L	2020-11-07	
Chloroethane	< 2.0		μg/L	2020-11-07	
Chloroform	< 1.0		μg/L	2020-11-07	
Dibromochloromethane	< 1.0		μg/L	2020-11-07	
1,2-Dibromoethane	< 0.3		μg/L	2020-11-07	
Dibromomethane	< 1.0		μg/L	2020-11-07	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-11-07	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-11-07	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,2-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethylene	< 1.0		μg/L	2020-11-07	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
Dichloromethane	< 3.0		μg/L	2020-11-07	
2.cc.omounding	- 0.0	3.0	ry'-	2020 11 07 F	age 23 of 4

Ecoscape Environmental Ltd. **REPORTED TO WORK ORDER**

20K0317 **PROJECT** 19-2850 - Golden REPORTED 2020-11-10 16:16

	Result	RL	Units	Analyzed	Qualifie
DUP A (20K0317-09) Matrix: Water Sa	ampled: 2020-11-03, Continued				
/olatile Organic Compounds (VOC), Contin	nued				
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-11-07	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-11-07	
Ethylbenzene	< 1.0		μg/L	2020-11-07	
Methyl tert-butyl ether	< 1.0		μg/L	2020-11-07	
Styrene	< 1.0		μg/L	2020-11-07	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-11-07	
Tetrachloroethylene	< 1.0		μg/L	2020-11-07	
Toluene	< 1.0		μg/L	2020-11-07	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-11-07	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-11-07	
Trichloroethylene	< 1.0	1.0	μg/L	2020-11-07	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-11-07	
Vinyl chloride	< 1.0		μg/L	2020-11-07	
Xylenes (total)	< 2.0	2.0	μg/L	2020-11-07	
Surrogate: Toluene-d8	66	70-130	%	2020-11-07	S02
Surrogate: 4-Bromofluorobenzene	74	70-130	%	2020-11-07	
Surrogate: 1,4-Dichlorobenzene-d4	85	70-130	%	2020-11-07	
0MW20-01 (20K0317-10) Matrix: Water	r Sampled: 2020-11-03				
nions		0.10	mall	2020 11 04	
<i>nions</i> Bromide	< 0.10		mg/L	2020-11-04	
nions Bromide Chloride	< 0.10 34.7	0.10	mg/L	2020-11-04	
nions Bromide Chloride Fluoride	< 0.10 34.7 < 0.10	0.10 0.10	mg/L mg/L	2020-11-04 2020-11-04	
Inions Bromide Chloride Fluoride Nitrate (as N)	< 0.10 34.7 < 0.10 0.403	0.10 0.10 0.010	mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04	
nions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	< 0.10 34.7 < 0.10 0.403 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04	
nions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	< 0.10 34.7 < 0.10 0.403	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04	
nions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate alculated Parameters	< 0.10 34.7 < 0.10 0.403 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04	
nions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04	
nions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Falculated Parameters Hardness, Total (as CaCO3) Fissolved Metals Lithium, dissolved	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0	0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A	
nions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Clissolved Metals Lithium, dissolved Aluminum, dissolved	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0 264	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A	
nions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Cissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0 264 0.00170 < 0.0050	0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Ealculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0 264 0.00170 < 0.0050 < 0.00020	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0 264 0.00170 < 0.0050 < 0.00020 < 0.00050	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0 264 0.00170 < 0.0050 < 0.00020 < 0.00050 0.119	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.00050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Salculated Parameters Hardness, Total (as CaCO3) Sissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0 264 0.00170 < 0.0050 < 0.00020 < 0.00050 0.119 < 0.00010	0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Alculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved Bismuth, dissolved	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0 264 0.00170 < 0.0050 < 0.00020 < 0.00050 0.119 < 0.00010 < 0.00010	0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Ealculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Boron, dissolved	< 0.10 34.7 < 0.10 0.403 < 0.010 25.0 264 0.00170 < 0.0050 < 0.00020 < 0.00050 0.119 < 0.00010 < 0.00010 0.0534	0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.0050 0.00010 0.0500 0.0500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-11-04 2020-11-04 2020-11-04 2020-11-04 2020-11-04 N/A 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10 2020-11-10	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

20K0317

REPORTED 2020-11-10 16:16

Copper, dissolved 0.00052 0.00040 mg/L 2020-11 Iron, dissolved < 0.010 0.010 mg/L 2020-11 Lead, dissolved < 0.00020 0.00020 mg/L 2020-11 Magnesium, dissolved 0.0101 0.00020 mg/L 2020-11 Marganese, dissolved 0.0101 0.00001 mg/L 2020-11 Mercury, dissolved < 0.00001 0.00001 mg/L 2020-11 Molybdenum, dissolved < 0.00004 0.00004 mg/L 2020-11 Nickel, dissolved < 0.00004 0.0004 mg/L 2020-11 Phosphrous, dissolved < 0.055 0.050 mg/L 2020-11 Potassium, dissolved < 0.0050 0.0005 mg/L 2020-11 Silicen, dissolved 3.5 1.0 mg/L 2020-11 Silver, dissolved 21.1 0.10 mg/L 2020-11 Silver, dissolved 21.1 0.10 mg/L 2020-11 Strontium, dissolved 8.6 3.0<	Analyte	Result	RL	Units	Analyzed	Qualifie
Cobalt, dissolved 0.00015 0.00010 mg/L 2020-11 Copper, dissolved 0.00052 0.00040 mg/L 2020-11 Lead, dissolved < 0.010 0.010 mg/L 2020-11 Lead, dissolved < 0.00020 0.00020 mg/L 2020-11 Magnesium, dissolved 30.3 0.010 mg/L 2020-11 Mercury, dissolved < 0.00010 0.00020 mg/L 2020-11 Molybdenum, dissolved 0.00075 0.00010 mg/L 2020-11 Mickel, dissolved < 0.00040 0.00040 mg/L 2020-11 Nickel, dissolved < 0.00050 0.00040 mg/L 2020-11 Phosphorus, dissolved < 0.0050 0.050 mg/L 2020-11 Potassium, dissolved 1.23 0.10 mg/L 2020-11 Silicer, dissolved 3.5 1.0 mg/L 2020-11 Silicer, dissolved 3.5 1.0 mg/L 2020-11 Silver, dissolved 2.1 0.00050 mg/L 2020-11 Storbitum, dissolved 2.1 0.00050 mg/L 2020-11 Sturbum, dissolved	MW20-01 (20K0317-10) Matrix	:: Water Sampled: 2020-11	1-03, Continued			
Copper, dissolved 0.00052 0.00040 mg/L 2020-11 Iron, dissolved < 0.010	issolved Metals, Continued					
Iron, dissolved < 0.010 0.010 mg/L 2020-11 Lead, dissolved < 0.00020	Cobalt, dissolved	0.00015	0.00010	mg/L	2020-11-10	
Lead, dissolved < 0.00020 0.00020 mg/L 2020-11 Magnesium, dissolved 30.3 0.010 mg/L 2020-11 Magnesium, dissolved 0.0101 0.00001 mg/L 2020-11 Mercury, dissolved < 0.000010	Copper, dissolved	0.00052	0.00040	mg/L	2020-11-10	
Magnesium, dissolved 30,3 0.010 mg/L 2020-11 Manganese, dissolved 0.0101 0.00020 mg/L 2020-11 Mercury, dissolved <0.000075 0.00010 mg/L 2020-11 Molybdenum, dissolved <0.00076 0.00010 mg/L 2020-11 Nickel, dissolved <0.00040 0.00040 mg/L 2020-11 Phosphorus, dissolved <0.050 0.0050 mg/L 2020-11 Potassium, dissolved <1.23 0.10 mg/L 2020-11 Selenium, dissolved <0.00050 0.00050 mg/L 2020-11 Silicon, dissolved <0.00050 0.00050 mg/L 2020-11 Sodium, dissolved <0.00050 0.00050 mg/L 2020-11 Sodium, dissolved <0.00050 0.00050 mg/L 2020-11 Storitum, dissolved <0.342 0.0010 mg/L 2020-11 Sulfur, dissolved <0.00050 0.00050 mg/L 2020-11 Tellurium, dissolved <0.00020 0.00020 mg/L 2020-11 Thorium, dissolved <0.00020 0.00020 mg/L 2020-11	Iron, dissolved	< 0.010	0.010	mg/L	2020-11-10	
Manganese, dissolved 0.0101 0.00020 mg/L 2020-11 Mercury, dissolved < 0.000075 0.00010 mg/L 2020-11 Nickel, dissolved < 0.00040 0.00040 mg/L 2020-11 Nickel, dissolved < 0.00040 0.00040 mg/L 2020-11 Phosphorus, dissolved < 0.050 0.055 mg/L 2020-11 Potassium, dissolved < 0.00050 0.00050 mg/L 2020-11 Silicon, dissolved < 0.00050 0.00050 mg/L 2020-11 Silicon, dissolved < 0.00050 0.00050 mg/L 2020-11 Silicon, dissolved < 0.00050 0.00050 mg/L 2020-11 Stodium, dissolved < 0.00050 0.00050 mg/L 2020-11 Storotium, dissolved < 0.342 0.001 mg/L 2020-11 Stuffur, dissolved < 0.00020 0.00050 mg/L 2020-11 Tallurium, dissolved < 0.000020 0.00050 mg/L 2020-11 Tinalium, dissolved </td <td>Lead, dissolved</td> <td>< 0.00020</td> <td>0.00020</td> <td>mg/L</td> <td>2020-11-10</td> <td></td>	Lead, dissolved	< 0.00020	0.00020	mg/L	2020-11-10	
Mercury, dissolved < 0.000010 0.00010 mg/L 2020-11 Molybdenum, dissolved 0.00075 0.00010 mg/L 2020-11 Nickel, dissolved < 0.00040 0.00040 mg/L 2020-11 Phosphorus, dissolved < 0.0050 0.050 mg/L 2020-11 Potassium, dissolved 1.23 0.10 mg/L 2020-11 Silicon, dissolved 3.5 1.0 mg/L 2020-11 Siliver, dissolved 2.1 0.00050 0.00050 mg/L 2020-11 Schlum, dissolved 2.1 0.00050 0.00050 mg/L 2020-11 Strontium, dissolved 2.1 0.00050 0.00050 mg/L 2020-11 Strontium, dissolved 8.6 3.0 mg/L 2020-11 Turium, dissolved 0.00050 0.00050 mg/L 2020-11 Thorium, dissolved 0.000020 0.00050 mg/L 2020-11 Tin, dissolved 0.00010 0.00010 mg/L 2020-11	Magnesium, dissolved	30.3	0.010	mg/L	2020-11-10	
Molybdenum, dissolved 0.00075 0.00010 mg/L 2020-11 Nickel, dissolved < 0.00040	Manganese, dissolved	0.0101	0.00020	mg/L	2020-11-10	
Nickel, dissolved < 0.00040 0.00040 mg/L 2020-11 Phosphorus, dissolved < 0.050		< 0.000010	0.000010	mg/L	2020-11-06	
Phosphorus, dissolved < 0.050 0.050 mg/L 2020-11- Potassium, dissolved 1.23 0.10 mg/L 2020-11- Selenium, dissolved < 0.00050 0.00050 mg/L 2020-11- Silicon, dissolved 3.5 1.0 mg/L 2020-11- Silver, dissolved < 0.000050 0.00050 mg/L 2020-11- Sodium, dissolved 21.1 0.10 mg/L 2020-11- Storntium, dissolved 8.6 3.0 mg/L 2020-11- Stuffur, dissolved 8.6 3.0 mg/L 2020-11- Tellurium, dissolved < 0.00050 0.00050 mg/L 2020-11- Thalium, dissolved < 0.00020 0.00020 mg/L 2020-11- Thorium, dissolved < 0.00020 0.00020 mg/L 2020-11- Tinn, dissolved < 0.00020 0.00020 mg/L 2020-11- Tinn, dissolved < 0.00020 0.00020 mg/L 2020-11- Tungsten, dissolved < 0.0010	Molybdenum, dissolved	0.00075	0.00010	mg/L	2020-11-10	
Potassium, dissolved	Nickel, dissolved	< 0.00040	0.00040	mg/L	2020-11-10	
Potassium, dissolved	Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-11-10	
Selenium, dissolved < 0.00050 0.00050 mg/L 2020-11 Silicor, dissolved 3.5 1.0 mg/L 2020-11 Silver, dissolved < 0.00050	Potassium, dissolved	1.23			2020-11-10	
Silicon, dissolved 3.5 1.0 mg/L 2020-11 Silver, dissolved < 0.000050	Selenium, dissolved	< 0.00050			2020-11-10	
Silver, dissolved < 0.000050 0.000050 mg/L 2020-11 Sodium, dissolved 21.1 0.10 mg/L 2020-11 Strontium, dissolved 0.342 0.0010 mg/L 2020-11 Sulfur, dissolved 8.6 3.0 mg/L 2020-11 Tellurium, dissolved < 0.00050	Silicon, dissolved	3.5			2020-11-10	
Sodium, dissolved 21.1 0.10 mg/L 2020-11 Strontium, dissolved 0.342 0.0010 mg/L 2020-11 Sulfur, dissolved 8.6 3.0 mg/L 2020-11 Tellurium, dissolved < 0.00050	Silver, dissolved	< 0.000050	0.000050	ma/L	2020-11-10	
Strontium, dissolved 0.342 0.0010 mg/L 2020-11 Sulfur, dissolved 8.6 3.0 mg/L 2020-11 Tellurium, dissolved < 0.00050	<u> </u>	21.1			2020-11-10	
Sulfur, dissolved 8.6 3.0 mg/L 2020-11. Tellurium, dissolved < 0.00050	Strontium, dissolved	0.342			2020-11-10	
Tellurium, dissolved	· · · · · · · · · · · · · · · · · · ·				2020-11-10	
Thallium, dissolved < 0.000020					2020-11-10	
Thorium, dissolved < 0.00010	<u> </u>				2020-11-10	
Tin, dissolved < 0.00020 0.00020 mg/L 2020-11- Titanium, dissolved < 0.0050 0.0050 mg/L 2020-11- Titanium, dissolved < 0.0010 0.0010 mg/L 2020-11- Tungsten, dissolved 0.000721 0.000020 mg/L 2020-11- Uranium, dissolved 0.000721 0.000020 mg/L 2020-11- Vanadium, dissolved < 0.0010 0.0010 mg/L 2020-11- Zinc, dissolved < 0.0040 0.0040 mg/L 2020-11- Zirconium, dissolved < 0.0040 0.0040 mg/L 2020-11- Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11- Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11- Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11- Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11- Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11- Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11- Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11- Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11- Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11- Zirconium, dissolved (as CaCO3) 195 1.0 mg/L 2020-11- Alkalinity, Total (as CaCO3) 195 1.0 mg/L 2020-11- Alkalinity, Phenolphthalein (as CaCO3) 195 1.0 mg/L 2020-11- Alkalinity, Phenolphthalein (as CaCO3) 195 1.0 mg/L 2020-11- Alkalinity, Carbonate (as CaCO3) 195 1.0 mg/L 2020-11- Alkalinity, Carbonate (as CaCO3) 195 1.0 mg/L 2020-11- Bicarbonate (HCO3) 238 1.22 mg/L N/A Carbonate (HCO3) 238 1.22 mg/L N/A Carbonate (CO3) 4.0600 0.600 mg/L N/A Hydroxide (OH) 4.0.340 0.340 mg/L N/A Ammonia, Total (as N) 4.0.500 0.050 mg/L 2020-11- BOD, 5-day 4.5.8 2.0 mg/L 2020-11- BOD, 5-day 4.5.8 2.0 mg/L 2020-11- Conductivity (EC) 568 2.0 µS/cm 2020-11-					2020-11-10	
Titanium, dissolved					2020-11-10	
Tungsten, dissolved < 0.0010 0.0010 mg/L 2020-11. Uranium, dissolved 0.000721 0.000020 mg/L 2020-11. Vanadium, dissolved < 0.0010 0.0010 mg/L 2020-11. Zinc, dissolved < 0.0040 0.0040 mg/L 2020-11. Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11. Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11. Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11. Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11. Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11. Zirconium, dissolved	·				2020-11-10	
Uranium, dissolved 0.000721 0.000020 mg/L 2020-11 Vanadium, dissolved < 0.0010	·				2020-11-10	
Vanadium, dissolved < 0.0010 0.0010 mg/L 2020-11. Zinc, dissolved < 0.0040	-				2020-11-10	
Zinc, dissolved < 0.0040 0.0040 mg/L 2020-11. Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11. Zirconium, dissolved < 0.00010 mg/L 2020-11. Zirconium, dissolved < 0.00010 mg/L 2020-11. Zirconium, dissolved < 0.00010 mg/L 2020-11. Zirconium, dissolved < 0.00010 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0.0001 mg/L 2020-11. Zirconium, dissolved < 0	<u> </u>				2020-11-10	
Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-11- Zeneral Parameters Alkalinity, Total (as CaCO3) 195 1.0 mg/L 2020-11- Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L 2020-11- Alkalinity, Bicarbonate (as CaCO3) 195 1.0 mg/L 2020-11- Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L 2020-11- Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L 2020-11- Bicarbonate (HCO3) 238 1.22 mg/L N/A Carbonate (CO3) < 0.600 0.600 mg/L N/A Hydroxide (OH) < 0.340 0.340 mg/L N/A Ammonia, Total (as N) < 0.050 0.050 mg/L 2020-11- BOD, 5-day < 5.8 2.0 mg/L 2020-11- Conductivity (EC) 568 2.0 µS/cm 2020-11-	<u> </u>				2020-11-10	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Bicarbonate (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Bicarbonate (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Bicarbonate (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Bicarbonate (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Bicarbonate (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Bicarbonate (as CaCO3) Alkalinity, Bicarbonate	·					
Alkalinity, Total (as CaCO3) 195 1.0 mg/L 2020-11. Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L 2020-11. Alkalinity, Bicarbonate (as CaCO3) 195 1.0 mg/L 2020-11. Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L 2020-11. Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L 2020-11. Bicarbonate (HCO3) 238 1.22 mg/L N/A Carbonate (CO3) < 0.600 0.600 mg/L N/A Hydroxide (OH) < 0.340 0.340 mg/L N/A Ammonia, Total (as N) < 0.050 0.050 mg/L 2020-11. BOD, 5-day < 5.8 2.0 mg/L 2020-11. Conductivity (EC) 568 2.0 μS/cm 2020-11.	•		0.00010	IIIg/L	2020-11-10	
Alkalinity, Phenolphthalein (as CaCO3) < 1.0		195	1.0	ma/l	2020-11-05	
Alkalinity, Bicarbonate (as CaCO3) 195 1.0 mg/L 2020-11 Alkalinity, Carbonate (as CaCO3) < 1.0	· · · · · · · · · · · · · · · · · · ·				2020-11-05	
Alkalinity, Carbonate (as CaCO3) < 1.0		· · · · · · · · · · · · · · · · · · ·				
Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L 2020-11 Bicarbonate (HCO3) 238 1.22 mg/L N/A Carbonate (CO3) < 0.600	, , , , , , , , , , , , , , , , , , ,				2020-11-05	
Bicarbonate (HCO3) 238 1.22 mg/L N/A Carbonate (CO3) < 0.600					2020-11-05	
Carbonate (CO3) < 0.600 mg/L N/A Hydroxide (OH) < 0.340						
Hydroxide (OH) < 0.340 0.340 mg/L N/A Ammonia, Total (as N) < 0.050	· ,					
Ammonia, Total (as N) < 0.050	· · · · · · · · · · · · · · · · · · ·					
BOD, 5-day < 5.8	· · · · · · · · · · · · · · · · · · ·					
Chemical Oxygen Demand < 20 20 mg/L 2020-11- Conductivity (EC) 568 2.0 μS/cm 2020-11-	· '					
Conductivity (EC) 568 2.0 μS/cm 2020-11-	•					
0.23 U 10 0F units 7070-115						μтο
·	•			-	2020-11-05 2020-11-06	HT2

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

20K0317

REPORTED 2020-11-10 16:16

Analyte	Result	RL	Units	Analyzed	Qualific
DMW20-01 (20K0317-10) Matrix: Water	Sampled: 2020-11-03, Contin	ued			
General Parameters, Continued					
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-11-05	
Turbidity	1.75	0.10	NTU	2020-11-04	
/olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-11-07	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-11-07	
Bromoform	< 1.0		μg/L	2020-11-07	
Carbon tetrachloride	< 0.5		μg/L	2020-11-07	
Chlorobenzene	< 1.0	1.0	μg/L	2020-11-07	
Chloroethane	< 2.0	2.0	μg/L	2020-11-07	
Chloroform	< 1.0		μg/L	2020-11-07	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-11-07	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-11-07	
Dibromomethane	< 1.0	1.0	μg/L	2020-11-07	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-11-07	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-11-07	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,2-Dichloroethane	< 1.0		μg/L	2020-11-07	
1,1-Dichloroethylene	< 1.0		μg/L	2020-11-07	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-11-07	
Dichloromethane	< 3.0		μg/L	2020-11-07	
1,2-Dichloropropane	< 1.0		μg/L	2020-11-07	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-11-07	
Ethylbenzene	< 1.0		μg/L	2020-11-07	
Methyl tert-butyl ether	< 1.0		μg/L	2020-11-07	
Styrene	< 1.0		μg/L	2020-11-07	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-11-07	
Tetrachloroethylene	< 1.0		μg/L	2020-11-07	
Toluene	< 1.0		μg/L	2020-11-07	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-11-07	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-11-07	
Trichloroethylene	< 1.0		μg/L	2020-11-07	
Trichlorofluoromethane	< 1.0		μg/L	2020-11-07	
Vinyl chloride	< 1.0		μg/L	2020-11-07	
Xylenes (total)	< 2.0		μg/L	2020-11-07	
Surrogate: Toluene-d8	69	70-130		2020-11-07	S02
Surrogate: 4-Bromofluorobenzene	77	70-130	%	2020-11-07	
Surrogate: 1,4-Dichlorobenzene-d4	88	70-130		2020-11-07	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden **REPORTED** 2020-11-10 16:16

Sample Qualifiers:

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is

recommended.

Surrogate recovery outside of control limits. Data accepted based on acceptable recovery of other surrogates.

20K0317

WORK ORDER

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

20K0317

REPORTED 2020-11-10 16:16

Analysis Description	Method Ref.	Technique	Accredited	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	✓	Kelowna
Ammonia, Total in Water	SM 4500-NH3 G* (2017)	Automated Colorimetry (Phenate)	✓	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	✓	Kelowna
Biochemical Oxygen Demand in Water	SM 5210 B (2017)	Dissolved Oxygen Meter	✓	Kelowna
Chemical Oxygen Demand in Water	SM 5220 D* (2017)	Closed Reflux, Colorimetry	✓	Kelowna
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	✓	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond
Hardness in Water	SM 2340 B (2017)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	✓	N/A
Mercury, dissolved in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
pH in Water	SM 4500-H+ B (2017)	Electrometry	✓	Kelowna
Solids, Total Dissolved in Water	SM 2540 C* (2017)	Gravimetry (Dried at 103-105C)	✓	Kelowna
Solids, Total Suspended in Water	SM 2540 D* (2017)	Gravimetry (Dried at 103-105C)	✓	Kelowna
Turbidity in Water	SM 2130 B (2017)	Nephelometry	✓	Kelowna
Volatile Organic Compounds in Water	EPA 5030B / EPA 8260D	Purge&Trap / GC-MSD (SIM)	✓	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units pH units pH < 7 = acidic, ph > 7 = basic

μg/L Micrograms per litre

μS/cm Microsiemens per centimetre

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO

Ecoscape Environmental Ltd.

PROJECT

19-2850 - Golden

WORK ORDER

20K0317

REPORTED

2020-11-10 16:16

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline (s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

REPORTED TO

Ecoscape Environmental Ltd.

PROJECT

19-2850 - Golden

WORK ORDER

20K0317

REPORTED

2020-11-10 16:16

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk)**: A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples,
 also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B0K0236									
Blank (B0K0236-BLK1)			Prepared	I: 2020-11-0	4, Analyze	ed: 2020-1	11-04		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B0K0236-BLK2)			Prepared	l: 2020-11-0	4, Analyze	d: 2020-1	11-04		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B0K0236-BS1)			Prepared	l: 2020-11-0	4, Analyze	d: 2020-1	11-04		
Bromide	4.05	0.10 mg/L	4.00		101	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Fluoride	4.01	0.10 mg/L	4.00		100	88-108			
Nitrate (as N)	4.01	0.010 mg/L	4.00		100	90-110			
Nitrite (as N)	2.00	0.010 mg/L	2.00		100	85-115			
Sulfate	16.1	1.0 mg/L	16.0		101	90-110			
LCS (B0K0236-BS2)			Prepared	l: 2020-11-0	4, Analyze	d: 2020-1	11-04		
Bromide	4.05	0.10 mg/L	4.00		101	85-115			
Chloride	16.1	0.10 mg/L	16.0		100	90-110			
Fluoride	4.02	0.10 mg/L	4.00		100	88-108			
Nitrate (as N)	3.72	0.010 mg/L	4.00		93	90-110			
Nitrite (as N)	2.08	0.010 mg/L	2.00		104	85-115			
Sulfate	16.2	1.0 mg/L	16.0		101	90-110			

Dissolved Metals, Batch B0K0612

Blank (B0K0612-BLK1)			Prepared: 2020-11-06, Analyzed: 2020-11-06
Mercury, dissolved	< 0.000010	0.000010 mg/L	

Antimony, dissolved

APPENDIX 2: QUALITY CONTROL RESULTS

•	oe Environmental Ltd. I - Golden				WORK REPOR	ORDER TED)317)-11-10	16:16
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Dissolved Metals, Batch B0K	0612, Continued								
Blank (B0K0612-BLK2)			Prepared	d: 2020-11-0	6. Analvze	d: 2020-1	1-06		
Mercury, dissolved	< 0.000010	0.000010 mg/L			-, · · · · · · · · · · · · · · · · · · ·				
		-							
Matrix Spike (B0K0612-MS2)		ource: 20K0317-02		d: 2020-11-0			1-06		
Mercury, dissolved	0.000193	0.000010 mg/L	0.000250	< 0.000010	76	70-130			
Reference (B0K0612-SRM1)			Prepared	d: 2020-11-0	6, Analyze	d: 2020-1	1-06		
Mercury, dissolved	0.00575	0.000010 mg/L	0.00581		99	70-130			
Deference (DOMOC42 CDM2)		-	Droparas	N. 2020 44 0	Analyza	d: 2020 1	1.06		
Reference (B0K0612-SRM2) Mercury, dissolved	0.00547	0.000010 mg/L	0.00581	d: 2020-11-0	94	70-130	1-00		
Dissolved Metals, Batch B0K Blank (B0K0791-BLK1)	70791		Prenared	d: 2020-11-1	0 Analyza	d: 2020_1	1_10		
·	< 0.00010	0.00010 ma/l	Порагос	1. 2020-11-1	o, Analyzo	u. 2020-1	1-10		
Lithium, dissolved Aluminum, dissolved	< 0.00010 < 0.0050	0.00010 mg/L 0.0050 mg/L							
Antimony, dissolved	< 0.00020	0.0030 mg/L							
Arsenic, dissolved	< 0.00050	0.00050 mg/L							
Barium, dissolved	< 0.0050	0.0050 mg/L							
Beryllium, dissolved	< 0.00010	0.00010 mg/L							
Bismuth, dissolved	< 0.00010	0.00010 mg/L							
Boron, dissolved	< 0.0500	0.0500 mg/L							
Cadmium, dissolved	< 0.000010	0.000010 mg/L							
Calcium, dissolved	< 0.20 < 0.00050	0.20 mg/L							
Chromium, dissolved Cobalt, dissolved	< 0.00050	0.00050 mg/L 0.00010 mg/L							
Copper, dissolved	< 0.00040	0.00040 mg/L							
Iron, dissolved	< 0.010	0.010 mg/L							
Lead, dissolved	< 0.00020	0.00020 mg/L							
Magnesium, dissolved	< 0.010	0.010 mg/L							
Manganese, dissolved	< 0.00020	0.00020 mg/L							
Molybdenum, dissolved	< 0.00010	0.00010 mg/L							
Nickel, dissolved Phosphorus, dissolved	< 0.00040 < 0.050	0.00040 mg/L 0.050 mg/L							
Potassium, dissolved	< 0.10	0.10 mg/L							
Selenium, dissolved	< 0.00050	0.00050 mg/L							
Silicon, dissolved	< 1.0	1.0 mg/L							
Silver, dissolved	< 0.000050	0.000050 mg/L							
Sodium, dissolved	< 0.10	0.10 mg/L							
Strontium, dissolved	< 0.0010	0.0010 mg/L							
Sulfur, dissolved Tellurium, dissolved	< 3.0	3.0 mg/L							
Thallium, dissolved	< 0.00050 < 0.000020	0.00050 mg/L 0.000020 mg/L							
Thorium, dissolved	< 0.00010	0.000020 mg/L							
Tin, dissolved	< 0.00020	0.00020 mg/L							
Titanium, dissolved	< 0.0050	0.0050 mg/L							
Tungsten, dissolved	< 0.0010	0.0010 mg/L							
Uranium, dissolved	< 0.000020	0.000020 mg/L							
Vanadium, dissolved	< 0.0010	0.0010 mg/L							
Zinc, dissolved	< 0.0040 < 0.00010	0.0040 mg/L							
Zirconium, dissolved LCS (B0K0791-BS1)	< 0.00010	0.00010 mg/L	Prepared	d: 2020-11-1	0, Analyze	d: 2020-1	1-10		
Lithium, dissolved	0.0191	0.00010 mg/L	0.0200		96	80-120			
Aluminum, dissolved	0.0234	0.0050 mg/L	0.0199		118	80-120			
Authorities des d	0.0100	0.00000"	0.0.00		100	00 120			

0.0200

100

80-120

0.00020 mg/L

0.0199

REPORTED TO PROJECT	Ecoscape Environmental Ltd. 19-2850 - Golden					WORK REPOR	ORDER TED	20K0 2020)317)-11-10	16:16
Analyte	Result	RL	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals,	Batch B0K0791, Continued									
LCS (B0K0791-BS	1), Continued			Prepared	: 2020-11-1	0, Analyze	d: 2020-1	1-10		
Arsenic, dissolved	0.0206	0.00050	mg/L	0.0200		103	80-120			
Barium, dissolved	0.0225	0.0050	mg/L	0.0198		114	80-120			
Beryllium, dissolved	0.0197	0.00010	mg/L	0.0198		99	80-120			
Bismuth, dissolved	0.0217			0.0200		109	80-120			
Boron, dissolved	< 0.0500			0.0200		115	80-120			
Cadmium, dissolved	0.0204			0.0199		103	80-120			
Calcium, dissolved	2.28		mg/L	2.02		113	80-120			
Chromium, dissolved				0.0198		99	80-120			
Cobalt, dissolved	0.0194			0.0199		98	80-120			
Copper, dissolved	0.0204			0.0200		102	80-120			
Iron, dissolved Lead, dissolved	1.98		mg/L	2.02		98 113	80-120			
Magnesium, dissolve	0.0224 d 2.14		mg/L mg/L	0.0199 2.02		106	80-120 80-120			
Manganese, dissolve				0.0199		94	80-120			
Molybdenum, dissolve				0.0200		97	80-120			
Nickel, dissolved	0.0194			0.0200		99	80-120			
Phosphorus, dissolve			mg/L	2.00		101	80-120			
Potassium, dissolved			mg/L	2.02		102	80-120			
Selenium, dissolved	0.0224			0.0200		112	80-120			
Silicon, dissolved	2.0		mg/L	2.00		101	80-120			
Silver, dissolved	0.0189			0.0200		95	80-120			
Sodium, dissolved	1.96		mg/L	2.02		97	80-120			
Strontium, dissolved	0.0196	0.0010	mg/L	0.0200		98	80-120			
Sulfur, dissolved	4.3	3.0	mg/L	5.00		85	80-120			
Tellurium, dissolved	0.0216			0.0200		108	80-120			
Thallium, dissolved	0.0198	0.000020	mg/L	0.0199		99	80-120			
Thorium, dissolved	0.0193	0.00010	mg/L	0.0200		97	80-120			
Tin, dissolved	0.0200			0.0200		100	80-120			
Titanium, dissolved	0.0198			0.0200		99	80-120			
Tungsten, dissolved	0.0221			0.0200		110	80-120			
Uranium, dissolved	0.0202			0.0200		101	80-120			
Vanadium, dissolved	0.0192			0.0200		96	80-120			
Zinc, dissolved	0.0219			0.0200		109	80-120			
Zirconium, dissolved	0.0194	0.00010	mg/L	0.0200		97	80-120			
Reference (B0K07	91-SRM1)			Prepared	2020-11-1	0, Analyze	d: 2020-1	1-10		
Lithium, dissolved	0.102		mg/L	0.100		102	70-130			
Aluminum, dissolved	0.241			0.235		103	70-130			
Antimony, dissolved	0.0496			0.0431		115	70-130			
Arsenic, dissolved	0.490			0.423		116	70-130			
Barium, dissolved	3.18			3.30		96	70-130			
Beryllium, dissolved	0.223			0.209		107	70-130			
Boron, dissolved	1.67			1.65		101	70-130			
Cadmium, dissolved	0.239			0.221		108	70-130			
Chromium dissolved	8.16		mg/L	7.72		106	70-130			
Chromium, dissolved				0.434		103	70-130 70-130			
Copper dissolved	0.131 0.868			0.124		105 106	70-130			
Copper, dissolved Iron, dissolved	1.36		mg/L mg/L	0.815 1.27		106	70-130			
Lead, dissolved	0.128			0.110		117	70-130			
Magnesium, dissolve			mg/L	6.59		116	70-130			
Manganese, dissolve				0.342		96	70-130			
Molybdenum, dissolve				0.404		106	70-130			
Nickel, dissolved	0.429 0.886			0.835		106	70-130			
Phosphorus, dissolve			mg/L	0.499		100	70-130			
Potassium, dissolved			mg/L	2.88		119	70-130			
i stassiam, alssoivea	5.42	0.10	mg/L	2.00		110	70-100			

REPORTED TO PROJECT	Ecoscape Environme 19-2850 - Golden	ntal Ltd.				WORK REPOR	ORDER	20K(202(0317 0-11-10	16:16
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Dissolved Metals,	Batch B0K0791, Continu	ed								
Reference (B0K07	91-SRM1), Continued			Prepared	l: 2020-11-10), Analyze	d: 2020-1	1-10		
Selenium, dissolved		0.0395	0.00050 mg/L	0.0324		122	70-130			
Sodium, dissolved		19.2	0.10 mg/L	18.0		107	70-130			
Strontium, dissolved		0.944	0.0010 mg/L	0.935		101	70-130			
Thallium, dissolved		0.0403	0.000020 mg/L	0.0385		105	70-130			
Uranium, dissolved		0.258	0.000020 mg/L	0.258		100	70-130			
Vanadium, dissolved		0.878	0.0010 mg/L	0.873		101	70-130			
Zinc, dissolved		0.963	0.0040 mg/L	0.848		114	70-130			
General Parameter	s, Batch B0K0154									
Blank (B0K0154-B				Prepared	l: 2020-11-04	I, Analyze	d: 2020-1	1-04		
Ammonia, Total (as N	N)	< 0.050	0.050 mg/L							
Blank (B0K0154-B	LK2)			Prepared	l: 2020-11-0 ²	I, Analyze	d: 2020-1	1-04		
Ammonia, Total (as N	I)	< 0.050	0.050 mg/L							
Blank (B0K0154-B	LK3)			Prepared	l: 2020-11-04	I, Analyze	d: 2020-1	1-04		
Ammonia, Total (as N	N)	< 0.050	0.050 mg/L							
LCS (B0K0154-BS	1)			Prepared	l: 2020-11-04	I, Analyze	d: 2020-1	1-04		
Ammonia, Total (as N	l)	1.04	0.050 mg/L	1.00		104	90-115			
LCS (B0K0154-BS	2)			Prepared	l: 2020-11-04	I, Analyze	d: 2020-1	1-04		
Ammonia, Total (as N	1)	1.04	0.050 mg/L	1.00		104	90-115			
LCS (B0K0154-BS	3)			Prepared	l: 2020-11-04	I, Analyze	d: 2020-1	1-04		
Ammonia, Total (as N	l)	1.04	0.050 mg/L	1.00		104	90-115			
Duplicate (B0K015	54-DUP3)	So	ource: 20K0317-10	Prepared	l: 2020-11-05	5, Analyze	d: 2020-1	1-05		
Ammonia, Total (as N	l)	< 0.050	0.050 mg/L		< 0.050				15	
Matrix Spike (B0K	0154-MS3)	Sc	ource: 20K0317-10	Prepared	l: 2020-11-05	5, Analyze	d: 2020-1	1-05		
Ammonia, Total (as N	N)	0.274	0.050 mg/L	0.250	< 0.050	105	75-125			
General Parameter	rs, Batch B0K0327									
Blank (B0K0327-B	LK1)			Prepared	l: 2020-11-04	I, Analyze	d: 2020-1	1-09		
BOD, 5-day		< 2.0	2.0 mg/L							
LCS (B0K0327-BS	1)			Prepared	l: 2020-11-04	I, Analyze	d: 2020-1	1-09		
BOD, 5-day		189	2.0 mg/L	180		105	85-115			
General Parameter	rs, Batch B0K0351									
Blank (B0K0351-B	SLK1)			Prepared	l: 2020-11-04	I, Analyze	d: 2020-1	1-04		
Chemical Oxygen De	•	< 20	20 mg/L							
LCS (B0K0351-BS	1)			Prepared	l: 2020-11-04	I, Analyze	d: 2020-1	1-04		
Chemical Oxygen De	,	494	20 mg/L	500	•	99	89-115			
General Parameter	rs, Batch B0K0361									
				Dronored	l· 2020 44 04	1 Analyza	d- 2020 4-	1 04		
Blank (B0K0361-B	LNI)	< 0.10	0.10 NTU	гтератео	l: 2020-11-04	r, Analyze	u. 2020-1	1-04		
Turbluity		~ 0.10	0.10 1110							

PROJECT	Ecoscape Environr 19-2850 - Golden	nieniai Liu.				REPOR	ORDER TED)317)-11-10	16:16
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
General Parameter	s, Batch B0K0361, Co	ontinued								
Blank (B0K0361-B	LK2)			Prepared	: 2020-11-0	4, Analyze	d: 2020-1	11-04		
Turbidity		< 0.10	0.10 NTU							
LCS (B0K0361-BS	1)			Prepared	: 2020-11-0	4, Analyze	d: 2020-1	11-04		
Turbidity	•	36.9	0.10 NTU	40.0		92	90-110			
LCS (B0K0361-BS	2)			Prepared	: 2020-11-0	4 Analyze	d· 2020-1	11-04		
Turbidity	_,	38.3	0.10 NTU	40.0	. 2020 11 0	96	90-110			
General Parameter	s, Batch B0K0388									
Blank (B0K0388-B	LK1)			Prepared	: 2020-11-0	5, Analyze	d: 2020-1	11-05		
Solids, Total Suspend		< 2.0	2.0 mg/L							
Blank (B0K0388-B	LK2)			Prepared	: 2020-11-0	5, Analvze	d: 2020-1	11-05		
Solids, Total Suspend		< 2.0	2.0 mg/L			,,20				
LCS (B0K0388-BS	1)			Prenared	: 2020-11-0	5 Analyze	4· 2020-	11_05		
Solids, Total Suspend	•	98.0	10.0 mg/L	100	. 2020-11-0	98	85-115	11-00		
LCS (B0K0388-BS					: 2020-11-0			11.05		
LCO (DUNUSOO-DO	4)			Fiepaieu	. 2020-11-0		85-115	11-03		
Solids Total Suspend	ted	102	10.0 mg/l	100		102				
Solids, Total Suspend		102	10.0 mg/L	100	0000 44 0	102		14.05		
Duplicate (B0K038 Solids, Total Suspend	38-DUP2)		10.0 mg/L rce: 20K0317-01 2.0 mg/L		: 2020-11-0 315			11-05 5	20	
Duplicate (B0K038 Solids, Total Suspend	38-DUP2) ded s, Batch B0K0501	Sour	ce: 20K0317-01	Prepared		5, Analyze	d: 2020-1	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca	88-DUP2) ded s, Batch B0K0501 LK1) aCO3)	331 < 1.0	2.0 mg/L	Prepared	315	5, Analyze	d: 2020-1	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth	38-DUP2) ded s, Batch B0K0501 sLK1) aCO3) alein (as CaCO3)	< 1.0 < 1.0	2.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	315	5, Analyze	d: 2020-1	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca	38-DUP2) ded s, Batch B0K0501 sLK1) aCO3) alein (as CaCO3) e (as CaCO3)	331 < 1.0	2.0 mg/L	Prepared	315	5, Analyze	d: 2020-1	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Hydroxide	ded ss, Batch B0K0501 LK1) aCO3) alein (as CaCO3) e (as CaCO3) (as CaCO3)	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	315	5, Analyze	d: 2020-1	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Carbonate	ded ss, Batch B0K0501 LK1) aCO3) alein (as CaCO3) e (as CaCO3) (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	315	5, Analyze	d: 2020-1	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Hydroxide Conductivity (EC) Blank (B0K0501-B	38-DUP2) ded ss, Batch B0K0501 LK1) aCO3) halein (as CaCO3) e (as CaCO3) (as CaCO3) (as CaCO3)	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 mg/L 2.0 µS/cm	Prepared	315	5, Analyzed	d: 2020- ⁻	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca	38-DUP2) ded ss, Batch B0K0501 LK1) aCO3) halein (as CaCO3) e (as CaCO3) (as CaCO3) (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L	Prepared	315	5, Analyzed	d: 2020- ⁻	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Hydroxide Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth	ded ss, Batch B0K0501 LK1) aCO3) halein (as CaCO3) e (as CaCO3) (as CaCO3) (as CaCO3) LK2) aCO3) halein (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm	Prepared	315	5, Analyzed	d: 2020- ⁻	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Phenolphth Alkalinity, Bicarbonate	as-DUP2) ded s, Batch B0K0501 LK1) aCO3) alelein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) alelein (as CaCO3) alelein (as CaCO3) a (as CaCO3) alelein (as CaCO3) a (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L	Prepared	315	5, Analyzed	d: 2020- ⁻	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Hydroxide Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Carbonate Alkalinity, Carbonate	38-DUP2) ded ss, Batch B0K0501 LK1) aCO3) halein (as CaCO3) e (as CaCO3) (as CaCO3) LK2) aCO3) halein (as CaCO3) e (as CaCO3) halein (as CaCO3) e (as CaCO3) halein (as CaCO3) e (as CaCO3) (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	315	5, Analyzed	d: 2020- ⁻	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Garbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Bicarbonate Alkalinity, Bicarbonate	38-DUP2) ded ss, Batch B0K0501 LK1) aCO3) halein (as CaCO3) e (as CaCO3) (as CaCO3) LK2) aCO3) halein (as CaCO3) e (as CaCO3) halein (as CaCO3) e (as CaCO3) halein (as CaCO3) e (as CaCO3) (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	315	5, Analyzed	d: 2020- ⁻	5	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Hydroxide Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Carbonate Alkalinity, Carbonate	ded ss, Batch B0K0501 LK1) aCO3) alein (as CaCO3) as CaCO3) (as CaCO3) (as CaCO3) alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	315	5, Analyze	d: 2020-1	5 11-05 11-05	20	
Duplicate (B0K038 Solids, Total Suspend Seneral Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Bicarbonate Alkalinity, Bicarbonate Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca	as-DUP2) ded ss, Batch B0K0501 LK1) aCO3) alein (as CaCO3) as CaCO3) (as CaCO3) (as CaCO3) alein (as CaCO3) (as CaCO3) (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	315 : 2020-11-0 : 2020-11-0	5, Analyze	d: 2020-1	5 11-05 11-05	20	
Duplicate (B0K038) Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Earbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Bicarbonate Alkalinity, Total (as Ca Alkalinity, Bicarbonate Alkalinity, Bicarbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca	as-DUP2) ded ss, Batch B0K0501 LK1) aCO3) alein (as CaCO3) as CaCO3) (as CaCO3) (as CaCO3) alein (as CaCO3) (as CaCO3) LK2) aCO3) alein (as CaCO3) aco3) (as CaCO3) (as CaCO3) aco3 alein (as CaCO3) aco3 aco3 aco3 aco3 aco3 aco3 aco3 aco3	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	315 : 2020-11-0 : 2020-11-0	5, Analyze	d: 2020-1	5 11-05 11-05	20	
Duplicate (B0K038 Solids, Total Suspend Seneral Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Phenolphth Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Phenolphth Alkalinity, Phenolphth Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B	asa-DUP2) ded ss, Batch B0K0501 LK1) acO3) alein (as CaCO3) ac (as CaCO3) (as CaCO3) LK2) acO3) alein (as CaCO3) aclein ccoccoccoccoccoccoccoccoccoccocco	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	315 : 2020-11-0 : 2020-11-0	5, Analyze	d: 2020-1	5 11-05 11-05	20	
Duplicate (B0K038) Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Earbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Phenolphth Alkalinity, Carbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Phenolphth Alkalinity, Garbonate Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Hydroxide (Alkalinity, Hydroxide)	ded ss, Batch B0K0501 LK1) aCO3) alein (as CaCO3) as CaCO3) (as CaCO3) alein (as CaCO3) (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) as CaCO3) as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L	Prepared	315 : 2020-11-0 : 2020-11-0	5, Analyze	d: 2020-1	5 11-05 11-05	20	
Duplicate (B0K038) Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Earbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Bicarbonate Alkalinity, Garbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Bicarbonate Alkalinity, Bicarbonate Alkalinity, Bicarbonate	ded ss, Batch B0K0501 LK1) aCO3) alein (as CaCO3) as CaCO3) (as CaCO3) alein (as CaCO3) (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) as CaCO3) as CaCO3) as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L	Prepared	315 : 2020-11-0 : 2020-11-0	5, Analyze	d: 2020-1	5 11-05 11-05	20	
Duplicate (B0K038) Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Earbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Phenolphth Alkalinity, Carbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Phenolphth Alkalinity, Garbonate Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Hydroxide (Alkalinity, Hydroxide)	38-DUP2) ded ss, Batch B0K0501 LK1) aCO3) alein (as CaCO3) (as CaCO3) (as CaCO3) alein (as CaCO3) (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L	Prepared Prepared Prepared	315 : 2020-11-0 : 2020-11-0	5, Analyzed 5, Analyzed 5, Analyzed 5, Analyzed	d: 2020-' d: 2020-' d: 2020-'	5 11-05 11-05	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Garbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Bicarbonate Alkalinity, Garbonate Alkalinity, Garbonate Alkalinity, Hydroxide (Conductivity (EC)	38-DUP2) ded ss, Batch B0K0501 LK1) aCO3) alein (as CaCO3) (as CaCO3) (as CaCO3) alein (as CaCO3) (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L	Prepared Prepared Prepared	315 : 2020-11-0 : 2020-11-0	5, Analyzed 5, Analyzed 5, Analyzed 5, Analyzed	d: 2020-' d: 2020-' d: 2020-'	5 11-05 11-05	20	
Duplicate (B0K038 Solids, Total Suspend General Parameter Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Phenolphth Alkalinity, Bicarbonate Alkalinity, Garbonate Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Hydroxide (Conductivity (EC) Blank (B0K0501-B Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Bicarbonate Alkalinity, Bicarbonate Alkalinity, Total (as Ca Alkalinity, Bicarbonate Alkalinity, Hydroxide (Conductivity (EC) LCS (B0K0501-BS	38-DUP2) ded ss, Batch B0K0501 LK1) aCO3) alein (as CaCO3) (as CaCO3) (as CaCO3) alein (as CaCO3) (as CaCO3) alein (as CaCO3) (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3)	<pre></pre>	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm	Prepared Prepared Prepared Prepared 100	315 : 2020-11-0 : 2020-11-0	5, Analyzed 5, Analyzed 5, Analyzed 5, Analyzed 103	d: 2020-' d: 2020-' d: 2020-' d: 2020-'	5 11-05 11-05	20	

	oscape Environmental -2850 - Golden	Ltd.				WORK REPOR	ORDER	20K(2020)317)-11-10	16:16
Analyte	F	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Ba	atch B0K0501, Continue	ed								
LCS (B0K0501-BS3)				Prepared	2020-11-0	5, Analyze	d: 2020-1	1-05		
Alkalinity, Total (as CaCO3)	103	1.0 mg/L	100		103	80-120			
LCS (B0K0501-BS4)	,			Droparod	2020-11-0	5 Analyzo	4· 2020 1	1 05		
Conductivity (EC)		1440	2.0 μS/cm	1410	. 2020-11-0	102	95-104	1-03		
		1440	2.0 μο/οπ							
LCS (B0K0501-BS5)					2020-11-0			1-05		
Conductivity (EC)		1460	2.0 μS/cm	1410		104	95-104			
LCS (B0K0501-BS6)				Prepared	2020-11-0	5, Analyze	d: 2020-1	1-05		
Conductivity (EC)		1420	2.0 μS/cm	1410		101	95-104			
Reference (B0K0501-Si	RM1)			Prepared	2020-11-0	5. Analvze	d: 2020-1	1-05		
pH	,	6.97	0.10 pH units	7.01		99	98-102			
		0.07	0.10 p.1 u.me		2000 44 0			4.05		
Reference (B0K0501-Si	RM2)				2020-11-0			1-05		
pH		6.97	0.10 pH units	7.01		99	98-102			
Reference (B0K0501-Si	RM3)			Prepared	2020-11-0	5, Analyze	d: 2020-1	1-05		
рН		6.98	0.10 pH units	7.01		100	98-102			
Solids, Total Dissolved LCS (B0K0541-BS1)		< 15	15 mg/L	Prepared	: 2020-11-0	6, Analyze	d: 2020-1	1-06		
					: 2020-11-0			1-06		
Solids, Total Dissolved		222	15 mg/L	240		92	85-115			
Duplicate (B0K0541-DL	JP1)		ource: 20K0317-01	Prepared	2020-11-0	6, Analyze	d: 2020-1			
Solids, Total Dissolved Volatile Organic Compo	ounds (VOC), Batch B0K	2500 (0600	15 mg/L		2550			2	15	
Blank (B0K0600-BLK1)				Prepared	: 2020-11-0	7, Analyze	d: 2020-1	1-07		
Benzene		< 0.5	0.5 μg/L	•						
Bromodichloromethane		< 1.0	1.0 µg/L							
Bromoform		< 1.0	1.0 µg/L							
Carbon tetrachloride Chlorobenzene		< 0.5 < 1.0	0.5 µg/L							
Chloroethane		< 2.0	1.0 μg/L 2.0 μg/L							
Chloroform		< 1.0	1.0 μg/L							
Dibromochloromethane		< 1.0	1.0 µg/L							
1,2-Dibromoethane		< 0.3	0.3 μg/L							
Dibromomethane 1.2-Dichlorobenzene		< 1.0 < 0.5	1.0 µg/L							
1,3-Dichlorobenzene		< 1.0	0.5 μg/L 1.0 μg/L							
1,4-Dichlorobenzene		< 1.0	1.0 μg/L							
1,1-Dichloroethane		< 1.0	1.0 μg/L							
1,2-Dichloroethane		< 1.0	1.0 μg/L							
1,1-Dichloroethylene		< 1.0	1.0 µg/L							
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene		< 1.0 < 1.0	1.0 μg/L 1.0 μg/L							
Dichloromethane		< 3.0	3.0 µg/L							
1,2-Dichloropropane		< 1.0	1.0 µg/L							
1,3-Dichloropropene (cis +	trans)	< 1.0	1.0 μg/L							
Ethylbenzene		< 1.0	1.0 µg/L							

REPORTED TO PROJECT	Ecoscape Environme 19-2850 - Golden	ntal Ltd.				WORK REPOR	_	20K0 2020)317)-11-10	16:16
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Volatile Organic Co	mpounds (VOC), Batch	B0K0600, Con	tinued							
Blank (B0K0600-BL	-K1), Continued			Prepared	: 2020-11-0	7, Analyze	d: 2020-1	1-07		
Methyl tert-butyl ether		< 1.0	1.0 µg/L							
Styrene		< 1.0	1.0 µg/L							
1,1,2,2-Tetrachloroeth	ane	< 0.5	0.5 µg/L							
Tetrachloroethylene		< 1.0	1.0 µg/L							
Toluene		< 1.0	1.0 µg/L							
1,1,1-Trichloroethane		< 1.0	1.0 μg/L							
1,1,2-Trichloroethane		< 1.0	1.0 µg/L							
Trichloroethylene		< 1.0	1.0 µg/L							
Trichlorofluoromethan	е	< 1.0	1.0 μg/L							
Vinyl chloride		< 1.0	1.0 µg/L							
Xylenes (total)		< 2.0	2.0 µg/L	22.5			70.400			
Surrogate: Toluene-d8		18.3	μg/L	26.5		69	70-130			S02
Surrogate: 4-Bromoflu		20.5	μg/L	24.9		82	70-130			
Surrogate: 1,4-Dichlor	openzene-a4	24.5	μg/L	25.5		96	70-130			
LCS (B0K0600-BS1)			Prepared	: 2020-11-0	6, Analyze	d: 2020-1	1-06		
Benzene		20.0	0.5 µg/L	20.0		100	70-130			
Bromodichloromethan	е	18.5	1.0 µg/L	20.0		92	70-130			
Bromoform		21.2	1.0 µg/L	20.1		105	70-130			
Carbon tetrachloride		19.0	0.5 μg/L	20.2		94	70-130			
Chlorobenzene		20.0	1.0 µg/L	20.1		100	70-130			
Chloroethane		28.0	2.0 μg/L	20.0		140	60-140			
Chloroform		21.2	1.0 µg/L	20.1		106	70-130			
Dibromochloromethan	e	17.3	1.0 µg/L	20.2		86	70-130			
1,2-Dibromoethane		17.0	0.3 µg/L	20.0		85	70-130			
Dibromomethane 1,2-Dichlorobenzene		19.0 22.2	1.0 μg/L 0.5 μg/L	20.0		95 111	70-130 70-130			
1,3-Dichlorobenzene		21.4	0.5 μg/L 1.0 μg/L	20.1		106	70-130			
1,4-Dichlorobenzene		21.2	1.0 μg/L 1.0 μg/L	20.1		106	70-130			
1,1-Dichloroethane		20.9	1.0 μg/L	20.1		104	70-130			
1,2-Dichloroethane		19.5	1.0 µg/L	20.1		97	70-130			
1,1-Dichloroethylene		22.8	1.0 µg/L	20.1		114	70-130			
cis-1,2-Dichloroethyler	 ne	18.6	1.0 µg/L	20.0		93	70-130			
trans-1,2-Dichloroethy		18.8	1.0 µg/L	20.0		94	70-130			
Dichloromethane		21.8	3.0 µg/L	20.1		109	70-130			
1,2-Dichloropropane		18.8	1.0 µg/L	20.1		94	70-130			
1,3-Dichloropropene (cis + trans)	25.9	1.0 µg/L	40.0		65	70-130			SPK1
Ethylbenzene		18.5	1.0 µg/L	20.0		92	70-130			
Methyl tert-butyl ether		18.6	1.0 µg/L	20.0		93	70-130			
Styrene		20.8	1.0 µg/L	20.0		104	70-130			
1,1,2,2-Tetrachloroeth	ane	22.7	0.5 μg/L	20.1		113	70-130			
Tetrachloroethylene		20.5	1.0 µg/L	20.1		102	70-130			
Toluene		21.0	1.0 µg/L	20.0		105	70-130			
1,1,1-Trichloroethane		18.6	1.0 μg/L	20.0		93	70-130			
1,1,2-Trichloroethane		18.3	1.0 µg/L	20.1		91	70-130			
Trichloroethylene		19.3	1.0 µg/L	20.1		96	70-130			
Trichlorofluoromethan	U	27.6	1.0 µg/L	20.0		138	60-140			CDI/4
Vinyl chloride		34.4	1.0 µg/L	20.0		172	60-140			SPK1
Xylenes (total) Surrogate: Toluene-d8	2	63.0 18.9	2.0 μg/L	60.0		105	70-130			
Surrogate: Toluene-de Surrogate: 4-Bromoflu		26.1	μg/L	26.5		71	70-130 70-130			
Surrogate: 4-Bromonu Surrogate: 1,4-Dichlor		30.9	μg/L ug/l	24.9 25.5		105 121	70-130			
Surroyate. 1,4-DICIIIOI	ODGNZGNG-U 1		μg/L							
Duplicate (B0K0600	D-DUP1)	Sour	ce: 20K0317-04	Prepared	: 2020-11-0	7, Analyze	d: 2020-1	1-07		
		0.5	0.5//		< 0.5				20	
Benzene		< 0.5	0.5 μg/L 1.0 μg/L		< 0.5				22	

						REPOR	RTED	2020	-11-10	16:16
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Volatile Organic Con	npounds (VOC), Batch	B0K0600, Con	tinued							
Duplicate (B0K0600	-DUP1), Continued	Sour	ce: 20K0317-04	Prepared	l: 2020-11-0)7, Analyze	d: 2020-1	11-07		
Bromoform		< 1.0	1.0 µg/L		< 1.0				23	
Carbon tetrachloride		< 0.5	0.5 µg/L		< 0.5				30	
Chlorobenzene		< 1.0	1.0 µg/L		< 1.0				26	
Chloroethane		< 2.0	2.0 μg/L		< 2.0				50	
Chloroform		< 1.0	1.0 μg/L		< 1.0				22	
Dibromochloromethane)	< 1.0	1.0 µg/L		< 1.0				28	
1,2-Dibromoethane		< 0.3	0.3 µg/L		< 0.3				30	
Dibromomethane		< 1.0	1.0 µg/L		< 1.0				30	
1,2-Dichlorobenzene		< 0.5	0.5 μg/L		< 0.5				27	
1,3-Dichlorobenzene		< 1.0	1.0 μg/L		< 1.0				30	
1,4-Dichlorobenzene		< 1.0	1.0 µg/L		< 1.0				30	
1,1-Dichloroethane		< 1.0	1.0 µg/L		< 1.0				24	
1,2-Dichloroethane		< 1.0	1.0 µg/L		< 1.0				24	
1,1-Dichloroethylene		< 1.0	1.0 µg/L		< 1.0				30	
cis-1,2-Dichloroethylen		< 1.0	1.0 µg/L		< 1.0				22	
trans-1,2-Dichloroethyle	ene	< 1.0	1.0 μg/L 3.0 μg/L		< 1.0				27 27	
Dichloromethane		< 3.0 < 1.0	3.0 μg/L 1.0 μg/L		< 3.0 < 1.0				28	
1,2-Dichloropropane 1,3-Dichloropropene (ci	is + trans)	< 1.0	1.0 µg/L		< 1.0				30	
Ethylbenzene	is i tidiisj	< 1.0	1.0 µg/L		< 1.0				30	
Methyl tert-butyl ether		< 1.0	1.0 µg/L		< 1.0				20	
Styrene		< 1.0	1.0 µg/L		< 1.0				30	
1,1,2,2-Tetrachloroetha	ne	< 0.5	0.5 μg/L		< 0.5				30	
Tetrachloroethylene	**-	< 1.0	1.0 µg/L		< 1.0				30	
Toluene		< 1.0	1.0 µg/L		< 1.0				24	
1,1,1-Trichloroethane		< 1.0	1.0 µg/L		< 1.0				30	
1,1,2-Trichloroethane		< 1.0	1.0 µg/L		< 1.0				30	
Trichloroethylene		< 1.0	1.0 µg/L		< 1.0				27	
Trichlorofluoromethane	!	< 1.0	1.0 µg/L		< 1.0				50	
Vinyl chloride		< 1.0	1.0 μg/L		< 1.0				40	
Xylenes (total)		< 2.0	2.0 μg/L		< 2.0				29	
Surrogate: Toluene-d8		16.6	μg/L	26.5		63	70-130			S02
Surrogate: 4-Bromofluc	probenzene	19.5	μg/L	24.9		78	70-130			
Surrogate: 1,4-Dichloro	benzene-d4	22.1	μg/L	25.5		87	70-130			
Matrix Spike (B0K06	600-MS1)	Sour	ce: 20K0317-04	Prepared	l: 2020-11-0	06, Analyze	d: 2020-1	11-06		
Benzene	•	19.7	0.5 µg/L	20.0	< 0.5	98	70-130			
Bromodichloromethane	1	18.5	1.0 µg/L	20.0	< 1.0	92	70-130			
Bromoform		19.4	1.0 µg/L	20.1	< 1.0	97	70-130			
Carbon tetrachloride		16.8	0.5 µg/L	20.2	< 0.5	83	70-130			
Chlorobenzene		19.5	1.0 µg/L	20.1	< 1.0	97	70-130			
Chloroethane		26.7	2.0 µg/L	20.0	< 2.0	133	60-140			
Chloroform		20.1	1.0 µg/L	20.1	< 1.0	100	70-130			
Dibromochloromethane)	17.0	1.0 μg/L	20.2	< 1.0	84	70-130			
1,2-Dibromoethane		17.5	0.3 µg/L	20.0	< 0.3	88	70-130			
Dibromomethane		18.8	1.0 μg/L	20.0	< 1.0	94	70-130			
1,2-Dichlorobenzene		21.5	0.5 μg/L	20.1	< 0.5	107	70-130			
1,3-Dichlorobenzene		21.7	1.0 µg/L	20.1	< 1.0	108	70-130			
1,4-Dichlorobenzene		22.4	1.0 µg/L	20.1	< 1.0	111	70-130			
1,1-Dichloroethane		20.9	1.0 µg/L	20.1	< 1.0	104	70-130			
1,2-Dichloroethane		19.6	1.0 µg/L	20.1	< 1.0	98	70-130			
1,1-Dichloroethylene		21.3	1.0 µg/L	20.1	< 1.0	106	70-130			
sis 1.0 Disklana - Harden		19.3	1.0 µg/L	20.0	< 1.0	96	70-130			
cis-1,2-Dichloroethylene			10	20.0	-10	100	70 400			
cis-1,2-Dichloroethylene trans-1,2-Dichloroethyle Dichloromethane		20.4 21.4	1.0 μg/L 3.0 μg/L	20.0	< 1.0 < 3.0	102 106	70-130 70-130			

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	20K0317
PROJECT	19-2850 - Golden	REPORTED	2020-11-10 16:16

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
/olatile Organic Compounds (VOC), Batch	B0K0600, Con	ntinued							
Matrix Spike (B0K0600-MS1), Continued	Sour	ce: 20K0317-04	Prepared	d: 2020-11-0	06, Analyze	d: 2020-1	1-06		
1,3-Dichloropropene (cis + trans)	33.4	1.0 µg/L	40.0	< 1.0	83	70-130			
Ethylbenzene	16.2	1.0 µg/L	20.0	< 1.0	81	70-130			
Methyl tert-butyl ether	17.3	1.0 µg/L	20.0	< 1.0	87	70-130			
Styrene	18.4	1.0 µg/L	20.0	< 1.0	92	70-130			
1,1,2,2-Tetrachloroethane	25.0	0.5 μg/L	20.1	< 0.5	125	70-130			
Tetrachloroethylene	14.0	1.0 μg/L	20.1	< 1.0	70	70-130			
Toluene	19.6	1.0 µg/L	20.0	< 1.0	96	70-130			
1,1,1-Trichloroethane	17.1	1.0 µg/L	20.0	< 1.0	86	70-130			
1,1,2-Trichloroethane	18.1	1.0 µg/L	20.1	< 1.0	90	70-130			
Trichloroethylene	18.2	1.0 µg/L	20.1	< 1.0	91	70-130			
Trichlorofluoromethane	23.0	1.0 µg/L	20.0	< 1.0	115	60-140			
Vinyl chloride	32.5	1.0 µg/L	20.0	< 1.0	162	60-140			SPK1
Xylenes (total)	57.1	2.0 µg/L	60.0	< 2.0	95	70-130			
Surrogate: Toluene-d8	18.1	μg/L	26.5		68	70-130			S02
Surrogate: 4-Bromofluorobenzene	29.0	μg/L	24.9		116	70-130			
Surrogate: 1.4-Dichlorobenzene-d4	36.4	ua/l	25.5		143	70-130			S02

Volatile Organic Compounds (VOC), Batch B0K0601

Blank (B0K0601-BLK1)			Prepared: 2020	-11-07, Analyz	ed: 2020-11-07	
Benzene	< 0.5	0.5 μg/L				
Bromodichloromethane	< 1.0	1.0 µg/L				
Bromoform	< 1.0	1.0 µg/L				
Carbon tetrachloride	< 0.5	0.5 µg/L				
Chlorobenzene	< 1.0	1.0 µg/L				
Chloroethane	< 2.0	2.0 µg/L				
Chloroform	< 1.0	1.0 µg/L				
Dibromochloromethane	< 1.0	1.0 µg/L				
1,2-Dibromoethane	< 0.3	0.3 µg/L				
Dibromomethane	< 1.0	1.0 µg/L				
1,2-Dichlorobenzene	< 0.5	0.5 µg/L				
1,3-Dichlorobenzene	< 1.0	1.0 µg/L				
1,4-Dichlorobenzene	< 1.0	1.0 µg/L				
1,1-Dichloroethane	< 1.0	1.0 μg/L				
1,2-Dichloroethane	< 1.0	1.0 µg/L				
1,1-Dichloroethylene	< 1.0	1.0 µg/L				
cis-1,2-Dichloroethylene	< 1.0	1.0 µg/L				
trans-1,2-Dichloroethylene	< 1.0	1.0 µg/L				
Dichloromethane	< 3.0	3.0 µg/L				
1,2-Dichloropropane	< 1.0	1.0 µg/L				
1,3-Dichloropropene (cis + trans)	< 1.0	1.0 µg/L				
Ethylbenzene	< 1.0	1.0 µg/L				
Methyl tert-butyl ether	< 1.0	1.0 µg/L				
Styrene	< 1.0	1.0 µg/L				
1,1,2,2-Tetrachloroethane	< 0.5	0.5 µg/L				
Tetrachloroethylene	< 1.0	1.0 µg/L				
Toluene	< 1.0	1.0 µg/L				
1,1,1-Trichloroethane	< 1.0	1.0 µg/L				
1,1,2-Trichloroethane	< 1.0	1.0 µg/L				
Trichloroethylene	< 1.0	1.0 µg/L				
Trichlorofluoromethane	< 1.0	1.0 µg/L				
Vinyl chloride	< 1.0	1.0 µg/L				
Xylenes (total)	< 2.0	2.0 µg/L				
Surrogate: Toluene-d8	16.8	μg/L	26.5	63	70-130	S02
Surrogate: 4-Bromofluorobenzene	19.2	μg/L	24.9	77	70-130	
Surrogate: 1,4-Dichlorobenzene-d4	22.5	μg/L	25.5	88	70-130	

REPORTED TO PROJECT	Ecoscape Env 19-2850 - Gold	ironmental Ltd. den				WORK REPOR	ORDER TED)317)-11-10	16:16
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Volatile Organic Cor	mpounds (VOC),	Batch B0K0601, Cont	inued							
LCS (B0K0601-BS1))			Prepared	I: 2020-11-0	7, Analyze	d: 2020-1	11-07		
Benzene		19.8	0.5 µg/L	20.0		99	70-130			
Bromodichloromethane	9	19.5	1.0 µg/L	20.0		98	70-130			
Bromoform		17.8	1.0 µg/L	20.1		89	70-130			
Carbon tetrachloride		15.7	0.5 μg/L	20.2		78	70-130			
Chlorobenzene		20.1	1.0 μg/L	20.1		100	70-130			
Chloroethane		26.7	2.0 μg/L	20.0		134	60-140			
Chloroform		20.6	1.0 μg/L	20.1		102	70-130			
Dibromochloromethane	e	18.2	1.0 μg/L	20.2		90	70-130			
1,2-Dibromoethane		18.0	0.3 μg/L	20.0		90	70-130			
Dibromomethane		19.6	1.0 µg/L	20.0		98	70-130			
1,2-Dichlorobenzene		17.9	0.5 μg/L	20.1		89	70-130			
1,3-Dichlorobenzene		17.3	1.0 µg/L	20.1		86	70-130			
1,4-Dichlorobenzene		18.0	1.0 µg/L	20.1		90	70-130			
1,1-Dichloroethane		21.2	1.0 μg/L	20.1		105	70-130			
1,2-Dichloroethane		20.4	1.0 μg/L	20.1		101	70-130			
1,1-Dichloroethylene		20.3	1.0 μg/L	20.1		101	70-130			
cis-1,2-Dichloroethylen		19.8	1.0 μg/L	20.0		99	70-130			
trans-1,2-Dichloroethyl	ene	20.1	1.0 μg/L	20.0		100	70-130			
Dichloromethane		22.8	3.0 µg/L	20.1		114	70-130			
1,2-Dichloropropane		20.0	1.0 μg/L	20.1		100	70-130			
1,3-Dichloropropene (c	cis + trans)	34.1	1.0 μg/L	40.0		85	70-130			
Ethylbenzene		17.2	1.0 μg/L	20.0		86	70-130			
Methyl tert-butyl ether		20.1	1.0 μg/L	20.0		100	70-130			
Styrene		17.7	1.0 μg/L	20.0		89	70-130			
1,1,2,2-Tetrachloroetha	ane	19.8	0.5 μg/L	20.1		99	70-130			
Tetrachloroethylene		16.3	1.0 µg/L	20.1		81	70-130			
Toluene		19.4	1.0 μg/L	20.0		97	70-130			
1,1,1-Trichloroethane		16.2	1.0 µg/L	20.0		81	70-130			
1,1,2-Trichloroethane		19.1	1.0 μg/L	20.1		95	70-130			
Trichloroethylene		18.5	1.0 μg/L	20.1		92	70-130			
Trichlorofluoromethane)	21.0	1.0 μg/L	20.0		105	60-140			
Vinyl chloride		30.8	1.0 µg/L	20.0		154	60-140			SPK
Xylenes (total)		49.7	2.0 μg/L	60.0		83	70-130			
Surrogate: Toluene-d8		17.8	μg/L	26.5		67	70-130			S02
Surrogate: 4-Bromoflu		24.6	μg/L	24.9		99	70-130			
Surrogate: 1,4-Dichlore	obenzene-d4	29.0	μg/L	25.5		114	70-130			
Duplicate (B0K0601	-DUP1)	Sourc	e: 20K0317-03	Prepared	I: 2020-11-0	7, Analyze	d: 2020-1	11-07		
Benzene		< 0.5	0.5 μg/L		< 0.5				22	
Bromodichloromethane	9	< 1.0	1.0 µg/L		< 1.0				23	
Bromoform		< 1.0	1.0 µg/L		< 1.0				23	
Carbon tetrachloride		< 0.5	0.5 μg/L		< 0.5				30	
Chlorobenzene		< 1.0	1.0 μg/L		< 1.0				26	
Chloroethane		< 2.0	2.0 μg/L		< 2.0				50	
Chloroform		< 1.0	1.0 μg/L		< 1.0				22	
Dibromochloromethane	9	< 1.0	1.0 μg/L		< 1.0				28	
1,2-Dibromoethane		< 0.3	0.3 μg/L		< 0.3				30	
Dibromomethane		< 1.0	1.0 μg/L		< 1.0				30	
1,2-Dichlorobenzene		< 0.5	0.5 μg/L		< 0.5				27	
1,3-Dichlorobenzene		< 1.0	1.0 µg/L		< 1.0				30	
1,4-Dichlorobenzene		< 1.0	1.0 µg/L		< 1.0				30	
1,1-Dichloroethane		< 1.0	1.0 μg/L		< 1.0				24	
1,2-Dichloroethane		< 1.0	1.0 μg/L		< 1.0				24	
1,1-Dichloroethylene		< 1.0	1.0 μg/L		< 1.0				30	
cis-1,2-Dichloroethylen	e	< 1.0	1.0 μg/L		< 1.0				22	
	ene		1.0 µg/L		< 1.0				27	

Analyte	REPORTED TO PROJECT	Ecoscape Environme 19-2850 - Golden	ental Ltd.				WORK REPOR	ORDER TED	20K0 2020	317 -11-10	16:16
Dublicate (BoK0601-DUP1), Continued Source: 20K0317-03 Prepared: 20Z0-11-07, Analyzed: 20Z0-11-07 Source: 20K0317-03 Source:	Analyte		Result	RL Units	•		% REC		% RPD		Qualifier
Deblaromehane	Volatile Organic Co	ompounds (VOC), Batch	B0K0601, Con	tinued							
1,2-Dichlorogropeme (cis + tame)	Duplicate (B0K06)	01-DUP1), Continued	Sour	ce: 20K0317-03	Prepared	: 2020-11-0	07, Analyze	d: 2020-1	1-07		
1,2-Dichlorogropeme (cis + tame)	Dichloromethane		< 3.0	3.0 µg/L		< 3.0				27	
1,3-Dichiorporpene (sis + trans) \$1,0	1,2-Dichloropropane		< 1.0			< 1.0				28	
Methy Interbuyl ether	1,3-Dichloropropene	(cis + trans)	< 1.0			< 1.0				30	
Net	Ethylbenzene	·	< 1.0	1.0 μg/L		< 1.0				30	
1,1,2,1-Erisachioneehane	Methyl tert-butyl ethe	er	< 1.0			< 1.0					
Tetrachioroethylene											
Toluene	_ : : :	thane									
1,1,1-Tinchioroethane											
1,1,2 1,10 1,0 1											
Trichloromethyme											
Trichlorofuluromenthane		8									
Mychens (total) 10 10 10 10 10 10 10 1		no.									
Xylenes (total) <2.0 2.0 yg/L < 2.0 < 2.0 Securing		IIIC									
Surrogate: Tollene-d8 17.4 lyg/L 26.5 66 70.10 802 Surrogate: 4-Bromofluorobenzene 19.1 lyg/L 26.5 96 77 70.130 Matrix Spike (B0K0601-MS1) Source: 20K0317-03 Prepared: 2020-11-06, Analyzet: 2020-11-06 Benzene 19.9 0.5 yg/L 20.0 < 10.5 99 70-130 Bromodichioromethane 18.8 10. yg/L 20.0 < 1.0 90 70-130 Bromoform 20.1 1.0 yg/L 20.0 < 1.0 90 70-130 Chlorobenzene 19.4 1.0 yg/L 20.1 < 1.0 190 70-130 Chlorobenzene 19.4 1.0 yg/L 20.1 < 1.0 97 70-130 Chlorobenzene 19.4 1.0 yg/L 20.1 < 1.0 97 70-130 Chlorobenzene 19.4 1.0 yg/L 20.1 < 1.0 97 70-130 Libromomethane 17.4 1.0 yg/L 20.0 < 1.0 88 70-130											
Surrogate: 1.4-Dichlorobenzene-4	. ,	18			26.5	` 2.0	66	70 130		23	502
Matrix Spike (Bok 0601-MS1)											302
Matrix Spike (B0K0601-MS1) Source: 20K0317-03 Prepared: 2020-11-06, Analyzed: 2020-11-06 Benzone 19.9 0.5 μg/L 20.0 < 0.5											
Benzene		-				. 2020-11-0			1-06		
Bromofich 18.8 1.0 μg/L 20.0 < 1.0 94 70-130 8 8 70-130 8 8 8 70-130 8 8 8 70-130 8 8 8 70-130 8 8 70-130 8 8 70-130	• •	10001-11101)			<u> </u>						
Bromoform		nne									
Carbon tetrachloride											
Chlorobenzene 19.4 1.0 μg/L 20.1 < 1.0 97 70-130 Chloroethane 26.6 2.0 μg/L 20.0 < 2.0											
Chloroform 20.5 1.0 μg/L 20.0 < 2.0 132 60-140	Chlorobenzene		19.4		20.1	< 1.0	97	70-130			
Dibromochloromethane	Chloroethane		26.6	2.0 µg/L	20.0	< 2.0	132	60-140			
1,2-Dibromoethane	Chloroform		20.5	1.0 µg/L	20.1	< 1.0	101	70-130			
Dibromomethane	Dibromochlorometha	ane	17.4	1.0 µg/L	20.2	< 1.0	86	70-130			
1,2-Dichlorobenzene 21.7 0.5 µg/L 20.1 < 0.5	1,2-Dibromoethane		18.1	0.3 μg/L	20.0	< 0.3	90				
1,3-Dichlorobenzene 22.0 1.0 µg/L 20.1 < 1.0											
1,4-Dichlorobenzene 22.4 1.0 μg/L 20.1 < 1.0	· · · · · · · · · · · · · · · · · · ·										
1,1-Dichloroethane 21.8 1.0 µg/L 20.1 < 1.0											
1,2-Dichloroethane 20.3 1,0 μg/L 20.1 < 1.0)									
1,1-Dichloroethylene 21.4 1.0 µg/L 20.1 < 1.0											
cis-1,2-Dichloroethylene 19.5 1.0 µg/L 20.0 < 1.0 98 70-130 trans-1,2-Dichloroethylene 20.5 1.0 µg/L 20.0 < 1.0 103 70-130 Dichloromethane 22.2 3.0 µg/L 20.1 < 1.0 97 70-130 1,2-Dichloropropane 19.5 1.0 µg/L 20.1 < 1.0 97 70-130 1,2-Dichloropropane (cis + trans) 34.8 1.0 µg/L 40.0 < 1.0 97 70-130 Ethylbenzene 15.6 1.0 µg/L 20.0 < 1.0 98 70-130 Ethylbenzene 15.6 1.0 µg/L 20.0 < 1.0 78 70-130 Methyl tert-butyl ether 18.2 1.0 µg/L 20.0 < 1.0 90 70-130 Styrene 18.7 1.0 µg/L 20.0 < 1.0 90 70-130 1,1,2-Tetrachloroethane 13.9 1.0 µg/L 20.1 < 1.0 69 70-130 SPK Toluene 18.9 1.0 µg/L											
trans-1,2-Dichloroethylene 20.5 1.0 µg/L 20.0 < 1.0 103 70-130 Dichloromethane 22.2 3.0 µg/L 20.1 < 3.0											
Dichloromethane 22.2 3.0 μg/L 20.1 < 3.0 110 70-130 1,2-Dichloropropane 19.5 1.0 μg/L 20.1 < 1.0 97 70-130 1,3-Dichloropropene (cis + trans) 34.8 1.0 μg/L 20.0 < 1.0 87 70-130 1,3-Dichloropropene (cis + trans) 34.8 1.0 μg/L 20.0 < 1.0 87 70-130											
1,2-Dichloropropane 19.5 1.0 μg/L 20.1 < 1.0		iyierie									
1,3-Dichloropropene (cis + trans) 34.8 1.0 μg/L 40.0 < 1.0											
Ethylbenzene 15.6 1.0 µg/L 20.0 < 1.0 78 70-130 Methyl tert-butyl ether 18.2 1.0 µg/L 20.0 < 1.0											
Methyl tert-butyl ether 18.2 1.0 μg/L 20.0 < 1.0 90 70-130 Styrene 18.7 1.0 μg/L 20.0 < 1.0		(6.6)									
Styrene 18.7 1.0 µg/L 20.0 < 1.0 93 70-130 1,1,2,2-Tetrachloroethane 26.2 0.5 µg/L 20.1 < 0.5		er									
1,1,2,2-Tetrachloroethane 26.2 0.5 μg/L 20.1 < 0.5 130 70-130 Tetrachloroethylene 13.9 1.0 μg/L 20.1 < 1.0											
Tetrachloroethylene 13.9 1.0 μg/L 20.1 < 1.0 69 70-130 SPK Toluene 18.9 1.0 μg/L 20.0 < 1.0		thane									
Toluene 18.9 1.0 μg/L 20.0 < 1.0 93 70-130 1,1,1-Trichloroethane 17.2 1.0 μg/L 20.0 < 1.0	Tetrachloroethylene		13.9		20.1	< 1.0	69	70-130			SPK
1,1,2-Trichloroethane 18.6 1.0 μg/L 20.1 < 1.0 92 70-130 Trichloroethylene 18.2 1.0 μg/L 20.1 < 1.0	Toluene		18.9	1.0 μg/L	20.0	< 1.0	93	70-130			
Trichloroethylene 18.2 1.0 μg/L 20.1 < 1.0 90 70-130 Trichlorofluoromethane 23.4 1.0 μg/L 20.0 < 1.0					20.0						
Trichlorofluoromethane 23.4 1.0 μg/L 20.0 < 1.0 117 60-140 Vinyl chloride 32.4 1.0 μg/L 20.0 < 1.0		e									
Vinyl chloride 32.4 1.0 μg/L 20.0 < 1.0 162 60-140 SPK Xylenes (total) 55.2 2.0 μg/L 60.0 < 2.0				· · ·							
Xylenes (total) 55.2 2.0 μg/L 60.0 < 2.0 92 70-130 Surrogate: Toluene-d8 17.8 μg/L 26.5 67 70-130 S02 Surrogate: 4-Bromofluorobenzene 28.6 μg/L 24.9 115 70-130 Surrogate: 1,4-Dichlorobenzene-d4 36.9 μg/L 25.5 145 70-130 S02		ne									
Surrogate: Toluene-d8 17.8 μg/L 26.5 67 70-130 S02 Surrogate: 4-Bromofluorobenzene 28.6 μg/L 24.9 115 70-130 S02 Surrogate: 1,4-Dichlorobenzene-d4 36.9 μg/L 25.5 145 70-130 S02	•										SPK
Surrogate: 4-Bromofluorobenzene 28.6 μg/L 24.9 115 70-130 Surrogate: 1,4-Dichlorobenzene-d4 36.9 μg/L 25.5 145 70-130 S02	· ' '					< 2.0					
Surrogate: 1,4-Dichlorobenzene-d4 36.9 μg/L 25.5 145 70-130 S02											S02
	Surrogate: 1,4-Dichlo	orobenzene-d4	36.9	μg/L	25.5		145	70-130			S02

REPORTED TOEcoscape Environmental Ltd.WORK ORDER20K0317PROJECT19-2850 - GoldenREPORTED2020-11-10 16:16

Analyte Result RL Units Spike Source % REC % RPD Qualifier Level Result Limit Limit

QC Qualifiers:

S02 Surrogate recovery outside of control limits. Data accepted based on acceptable recovery of other surrogates.

SPK The recovery of this analyte was outside of established control limits.

SPK1 The recovery of this analyte was outside of established control limits. The data was accepted based on

performance of other batch QC.

0/13/10

CARO.CH

1-BBB-377-ES46

动脉的现在分词 被动性

es the list young way, have end the vey intiphoto-bary standard limit linkings, be will be a TOTALS TON ASSESSMENT RATE Extrapology, AMI TAX 1512

ENABLOY CONTINUE RECORD THE MOE 1 DE FEBRUARY STATE HOLD BEARING

Comp Phone Payors, efficient	1.1	6841-0677744 77210738-006					106		3		50,						1999		1
immoor voi: coppy, 45 Estatus Environmental ACCRESS - 1 W-190 Nome (1) - Netra		мушеств: ЖуменсЕ: Симем	стур. Еп	arterra Atamar	ni anu ə ki	Tests (DOM) Other	n (1. ST) Hawill Habita	ani⊋ Int: Ceste an	686	ā l	1 0 03 1 0 03 1 1 1 1	A ver	ng Aria Ng Cina		10	e se int		erana erana erana	CE.
BO, VIV 2V2 COSTACT: Hellewiththe In June 200 con Tost	0.10	SONTACTE HI	cy St. Louige	94) 1000		1 1920.0	CENTRA	978 - 1670 6-43880	CIO es AA	rwar v	. 100.00	10 E of 10 A S		Direction of the second of the	Course of	1	Carona C e si s dha sha	ke Mand	- 1
### AND THE PART OF THE PART	10 T	974.7 <u></u>	rebesjen. Temskere	sago Kliss agaid sa		1 -114		F + 2 3 F F	F 1 100 00 00 00 00 00 00 00 00 00 00 00	Det La	8		- 1. Ta		Profes, 146.74				Productional production of the control of the contr
CUENT SANDLEID:	HATER TO SEE	LT SPTE	774E	00 - 100 A	COMMUNES	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T BOYL BY	1	1 2 2 2 2 2 2 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	84 N R 4	EXTENSION FOR	EAST OF THE	Allower.	Charte, Reiger	Hilly and Arthresia !	11.00	101	POSSILIDAVI
WALLER CASHER	1	Wing a	, 5°0						1 2				+	-	MAN		di e	-	
80% 340 80% 340 Tion (We o)	1	No.	960 1763 1765			1									e la la				
They that we street the street that the street		No.13	145	200 200		2		-			501	e P			*		00		
M394135 E373 6589-3		No.2	1804	The second second				E.	3		ý	,			4		2 P		
Reference (1977) Biographic - (1995) Biographi	Same Pipe Scales See See See Other See	TOTAL CONTRACTOR	THE HATTE	CACHS LOCK EL DA	Page Straigh	HOUSE	TI S	SES SES	(AE)	0		Gb)	COULE COULE COULE COULE COULE	Hyde Sekto Sector	34	<u>(</u>			

CERTIFICATE OF ANALYSIS

REPORTED TO Ecoscape Environmental Ltd.

#102 - 450 Neave Court Kelowna. BC V1V 2M2

ATTENTION Kelsey Tanaka

PO NUMBER 19-2850

PROJECT 19-2850 - Golden

PROJECT INFO Golden

WORK ORDER 0032091

RECEIVED / TEMP 2020-03-25 14:52 / 3°C

REPORTED 2020-04-01 13:28

COC NUMBER No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO 17025:2005 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

Ahead of the Curve

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at acrump@caro.ca

Authorized By:

Alana Crump Team Lead, Client Service MEGT

1-888-311-8846 | www.caro.ca

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-06S (0032091-01) Matrix: W	ater Sampled: 2020-03-24 18	:55			
Anions					
Bromide	< 0.10	0.10	mg/L	2020-03-26	
Chloride	380		mg/L	2020-03-26	
Fluoride	0.17		mg/L	2020-03-26	
Nitrate (as N)	30.6	0.010		2020-03-26	
Nitrite (as N)	< 0.010	0.010		2020-03-26	
Sulfate	688		mg/L	2020-03-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	1430	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0401	0.00010	mg/L	2020-03-27	
Aluminum, dissolved	< 0.0050	0.0050		2020-03-27	
Antimony, dissolved	< 0.00020	0.00020		2020-03-27	
Arsenic, dissolved	< 0.00050	0.00050		2020-03-27	
Barium, dissolved	0.0456	0.0050		2020-03-27	
Beryllium, dissolved	< 0.00010	0.00010		2020-03-27	
Bismuth, dissolved	< 0.00010	0.00010		2020-03-27	
Boron, dissolved	1.55	0.0050		2020-03-27	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-03-27	
Calcium, dissolved	153		mg/L	2020-03-27	
Chromium, dissolved	< 0.00050	0.00050		2020-03-27	
Cobalt, dissolved	0.00154	0.00010	mg/L	2020-03-27	
Copper, dissolved	0.00220	0.00040	mg/L	2020-03-27	
Iron, dissolved	< 0.010	0.010	mg/L	2020-03-27	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Magnesium, dissolved	255	0.010	mg/L	2020-03-27	
Manganese, dissolved	0.0789	0.00020	mg/L	2020-03-27	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-03-31	
Molybdenum, dissolved	0.00032	0.00010	mg/L	2020-03-27	
Nickel, dissolved	0.0111	0.00040	mg/L	2020-03-27	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-03-27	
Potassium, dissolved	159	0.10	mg/L	2020-03-27	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Silicon, dissolved	12.0	1.0	mg/L	2020-03-27	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-03-27	
Sodium, dissolved	266	0.10	mg/L	2020-03-27	
Strontium, dissolved	1.52	0.0010	mg/L	2020-03-27	
Sulfur, dissolved	246	3.0	mg/L	2020-03-27	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Thallium, dissolved	0.000055	0.000020	mg/L	2020-03-27	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0032091

Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-06S (0032091-01) Matrix: Water	Sampled: 2020-03-24 18:5	5, Continued			
Dissolved Metals, Continued					
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-03-27	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-03-27	
Uranium, dissolved	0.00725	0.000020	mg/L	2020-03-27	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-03-27	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-03-27	
Zirconium, dissolved	0.00015	0.00010	mg/L	2020-03-27	
General Parameters					
Alkalinity, Total (as CaCO3)	975	1.0	mg/L	2020-03-27	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-03-27	
Alkalinity, Bicarbonate (as CaCO3)	975	1.0	mg/L	2020-03-27	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-03-27	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-03-27	
Bicarbonate (HCO3)	1190	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	1.32	0.050	mg/L	2020-03-26	
BOD, 5-day	< 5.1	2.0	mg/L	2020-03-31	
Chemical Oxygen Demand	29	20	mg/L	2020-03-26	
Conductivity (EC)	3990	2.0	μS/cm	2020-03-27	
pH	7.69	0.10	pH units	2020-03-27	HT2
Solids, Total Dissolved	2630	15	mg/L	2020-03-30	
Solids, Total Suspended	171	2.0	mg/L	2020-03-27	
Turbidity	37.9	0.10	NTU	2020-03-27	
/olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-03-28	
Bromodichloromethane	< 1.0		μg/L	2020-03-28	
Bromoform	< 1.0		μg/L	2020-03-28	
Carbon tetrachloride	< 0.5		μg/L	2020-03-28	
Chlorobenzene	< 1.0		μg/L	2020-03-28	
Chloroethane	< 2.0		μg/L	2020-03-28	
Chloroform	< 1.0		μg/L	2020-03-28	
Dibromochloromethane	< 1.0		μg/L	2020-03-28	
1,2-Dibromoethane	< 0.3		μg/L	2020-03-28	
Dibromomethane	< 1.0		μg/L	2020-03-28	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-03-28	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-03-28	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-03-28	
1,1-Dichloroethane	< 1.0		μg/L	2020-03-28	
1,2-Dichloroethane	< 1.0		μg/L	2020-03-28	
1,1-Dichloroethylene	< 1.0		μg/L	2020-03-28	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-03-28	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden **WORK ORDER**

0032091

REPORTED

2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifie
//////////////////////////////////////	r Sampled: 2020-03-24 18:55	, Continued			
/olatile Organic Compounds (VOC), Conti	nued				
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-28	
Dichloromethane	< 3.0		μg/L	2020-03-28	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-03-28	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-03-28	
Ethylbenzene	< 1.0	1.0	μg/L	2020-03-28	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-03-28	
Styrene	< 1.0	1.0	μg/L	2020-03-28	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-03-28	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-03-28	
Toluene	< 1.0	1.0	μg/L	2020-03-28	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-03-28	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-03-28	
Trichloroethylene	< 1.0		μg/L	2020-03-28	
Trichlorofluoromethane	< 1.0		μg/L	2020-03-28	
Vinyl chloride	< 1.0		μg/L	2020-03-28	
Xylenes (total)	< 2.0		μg/L	2020-03-28	
Surrogate: Toluene-d8	103	70-130	%	2020-03-28	
	103	70-130	%	2020-03-28	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4	103 92 Sampled: 2020-03-24 15:20	70-130 70-130	%	2020-03-28 2020-03-28	
Surrogate: 4-Bromofluorobenzene	92				
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 //W10-08 (0032091-02) Matrix: Water	92	70-130	%		
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions	92 Sampled: 2020-03-24 15:20	70-130	% mg/L	2020-03-28	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide	92 Sampled: 2020-03-24 15:20 < 0.10 629	0.10 0.10	mg/L mg/L	2020-03-28	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18	0.10 0.10 0.10	mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N)	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858	0.10 0.10 0.10 0.10 0.010	mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858 < 0.010	0.10 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858	0.10 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858 < 0.010	0.10 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858 < 0.010 50.8	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858 < 0.010 50.8	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 //W10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858 < 0.010 50.8 634	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26 N/A	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858 < 0.010 50.8 634 0.0185	0.10 0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26 N/A	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858 < 0.010 50.8 634 0.0185 < 0.0050	0.10 0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26 N/A 2020-03-27 2020-03-27	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858 < 0.010 50.8 634 0.0185 < 0.0050 < 0.00020	0.10 0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26 N/A 2020-03-27 2020-03-27 2020-03-27	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Arsenic, dissolved Barium, dissolved	92 Sampled: 2020-03-24 15:20 < 0.10	0.10 0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved	92 Sampled: 2020-03-24 15:20 < 0.10	0.10 0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.0050 0.0050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27	
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0032091-02) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Arsenic, dissolved Barium, dissolved	92 Sampled: 2020-03-24 15:20 < 0.10 629 0.18 0.858 < 0.010 50.8 634 0.0185 < 0.0050 < 0.00020 0.00383 0.178 < 0.00010	0.10 0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-28 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED

2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifie
MW10-08 (0032091-02) Matrix: Water \$	Sampled: 2020-03-2	24 15:20, Continued			
Dissolved Metals, Continued					
Calcium, dissolved	84.0	0.20	mg/L	2020-03-27	
Chromium, dissolved	0.00059	0.00050	mg/L	2020-03-27	
Cobalt, dissolved	0.00030	0.00010	mg/L	2020-03-27	
Copper, dissolved	0.00164	0.00040	mg/L	2020-03-27	
Iron, dissolved	< 0.010	0.010	mg/L	2020-03-27	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Magnesium, dissolved	103	0.010		2020-03-27	
Manganese, dissolved	0.00914	0.00020		2020-03-27	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-03-31	
Molybdenum, dissolved	0.00131	0.00010	mg/L	2020-03-27	
Nickel, dissolved	0.00105	0.00040		2020-03-27	
Phosphorus, dissolved	< 0.050	0.050		2020-03-27	
Potassium, dissolved	5.83		mg/L	2020-03-27	
Selenium, dissolved	< 0.00050	0.00050		2020-03-27	
Silicon, dissolved	8.9		mg/L	2020-03-27	
Silver, dissolved	< 0.000050	0.000050		2020-03-27	
Sodium, dissolved	303		mg/L	2020-03-27	
Strontium, dissolved	1.18	0.0010		2020-03-27	
Sulfur, dissolved	18.8		mg/L	2020-03-27	
Tellurium, dissolved	< 0.00050	0.00050		2020-03-27	
Thallium, dissolved	< 0.000020	0.000020		2020-03-27	
Thorium, dissolved	< 0.00010	0.00010		2020-03-27	
Tin, dissolved	0.00030	0.00020		2020-03-27	
Titanium, dissolved	< 0.0050	0.0050		2020-03-27	
Tungsten, dissolved	0.0119	0.0010		2020-03-27	
Uranium, dissolved	0.00192	0.000020		2020-03-27	
Vanadium, dissolved	< 0.0010	0.0010		2020-03-27	
Zinc, dissolved	0.0055	0.0040		2020-03-27	
Zirconium, dissolved	< 0.00010	0.00010		2020-03-27	
General Parameters					
Alkalinity, Total (as CaCO3)	530	1.0	mg/L	2020-03-27	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-03-27	
Alkalinity, Bicarbonate (as CaCO3)	530		mg/L	2020-03-27	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-03-27	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-03-27	
Bicarbonate (HCO3)	646		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	0.099	0.050		2020-03-26	
BOD, 5-day	15.4		mg/L	2020-03-31	BOD4
Chemical Oxygen Demand	33		mg/L	2020-03-26	
Conductivity (EC)	2700		μS/cm	2020-03-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

Analyte	Result	RL	Units	Analyzed	Qualifi
/////////////////////////////////////	Sampled: 2020-03-24 15:20, C	ontinued			
General Parameters, Continued					
pH	7.95	0.10	pH units	2020-03-27	HT2
Solids, Total Dissolved	1550	15	mg/L	2020-03-30	
Solids, Total Suspended	87.2	2.0	mg/L	2020-03-27	
Turbidity	41.5	0.10	NTU	2020-03-27	
olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-03-28	
Bromodichloromethane	< 1.0	1.0		2020-03-28	
Bromoform	< 1.0	1.0	μg/L	2020-03-28	
Carbon tetrachloride	< 0.5		μg/L	2020-03-28	
Chlorobenzene	< 1.0		μg/L	2020-03-28	
Chloroethane	< 2.0	2.0		2020-03-28	
Chloroform	< 1.0	1.0	10	2020-03-28	
Dibromochloromethane	< 1.0	1.0		2020-03-28	
1,2-Dibromoethane	< 0.3		μg/L	2020-03-28	
Dibromomethane	< 1.0	1.0	μg/L	2020-03-28	
1.2-Dichlorobenzene	< 0.5		μg/L	2020-03-28	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-03-28	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-03-28	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-03-28	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-03-28	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-28	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-28	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-28	
Dichloromethane	< 3.0	3.0		2020-03-28	
1,2-Dichloropropane	< 1.0	1.0		2020-03-28	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0		2020-03-28	
Ethylbenzene	< 1.0	1.0		2020-03-28	
Methyl tert-butyl ether	< 1.0	1.0		2020-03-28	
Styrene	< 1.0		μg/L	2020-03-28	
			-	2020-03-28	
1,1,2,2-Tetrachloroethane Tetrachloroethylene	< 0.5 < 1.0		µg/L	2020-03-28	
•	< 1.0		μg/L		
Toluene	< 1.0		μg/L	2020-03-28	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-03-28	
1,1,2-Trichloroethane	< 1.0	1.0	10	2020-03-28	
Trichloroethylene		1.0		2020-03-28	
Trichlorofluoromethane	< 1.0	1.0		2020-03-28	
Vinyl chloride	< 1.0	1.0	μg/L	2020-03-28	
Xylenes (total)	< 2.0		μg/L	2020-03-28	
Surrogate: Toluene-d8	103	70-130	%	2020-03-28	
Surrogate: 4-Bromofluorobenzene	101	70-130		2020-03-28	
Surrogate: 1,4-Dichlorobenzene-d4	90	70-130	%	2020-03-28	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0032091

REPORTED	2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifier
MW18-10 (0032091-03) Matrix: Wat	ter Sampled: 2020-03-25 09:30				
Anions					
Bromide	< 0.10	0.10	mg/L	2020-03-26	
Chloride	356	0.10	mg/L	2020-03-26	
Fluoride	< 0.10	0.10	mg/L	2020-03-26	
Nitrate (as N)	40.0	0.010	mg/L	2020-03-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-03-26	
Sulfate	71.4	1.0	mg/L	2020-03-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	1050	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0224	0.00010	mg/L	2020-03-27	
Aluminum, dissolved	< 0.0050	0.0050		2020-03-27	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Arsenic, dissolved	0.00104	0.00050	mg/L	2020-03-27	
Barium, dissolved	0.303	0.0050	mg/L	2020-03-27	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Boron, dissolved	0.430	0.0050	mg/L	2020-03-27	
Cadmium, dissolved	0.000028	0.000010	mg/L	2020-03-27	
Calcium, dissolved	99.0	0.20	mg/L	2020-03-27	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Cobalt, dissolved	0.00473	0.00010	mg/L	2020-03-27	
Copper, dissolved	0.00155	0.00040	mg/L	2020-03-27	
Iron, dissolved	< 0.010	0.010	mg/L	2020-03-27	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Magnesium, dissolved	195	0.010	mg/L	2020-03-27	
Manganese, dissolved	0.174	0.00020	mg/L	2020-03-27	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-03-31	
Molybdenum, dissolved	0.00108	0.00010	mg/L	2020-03-27	
Nickel, dissolved	0.0401	0.00040	mg/L	2020-03-27	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-03-27	
Potassium, dissolved	28.9	0.10	mg/L	2020-03-27	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Silicon, dissolved	10.4		mg/L	2020-03-27	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-03-27	
Sodium, dissolved	185	0.10	mg/L	2020-03-27	
Strontium, dissolved	1.42	0.0010	mg/L	2020-03-27	
Sulfur, dissolved	29.8	3.0	mg/L	2020-03-27	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Thallium, dissolved	0.000099	0.000020	mg/L	2020-03-27	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Tin, dissolved	0.00030	0.00020	mg/L	2020-03-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0032091

Analyte	Result	RL	Units	Analyzed	Qualifie		
MW18-10 (0032091-03) Matrix: Water Sampled: 2020-03-25 09:30, Continued							
Dissolved Metals, Continued							
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-03-27			
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-03-27			
Uranium, dissolved	0.00399	0.000020	mg/L	2020-03-27			
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-03-27			
Zinc, dissolved	0.0103	0.0040	mg/L	2020-03-27			
Zirconium, dissolved	0.00025	0.00010	mg/L	2020-03-27			
General Parameters							
Alkalinity, Total (as CaCO3)	806	1.0	mg/L	2020-03-27			
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-03-27			
Alkalinity, Bicarbonate (as CaCO3)	806		mg/L	2020-03-27			
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-03-27			
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-03-27			
Bicarbonate (HCO3)	983		mg/L	N/A			
Carbonate (CO3)	< 0.600	0.600		N/A			
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A			
Ammonia, Total (as N)	1.44	0.050		2020-03-26			
BOD, 5-day	< 4.9		mg/L	2020-04-01			
Chemical Oxygen Demand	42	20	mg/L	2020-03-26			
Conductivity (EC)	2770	2.0	μS/cm	2020-03-27			
рН	7.81	0.10	pH units	2020-03-27	HT2		
Solids, Total Dissolved	1550	15	mg/L	2020-03-30			
Solids, Total Suspended	75.2		mg/L	2020-03-27			
Turbidity	65.8		NTU	2020-03-27			
Volatile Organic Compounds (VOC)							
Benzene	< 0.5	0.5	μg/L	2020-03-28			
Bromodichloromethane	< 1.0		μg/L	2020-03-28			
Bromoform	< 1.0		μg/L	2020-03-28			
Carbon tetrachloride	< 0.5		μg/L	2020-03-28			
Chlorobenzene	< 1.0		μg/L	2020-03-28			
Chloroethane	< 2.0		μg/L	2020-03-28			
Chloroform	< 1.0		μg/L	2020-03-28			
Dibromochloromethane	< 1.0		μg/L	2020-03-28			
1,2-Dibromoethane	< 0.3		μg/L	2020-03-28			
Dibromomethane	< 1.0		μg/L	2020-03-28			
1,2-Dichlorobenzene	< 0.5		μg/L	2020-03-28			
1,3-Dichlorobenzene	< 1.0		μg/L	2020-03-28			
1,4-Dichlorobenzene	< 1.0		μg/L	2020-03-28			
1,1-Dichloroethane	< 1.0		μg/L	2020-03-28			
1,2-Dichloroethane	< 1.0		μg/L	2020-03-28			
1,1-Dichloroethylene	< 1.0		μg/L	2020-03-28			
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-03-28			

Bismuth, dissolved

Cadmium, dissolved

Boron, dissolved

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED 2020

2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-10 (0032091-03) Matrix: Water	Sampled: 2020-03-25 09:30,	Continued			
Volatile Organic Compounds (VOC), Contin	ued				
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-28	
Dichloromethane	< 3.0		μg/L	2020-03-28	
1,2-Dichloropropane	< 1.0		μg/L	2020-03-28	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-03-28	
Ethylbenzene	< 1.0	1.0		2020-03-28	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-03-28	
Styrene	< 1.0	1.0		2020-03-28	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-03-28	
Tetrachloroethylene	< 1.0		μg/L	2020-03-28	
Toluene	< 1.0		μg/L	2020-03-28	
1,1,1-Trichloroethane	< 1.0	1.0		2020-03-28	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-03-28	
Trichloroethylene	< 1.0	1.0	μg/L	2020-03-28	
Trichlorofluoromethane	< 1.0	1.0		2020-03-28	
Vinyl chloride	< 1.0	1.0	μg/L	2020-03-28	
Xylenes (total)	< 2.0		μg/L	2020-03-28	
Surrogate: Toluene-d8	103	70-130	%	2020-03-28	
Surrogate: 4-Bromofluorobenzene	101	70-130	%	2020-03-28	
Surrogate: 1,4-Dichlorobenzene-d4	90	70-130	%	2020-03-28	
MW18-11 (0032091-04) Matrix: Water Anions	Sampled: 2020-03-24 13:55				
Bromide	< 0.10	0.10	mg/L	2020-03-26	
Chloride	113	0.10	mg/L	2020-03-26	
Fluoride	0.77	0.10	mg/L	2020-03-26	
Nitrate (as N)	< 0.010	0.010	mg/L	2020-03-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-03-26	
Sulfate	32.0	1.0	mg/L	2020-03-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	680	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0271	0.00010	mg/L	2020-03-27	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-03-27	
Antimony, dissolved	0.00218	0.00020		2020-03-27	
Arsenic, dissolved	0.00599	0.00050		2020-03-27	
Barium, dissolved	0.0154	0.0050		2020-03-27	
Beryllium, dissolved	< 0.00010	0.00010		2020-03-27	
	0.00040	0.00010		2222 22 27	

0.00010 mg/L

0.0050 mg/L

0.000010 mg/L

< 0.00010

< 0.000010

0.284

2020-03-27

2020-03-27

2020-03-27

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

Analyte	Result	RL	Units	Analyzed	Qualifie
//W18-11 (0032091-04) Matrix: Water	Sampled: 2020-03-24 1	3:55, Continued			
Dissolved Metals, Continued					
Calcium, dissolved	36.1	0.20	mg/L	2020-03-27	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Cobalt, dissolved	0.00016	0.00010	mg/L	2020-03-27	
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-03-27	
Iron, dissolved	0.052	0.010	mg/L	2020-03-27	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Magnesium, dissolved	143	0.010		2020-03-27	
Manganese, dissolved	0.0605	0.00020	mg/L	2020-03-27	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-03-31	
Molybdenum, dissolved	0.00193	0.00010	mg/L	2020-03-27	
Nickel, dissolved	0.0103	0.00040	mg/L	2020-03-27	
Phosphorus, dissolved	< 0.050	0.050		2020-03-27	
Potassium, dissolved	4.81		mg/L	2020-03-27	
Selenium, dissolved	< 0.00050	0.00050		2020-03-27	
Silicon, dissolved	4.3		mg/L	2020-03-27	
Silver, dissolved	< 0.000050	0.000050		2020-03-27	
Sodium, dissolved	106		mg/L	2020-03-27	
Strontium, dissolved	0.481	0.0010		2020-03-27	
Sulfur, dissolved	20.0		mg/L	2020-03-27	
Tellurium, dissolved	< 0.00050	0.00050		2020-03-27	
Thallium, dissolved	< 0.000020	0.000020		2020-03-27	
Thorium, dissolved	< 0.00010	0.00010		2020-03-27	
Tin, dissolved	< 0.00020	0.00020		2020-03-27	
Titanium, dissolved	< 0.0050	0.0050		2020-03-27	
Tungsten, dissolved	< 0.0010	0.0010		2020-03-27	
Uranium, dissolved	0.000068	0.000020		2020-03-27	
Vanadium, dissolved	< 0.0010	0.0010		2020-03-27	
Zinc, dissolved	0.0069	0.0040		2020-03-27	
Zirconium, dissolved	< 0.00010	0.00010		2020-03-27	
eneral Parameters	* 6.666 16	0.00010	9/ =	2020 00 2.	
Alkalinity, Total (as CaCO3)	716	1.0	mg/L	2020-03-27	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-03-27	
Alkalinity, Bicarbonate (as CaCO3)	716		mg/L	2020-03-27	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-03-27	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-03-27	
Bicarbonate (HCO3)	874		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	0.191	0.050		2020-03-26	
BOD, 5-day	< 5.1		mg/L	2020-03-31	
Chemical Oxygen Demand	< 20		mg/L	2020-03-26	
Conductivity (EC)	1460		μS/cm	2020-03-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0032091

Analyte	Result	RL	Units	Analyzed	Qualifier
MW18-11 (0032091-04) Matrix: Water	Sampled: 2020-03-24 13:55,	Continued			
General Parameters, Continued					
рН	8.25	0.10	pH units	2020-03-27	HT2
Solids, Total Dissolved	850	15	mg/L	2020-03-30	
Solids, Total Suspended	28.4	2.0	mg/L	2020-03-27	
Turbidity	52.4	0.10	NTU	2020-03-27	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-03-28	
Bromodichloromethane	< 1.0		μg/L	2020-03-28	
Bromoform	< 1.0	1.0		2020-03-28	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-03-28	
Chlorobenzene	< 1.0	1.0	μg/L	2020-03-28	
Chloroethane	< 2.0	2.0	μg/L	2020-03-28	
Chloroform	< 1.0	1.0	μg/L	2020-03-28	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-03-28	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-03-28	
Dibromomethane	< 1.0	1.0	μg/L	2020-03-28	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-03-28	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-03-28	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-03-28	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-03-28	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-03-28	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-28	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-28	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-28	
Dichloromethane	< 3.0	3.0	μg/L	2020-03-28	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-03-28	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-03-28	
Ethylbenzene	< 1.0	1.0	μg/L	2020-03-28	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-03-28	
Styrene	< 1.0	1.0	μg/L	2020-03-28	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-03-28	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-03-28	
Toluene	8.8	1.0	μg/L	2020-03-28	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-03-28	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-03-28	
Trichloroethylene	< 1.0	1.0	μg/L	2020-03-28	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-03-28	
Vinyl chloride	< 1.0		μg/L	2020-03-28	
Xylenes (total)	< 2.0	2.0	μg/L	2020-03-28	
Surrogate: Toluene-d8	104	70-130		2020-03-28	
Surrogate: 4-Bromofluorobenzene	101	70-130	%	2020-03-28	
Surrogate: 1,4-Dichlorobenzene-d4	91	70-130	%	2020-03-28	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED

2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifie
Town Well #4 (0032091-05) Matrix:	Water Sampled: 2020-03-25 0	6:55			
Anions					
Bromide	< 0.10	0.10	mg/L	2020-03-26	
Chloride	99.0		mg/L	2020-03-26	
Fluoride	< 0.10		mg/L	2020-03-26	
Nitrate (as N)	1.55	0.010	mg/L	2020-03-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-03-26	
Sulfate	42.1	1.0	mg/L	2020-03-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	414	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.00242	0.00010	mg/L	2020-03-27	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-03-27	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Arsenic, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Barium, dissolved	0.216	0.0050	mg/L	2020-03-27	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Boron, dissolved	0.0912	0.0050	mg/L	2020-03-27	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-03-27	
Calcium, dissolved	93.9	0.20	mg/L	2020-03-27	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Copper, dissolved	0.00216	0.00040	mg/L	2020-03-27	
Iron, dissolved	< 0.010	0.010	mg/L	2020-03-27	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Magnesium, dissolved	43.6	0.010	mg/L	2020-03-27	
Manganese, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-03-31	
Molybdenum, dissolved	0.00018	0.00010	mg/L	2020-03-27	
Nickel, dissolved	< 0.00040	0.00040	mg/L	2020-03-27	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-03-27	
Potassium, dissolved	1.97	0.10	mg/L	2020-03-27	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Silicon, dissolved	5.4	1.0	mg/L	2020-03-27	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-03-27	
Sodium, dissolved	59.4	0.10	mg/L	2020-03-27	
Strontium, dissolved	0.481	0.0010	mg/L	2020-03-27	
Sulfur, dissolved	17.0	3.0	mg/L	2020-03-27	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-03-27	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

Analyte	Result	RL	Units	Analyzed	Qualifi
Гоwn Well #4 (0032091-05) Matrix: Wate	r Sampled: 2020-03-25 0	6:55, Continued			
Dissolved Metals, Continued					
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-03-27	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-03-27	
Uranium, dissolved	0.00128	0.000020	mg/L	2020-03-27	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-03-27	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-03-27	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
General Parameters					
Alkalinity, Total (as CaCO3)	374	1.0	mg/L	2020-03-28	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-03-28	
Alkalinity, Bicarbonate (as CaCO3)	374	1.0	mg/L	2020-03-28	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-03-28	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-03-28	
Bicarbonate (HCO3)	456	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	< 0.020	0.050	mg/L	2020-03-26	
BOD, 5-day	< 4.9	2.0	mg/L	2020-04-01	
Chemical Oxygen Demand	< 20	20	mg/L	2020-03-26	
Conductivity (EC)	945	2.0	μS/cm	2020-03-30	
рН	7.98	0.10	pH units	2020-03-28	HT2
Solids, Total Dissolved	607	15	mg/L	2020-03-30	
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-03-27	
Turbidity	0.12	0.10	NTU	2020-03-27	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-03-29	
Bromodichloromethane	< 1.0		μg/L	2020-03-29	
Bromoform	< 1.0	1.0		2020-03-29	
Carbon tetrachloride	< 0.5		μg/L	2020-03-29	
Chlorobenzene	< 1.0		μg/L	2020-03-29	
Chloroethane	< 2.0		μg/L	2020-03-29	
Chloroform	< 1.0		μg/L	2020-03-29	
Dibromochloromethane	< 1.0		μg/L	2020-03-29	
1,2-Dibromoethane	< 0.3		μg/L	2020-03-29	
Dibromomethane	< 1.0		μg/L	2020-03-29	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-03-29	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-03-29	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-03-29	
1,1-Dichloroethane	< 1.0		μg/L	2020-03-29	
1,2-Dichloroethane	< 1.0		μg/L	2020-03-29	
1,1-Dichloroethylene	< 1.0		μg/L	2020-03-29	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-03-29	

Cadmium, dissolved

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED 2020-04-01 13:28

Analyte	Result	RL U	Inits Analyzed Qualif
Town Well #4 (0032091-05) Matrix: Wa	ter Sampled: 2020-03-25 0	6:55, Continued	
Volatile Organic Compounds (VOC), Contin	nued		
trans-1,2-Dichloroethylene	< 1.0	1.0 μ	g/L 2020-03-29
Dichloromethane	< 3.0	3.0 µ	g/L 2020-03-29
1,2-Dichloropropane	< 1.0	1.0 μ	g/L 2020-03-29
1,3-Dichloropropene (cis + trans)	< 1.0	1.0 μ	g/L 2020-03-29
Ethylbenzene	< 1.0	1.0 μ	g/L 2020-03-29
Methyl tert-butyl ether	< 1.0	1.0 μ	g/L 2020-03-29
Styrene	< 1.0	1.0 μ	g/L 2020-03-29
1,1,2,2-Tetrachloroethane	< 0.5	0.5 μ	g/L 2020-03-29
Tetrachloroethylene	< 1.0	1.0 μ	g/L 2020-03-29
Toluene	< 1.0	1.0 μ	g/L 2020-03-29
1,1,1-Trichloroethane	< 1.0	1.0 μ	g/L 2020-03-29
1,1,2-Trichloroethane	< 1.0	1.0 µ	
Trichloroethylene	< 1.0	1.0 µ	
Trichlorofluoromethane	< 1.0	 1.0 μ	
Vinyl chloride	< 1.0	 1.0 μ	
Xylenes (total)	< 2.0	2.0 μ	
Surrogate: Toluene-d8	103	70-130 %	
Surrogate: 4-Bromofluorobenzene	101	70-130 %	
Surrogate: 1,4-Dichlorobenzene-d4	89	70-130 %	
DMW-1b (0032091-06) Matrix: Water Anions	Sampled: 2020-03-24 14:55		
Bromide	< 0.10	0.10 m	ng/L 2020-03-26
Chloride	9.49	0.10 m	-
Fluoride	0.72	0.10 m	-
Nitrate (as N)	0.334	0.010 m	-
Nitrite (as N)	< 0.010	0.010 m	-
Sulfate	232	1.0 m	-
Calculated Parameters			<u> </u>
Hardness, Total (as CaCO3)	560	0.500 m	ng/L N/A
Dissolved Metals			
Lithium, dissolved	0.0532	0.00010 m	ng/L 2020-03-27
Aluminum, dissolved	< 0.0050	0.0050 m	
Antimony, dissolved	< 0.00020	0.00020 m	
Arsenic, dissolved	0.00121	0.00050 m	
Barium, dissolved	0.0155	0.0050 m	-
Beryllium, dissolved	< 0.00010	0.00010 m	-
Bismuth, dissolved	< 0.00010	0.00010 m	-
Boron, dissolved	0.394	0.0050 m	-
	2.201	0.0000 11	

0.000010 mg/L

0.000010

2020-03-27

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

Analyte	Result	RL	Units	Analyzed	Qualifier
DMW-1b (0032091-06) Matrix: Water 5	Sampled: 2020-03-24 14	:55, Continued			
Dissolved Metals, Continued					
Calcium, dissolved	73.5	0.20	mg/L	2020-03-27	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Cobalt, dissolved	0.00069	0.00010	mg/L	2020-03-27	
Copper, dissolved	0.00384	0.00040	mg/L	2020-03-27	
Iron, dissolved	< 0.010	0.010	mg/L	2020-03-27	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Magnesium, dissolved	91.2	0.010	mg/L	2020-03-27	
Manganese, dissolved	0.00377	0.00020	mg/L	2020-03-27	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-03-31	
Molybdenum, dissolved	0.00058	0.00010	mg/L	2020-03-27	
Nickel, dissolved	0.00169	0.00040	mg/L	2020-03-27	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-03-27	
Potassium, dissolved	8.87	0.10	mg/L	2020-03-27	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Silicon, dissolved	7.2	1.0	mg/L	2020-03-27	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-03-27	
Sodium, dissolved	48.3	0.10	mg/L	2020-03-27	
Strontium, dissolved	4.95	0.0010	mg/L	2020-03-27	
Sulfur, dissolved	85.7	3.0	mg/L	2020-03-27	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-03-27	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-03-27	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-03-27	
Uranium, dissolved	0.000917	0.000020	mg/L	2020-03-27	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-03-27	
Zinc, dissolved	0.0282	0.0040	mg/L	2020-03-27	
Zirconium, dissolved	0.00057	0.00010	mg/L	2020-03-27	
General Parameters					
Alkalinity, Total (as CaCO3)	443	1.0	mg/L	2020-03-28	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-03-28	
Alkalinity, Bicarbonate (as CaCO3)	443		mg/L	2020-03-28	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-03-28	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-03-28	
Bicarbonate (HCO3)	540		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	0.721	0.050		2020-03-26	
BOD, 5-day	< 5.1		mg/L	2020-03-31	
Chemical Oxygen Demand	< 20		mg/L	2020-03-26	
Conductivity (EC)	1090	2.0	μS/cm	2020-03-30	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

Analyte	Result	RL	Units	Analyzed	Qualifier
DMW-1b (0032091-06) Matrix: Water \$	Sampled: 2020-03-24 14:55, C	Continued			
General Parameters, Continued					
pH	7.90	0.10	pH units	2020-03-28	HT2
Solids, Total Dissolved	784	15	mg/L	2020-03-30	
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-03-27	
Turbidity	0.12	0.10	NTU	2020-03-27	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-03-29	
Bromodichloromethane	< 1.0		μg/L	2020-03-29	
Bromoform	< 1.0	1.0		2020-03-29	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-03-29	
Chlorobenzene	< 1.0	1.0	μg/L	2020-03-29	
Chloroethane	< 2.0	2.0	μg/L	2020-03-29	
Chloroform	< 1.0	1.0	μg/L	2020-03-29	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-03-29	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-03-29	
Dibromomethane	< 1.0	1.0	μg/L	2020-03-29	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-03-29	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-03-29	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-03-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-03-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-03-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-03-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-03-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-03-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-03-29	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-03-29	
Styrene	< 1.0	1.0	μg/L	2020-03-29	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-03-29	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-03-29	
Toluene	< 1.0	1.0	μg/L	2020-03-29	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-03-29	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-03-29	
Trichloroethylene	< 1.0		μg/L	2020-03-29	
Trichlorofluoromethane	< 1.0		μg/L	2020-03-29	
Vinyl chloride	< 1.0		μg/L	2020-03-29	
Xylenes (total)	< 2.0		μg/L	2020-03-29	
Surrogate: Toluene-d8	100	70-130		2020-03-29	
Surrogate: 4-Bromofluorobenzene	95	70-130	%	2020-03-29	
Surrogate: 1,4-Dichlorobenzene-d4	83	70-130	%	2020-03-29	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW-4 (0032091-07) Matrix: Water	Sampled: 2020-03-24 14:36				
Anions					
Bromide	< 0.10	0.10	mg/L	2020-03-26	
Chloride	50.5	0.10	mg/L	2020-03-26	
Fluoride	1.25	0.10	mg/L	2020-03-26	
Nitrate (as N)	< 0.010	0.010	mg/L	2020-03-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-03-26	
Sulfate	110	1.0	mg/L	2020-03-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	596	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0254	0.00010	mg/L	2020-03-27	
Aluminum, dissolved	< 0.0050	0.0050		2020-03-27	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Arsenic, dissolved	0.0470	0.00050	mg/L	2020-03-27	
Barium, dissolved	0.0219	0.0050	mg/L	2020-03-27	
Beryllium, dissolved	0.00013	0.00010	mg/L	2020-03-27	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Boron, dissolved	0.185	0.0050	mg/L	2020-03-27	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-03-27	
Calcium, dissolved	70.7	0.20	mg/L	2020-03-27	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-03-27	
Iron, dissolved	0.394	0.010	mg/L	2020-03-27	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Magnesium, dissolved	102	0.010	mg/L	2020-03-27	
Manganese, dissolved	0.00448	0.00020	mg/L	2020-03-27	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-03-31	
Molybdenum, dissolved	0.00035	0.00010	mg/L	2020-03-27	
Nickel, dissolved	0.00197	0.00040	mg/L	2020-03-27	
Phosphorus, dissolved	< 0.050	0.050		2020-03-27	
Potassium, dissolved	4.79	0.10	mg/L	2020-03-27	
Selenium, dissolved	< 0.00050	0.00050		2020-03-27	
Silicon, dissolved	8.2		mg/L	2020-03-27	
Silver, dissolved	< 0.000050	0.000050		2020-03-27	
Sodium, dissolved	28.0		mg/L	2020-03-27	
Strontium, dissolved	1.73	0.0010		2020-03-27	
Sulfur, dissolved	43.0		mg/L	2020-03-27	
Tellurium, dissolved	< 0.00050	0.00050		2020-03-27	
Thallium, dissolved	< 0.000020	0.000020		2020-03-27	
Thorium, dissolved	< 0.00010	0.00010		2020-03-27	
Tin, dissolved	< 0.00020	0.00020		2020-03-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED 202

2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW-4 (0032091-07) Matrix: Water San	npled: 2020-03-24 14:36, C	ontinued			
Dissolved Metals, Continued					
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-03-27	
Tungsten, dissolved	< 0.0010	0.0010		2020-03-27	
Uranium, dissolved	0.000086	0.000020	mg/L	2020-03-27	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-03-27	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-03-27	
Zirconium, dissolved	0.00173	0.00010	mg/L	2020-03-27	
General Parameters					
Alkalinity, Total (as CaCO3)	500	1.0	mg/L	2020-03-28	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-03-28	
Alkalinity, Bicarbonate (as CaCO3)	500		mg/L	2020-03-28	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-03-28	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-03-28	
Bicarbonate (HCO3)	610	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	0.215	0.050	mg/L	2020-03-26	
BOD, 5-day	< 5.1	2.0	mg/L	2020-03-31	
Chemical Oxygen Demand	< 20	20	mg/L	2020-03-26	
Conductivity (EC)	1110	2.0	μS/cm	2020-03-30	
pH	7.90	0.10	pH units	2020-03-28	HT2
Solids, Total Dissolved	726	15	mg/L	2020-03-30	
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-03-27	
Turbidity	4.84	0.10	NTU	2020-03-27	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-03-29	
Bromodichloromethane	< 1.0		μg/L	2020-03-29	
Bromoform	< 1.0		μg/L	2020-03-29	
Carbon tetrachloride	< 0.5		μg/L	2020-03-29	
Chlorobenzene	< 1.0		μg/L	2020-03-29	
Chloroethane	< 2.0		μg/L	2020-03-29	
Chloroform	< 1.0	1.0		2020-03-29	
Dibromochloromethane	< 1.0	1.0		2020-03-29	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-03-29	
Dibromomethane	< 1.0	1.0		2020-03-29	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-03-29	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-03-29	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-03-29	
1,1-Dichloroethane	< 1.0	1.0		2020-03-29	
1,2-Dichloroethane	< 1.0	1.0		2020-03-29	
1,1-Dichloroethylene	< 1.0	1.0		2020-03-29	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-03-29	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDE
	40.0050 0.11	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0032091
PROJECT	19-2850 - Golden	REPORTED	2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifie				
DMW-4 (0032091-07) Matrix: Water Sampled: 2020-03-24 14:36, Continued									
Volatile Organic Compounds (VOC), Contin	nued								
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-29					
Dichloromethane	< 3.0	3.0	μg/L	2020-03-29					
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-03-29					
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-03-29					
Ethylbenzene	< 1.0	1.0	μg/L	2020-03-29					
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-03-29					
Styrene	< 1.0	1.0	μg/L	2020-03-29					
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-03-29					
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-03-29					
Toluene	< 1.0	1.0	μg/L	2020-03-29					
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-03-29					
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-03-29					
Trichloroethylene	< 1.0	1.0	μg/L	2020-03-29					
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-03-29					
Vinyl chloride	< 1.0	1.0	μg/L	2020-03-29					
Xylenes (total)	< 2.0	2.0	μg/L	2020-03-29					
Surrogate: Toluene-d8	104	70-130	%	2020-03-29					
Surrogate: 4-Bromofluorobenzene	99	70-130	%	2020-03-29					
Surrogate. 4-bromondobenzene	33	70 700	, 0						
Surrogate: 1,4-Dichlorobenzene-d4	89	70-130	%	2020-03-29					
Surrogate: 1,4-Dichlorobenzene-d4 ### MW09-06D (0032091-08) Matrix: Water Anions	89 r Sampled: 2020-03-24 17:40	70-130	%	2020-03-29					
Surrogate: 1,4-Dichlorobenzene-d4 //W09-06D (0032091-08) Matrix: Water Anions Bromide	89 r Sampled: 2020-03-24 17:40 < 0.10	70-130	% mg/L	2020-03-29					
Surrogate: 1,4-Dichlorobenzene-d4 //W09-06D (0032091-08) Matrix: Water Anions Bromide Chloride	89 r Sampled: 2020-03-24 17:40 < 0.10 399	70-130 0.10 0.10	mg/L mg/L	2020-03-29 2020-03-26 2020-03-26					
Surrogate: 1,4-Dichlorobenzene-d4 //W09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride	89 r Sampled: 2020-03-24 17:40 < 0.10	0.10 0.10 0.10 0.10	mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26					
Surrogate: 1,4-Dichlorobenzene-d4 //W09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N)	89 r Sampled: 2020-03-24 17:40 < 0.10	0.10 0.10 0.10 0.10 0.010	mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26					
Surrogate: 1,4-Dichlorobenzene-d4 //W09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	89 r Sampled: 2020-03-24 17:40 < 0.10	0.10 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26					
Surrogate: 1,4-Dichlorobenzene-d4 //W09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	89 r Sampled: 2020-03-24 17:40 < 0.10	0.10 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26					
Surrogate: 1,4-Dichlorobenzene-d4 MW09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters	89 r Sampled: 2020-03-24 17:40 < 0.10	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26					
Surrogate: 1,4-Dichlorobenzene-d4 MW09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	89 r Sampled: 2020-03-24 17:40 < 0.10	0.10 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26					
MW09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals	89 r Sampled: 2020-03-24 17:40 < 0.10	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26 N/A					
Surrogate: 1,4-Dichlorobenzene-d4 MW09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved	89 r Sampled: 2020-03-24 17:40 < 0.10 399 0.18 32.7 0.012 690 1450 0.0400	0.10 0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26 N/A					
Surrogate: 1,4-Dichlorobenzene-d4 MW09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved	89 r Sampled: 2020-03-24 17:40 < 0.10 399 0.18 32.7 0.012 690 1450 0.0400 < 0.0050	0.10 0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26 N/A 2020-03-27 2020-03-27					
Surrogate: 1,4-Dichlorobenzene-d4 MW09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved	89 r Sampled: 2020-03-24 17:40 < 0.10 399 0.18 32.7 0.012 690 1450 0.0400 < 0.0050 0.00036	0.10 0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-27 2020-03-27 2020-03-27					
Surrogate: 1,4-Dichlorobenzene-d4 MW09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	89 r Sampled: 2020-03-24 17:40 < 0.10	0.10 0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-27 2020-03-27 2020-03-27 2020-03-27					
Surrogate: 1,4-Dichlorobenzene-d4 //W09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Arsenic, dissolved Barium, dissolved	89 r Sampled: 2020-03-24 17:40 < 0.10 399 0.18 32.7 0.012 690 1450 0.0400 < 0.0050 0.00036 0.00051 0.0503	0.10 0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27					
MW09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved	89 r Sampled: 2020-03-24 17:40 < 0.10 399 0.18 32.7 0.012 690 1450 0.0400 < 0.0050 0.00036 0.00051 0.0503 < 0.00010	0.10 0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00020 0.00050 0.0050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27					
Surrogate: 1,4-Dichlorobenzene-d4 MW09-06D (0032091-08) Matrix: Water Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Barium, dissolved	89 r Sampled: 2020-03-24 17:40 < 0.10 399 0.18 32.7 0.012 690 1450 0.0400 < 0.0050 0.00036 0.00051 0.0503	0.10 0.10 0.10 0.010 0.010 1.0 0.500 0.00010 0.0050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-03-29 2020-03-26 2020-03-26 2020-03-26 2020-03-26 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27 2020-03-27					

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED

2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-06D (0032091-08) Matrix: Water	Sampled: 2020-03-24	17:40, Continued			
Dissolved Metals, Continued					
Calcium, dissolved	155	0.20	mg/L	2020-03-27	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Cobalt, dissolved	0.00180	0.00010	mg/L	2020-03-27	
Copper, dissolved	0.00261	0.00040	mg/L	2020-03-27	
Iron, dissolved	0.011	0.010	mg/L	2020-03-27	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Magnesium, dissolved	257	0.010		2020-03-27	
Manganese, dissolved	0.113	0.00020	mg/L	2020-03-27	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-03-31	
Molybdenum, dissolved	0.00034	0.00010	mg/L	2020-03-27	
Nickel, dissolved	0.0121	0.00040	mg/L	2020-03-27	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-03-27	
Potassium, dissolved	166	0.10	mg/L	2020-03-27	
Selenium, dissolved	< 0.00050	0.00050		2020-03-27	
Silicon, dissolved	12.2		mg/L	2020-03-27	
Silver, dissolved	< 0.000050	0.000050		2020-03-27	
Sodium, dissolved	278	0.10	mg/L	2020-03-27	
Strontium, dissolved	1.54	0.0010	mg/L	2020-03-27	
Sulfur, dissolved	252	3.0	mg/L	2020-03-27	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Thallium, dissolved	0.000055	0.000020		2020-03-27	
Thorium, dissolved	< 0.00010	0.00010		2020-03-27	
Tin, dissolved	0.00063	0.00020		2020-03-27	
Titanium, dissolved	< 0.0050	0.0050		2020-03-27	
Tungsten, dissolved	< 0.0010	0.0010		2020-03-27	
Uranium, dissolved	0.00728	0.000020		2020-03-27	
Vanadium, dissolved	< 0.0010	0.0010		2020-03-27	
Zinc, dissolved	0.0062	0.0040		2020-03-27	
Zirconium, dissolved	0.00019	0.00010		2020-03-27	
General Parameters	0.00010	0.00010	mg/L	2020 00 21	
Alkalinity, Total (as CaCO3)	958	1.0	mg/L	2020-03-28	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-03-28	
Alkalinity, Bicarbonate (as CaCO3)	958		mg/L	2020-03-28	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-03-28	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-03-28	
Bicarbonate (HCO3)	1170		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	1.24	0.050		2020-03-26	
BOD, 5-day	5.9		mg/L	2020-03-20	
Chemical Oxygen Demand	98		mg/L	2020-03-31	
Conductivity (EC)	3820		μS/cm	2020-03-20	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED

2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifie				
MW09-06D (0032091-08) Matrix: Water Sampled: 2020-03-24 17:40, Continued									
General Parameters, Continued									
рН	7.65	0.10	pH units	2020-03-28	HT2				
Solids, Total Dissolved	2730	15	mg/L	2020-03-30					
Solids, Total Suspended	20.0	2.0	mg/L	2020-03-27					
Turbidity	25.2	0.10	NTU	2020-03-27					
olatile Organic Compounds (VOC)									
Benzene	< 0.5	0.5	μg/L	2020-03-29					
Bromodichloromethane	< 1.0	1.0	μg/L	2020-03-29					
Bromoform	< 1.0	1.0	μg/L	2020-03-29					
Carbon tetrachloride	< 0.5	0.5		2020-03-29					
Chlorobenzene	< 1.0	1.0		2020-03-29					
Chloroethane	< 2.0	2.0	μg/L	2020-03-29					
Chloroform	< 1.0	1.0	μg/L	2020-03-29					
Dibromochloromethane	< 1.0	1.0	μg/L	2020-03-29					
1,2-Dibromoethane	< 0.3	0.3		2020-03-29					
Dibromomethane	< 1.0	1.0	μg/L	2020-03-29					
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-03-29					
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-03-29					
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-03-29					
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-03-29					
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-03-29					
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-29					
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-29					
trans-1,2-Dichloroethylene	< 1.0	1.0		2020-03-29					
Dichloromethane	< 3.0	3.0		2020-03-29					
1,2-Dichloropropane	< 1.0	1.0		2020-03-29					
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-03-29					
Ethylbenzene	< 1.0	1.0	μg/L	2020-03-29					
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-03-29					
Styrene	< 1.0	1.0	μg/L	2020-03-29					
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-03-29					
Tetrachloroethylene	< 1.0		μg/L	2020-03-29					
Toluene	< 1.0		μg/L	2020-03-29					
1,1,1-Trichloroethane	< 1.0	1.0		2020-03-29					
1,1,2-Trichloroethane	< 1.0	1.0		2020-03-29					
Trichloroethylene	< 1.0		μg/L	2020-03-29					
Trichlorofluoromethane	< 1.0		μg/L	2020-03-29					
Vinyl chloride	< 1.0		μg/L	2020-03-29					
Xylenes (total)	< 2.0		μg/L	2020-03-29					
Surrogate: Toluene-d8	102	70-130	%	2020-03-29					
Surrogate: 4-Bromofluorobenzene	101	70-130		2020-03-29					
Surrogate: 1,4-Dichlorobenzene-d4	89	70-130		2020-03-29					

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED 2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifier
Dup A (0032091-09) Matrix: Water	Sampled: 2020-03-24 18:55				
Anions					
Bromide	< 0.10	0.10	mg/L	2020-03-26	
Chloride	378		mg/L	2020-03-26	
Fluoride	0.18	0.10	mg/L	2020-03-26	
Nitrate (as N)	30.6	0.010	mg/L	2020-03-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-03-26	
Sulfate	690	1.0	mg/L	2020-03-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	1460	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0400	0.00010	mg/L	2020-03-27	
Aluminum, dissolved	< 0.0050	0.0050		2020-03-27	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Arsenic, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Barium, dissolved	0.0458	0.0050	mg/L	2020-03-27	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Boron, dissolved	1.81	0.0050	mg/L	2020-03-27	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-03-27	
Calcium, dissolved	158	0.20	mg/L	2020-03-27	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Cobalt, dissolved	0.00157	0.00010	mg/L	2020-03-27	
Copper, dissolved	0.00243	0.00040	mg/L	2020-03-27	
Iron, dissolved	< 0.010	0.010	mg/L	2020-03-27	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	
Magnesium, dissolved	258	0.010	mg/L	2020-03-27	
Manganese, dissolved	0.0789	0.00020	mg/L	2020-03-27	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-03-31	
Molybdenum, dissolved	0.00036	0.00010	mg/L	2020-03-27	
Nickel, dissolved	0.0117	0.00040	mg/L	2020-03-27	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-03-27	
Potassium, dissolved	162	0.10	mg/L	2020-03-27	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Silicon, dissolved	12.5	1.0	mg/L	2020-03-27	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-03-27	
Sodium, dissolved	271	0.10	mg/L	2020-03-27	
Strontium, dissolved	1.58	0.0010	mg/L	2020-03-27	
Sulfur, dissolved	253	3.0	mg/L	2020-03-27	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-03-27	
Thallium, dissolved	0.000055	0.000020	mg/L	2020-03-27	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-03-27	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-03-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED 2

2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifie				
Dup A (0032091-09) Matrix: Water Sampled: 2020-03-24 18:55, Continued									
Dissolved Metals, Continued									
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-03-27					
Tungsten, dissolved	< 0.0010	0.0010		2020-03-27					
Uranium, dissolved	0.00721	0.000020	mg/L	2020-03-27					
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-03-27					
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-03-27					
Zirconium, dissolved	0.00016	0.00010	mg/L	2020-03-27					
General Parameters									
Alkalinity, Total (as CaCO3)	965	1.0	mg/L	2020-03-28					
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-03-28					
Alkalinity, Bicarbonate (as CaCO3)	965		mg/L	2020-03-28					
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-03-28					
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-03-28					
Bicarbonate (HCO3)	1180	1.22	mg/L	N/A					
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A					
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A					
Ammonia, Total (as N)	1.10	0.050	mg/L	2020-03-26					
BOD, 5-day	< 5.1	2.0	mg/L	2020-03-31					
Chemical Oxygen Demand	25	20	mg/L	2020-03-26					
Conductivity (EC)	3850	2.0	μS/cm	2020-03-30					
pH	7.63	0.10	pH units	2020-03-28	HT2				
Solids, Total Dissolved	2660	15	mg/L	2020-03-30					
Solids, Total Suspended	198	2.0	mg/L	2020-03-27					
Turbidity	35.7	0.10	NTU	2020-03-27					
Volatile Organic Compounds (VOC)									
Benzene	< 0.5	0.5	μg/L	2020-03-29					
Bromodichloromethane	< 1.0		μg/L	2020-03-29					
Bromoform	< 1.0		μg/L	2020-03-29					
Carbon tetrachloride	< 0.5		μg/L	2020-03-29					
Chlorobenzene	< 1.0		μg/L	2020-03-29					
Chloroethane	< 2.0		μg/L	2020-03-29					
Chloroform	< 1.0	1.0		2020-03-29					
Dibromochloromethane	< 1.0	1.0		2020-03-29					
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-03-29					
Dibromomethane	< 1.0	1.0		2020-03-29					
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-03-29					
1,3-Dichlorobenzene	< 1.0		μg/L	2020-03-29					
1,4-Dichlorobenzene	< 1.0		μg/L	2020-03-29					
1,1-Dichloroethane	< 1.0	1.0		2020-03-29					
1,2-Dichloroethane	< 1.0	1.0		2020-03-29					
1,1-Dichloroethylene	< 1.0	1.0		2020-03-29					
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-03-29					

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED 2020-04-01 13:28

Analyte	Result	RL	Units	Analyzed	Qualifier				
Dup A (0032091-09) Matrix: Water Sampled: 2020-03-24 18:55, Continued									
Volatile Organic Compounds (VOC), Contin	ued								
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-03-29					
Dichloromethane	< 3.0	3.0	μg/L	2020-03-29					
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-03-29					
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-03-29					
Ethylbenzene	< 1.0	1.0	μg/L	2020-03-29					
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-03-29					
Styrene	< 1.0	1.0	μg/L	2020-03-29					
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-03-29					
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-03-29					
Toluene	< 1.0	1.0	μg/L	2020-03-29					
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-03-29					
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-03-29					
Trichloroethylene	< 1.0	1.0	μg/L	2020-03-29					
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-03-29					
Vinyl chloride	< 1.0	1.0	μg/L	2020-03-29					
Xylenes (total)	< 2.0	2.0	μg/L	2020-03-29					
Surrogate: Toluene-d8	102	70-130	%	2020-03-29					
Surrogate: 4-Bromofluorobenzene	98	70-130	%	2020-03-29					
Surrogate: 1,4-Dichlorobenzene-d4	87	70-130	%	2020-03-29					

Sample Qualifiers:

BOD4 The BOD result shows evidence of Toxicity.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is

recommended.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0032091

REPORTED

2020-04-01 13:28

Analysis Description	Method Ref.	Technique	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	Kelowna
Ammonia, Total in Water	SM 4500-NH3 G* (2017)	Automated Colorimetry (Phenate)	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	Kelowna
Biochemical Oxygen Demand in Water	SM 5210 B (2017)	Dissolved Oxygen Meter	Kelowna
Chemical Oxygen Demand in Water	SM 5220 D* (2017)	Closed Reflux, Colorimetry	Kelowna
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	Richmond
Hardness in Water	SM 2340 B (2017)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	N/A
Mercury, dissolved in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	Richmond
pH in Water	SM 4500-H+ B (2017)	Electrometry	Kelowna
Solids, Total Dissolved in Water	SM 2540 C* (2017)	Gravimetry (Dried at 103-105C)	Kelowna
Solids, Total Suspended in Water	SM 2540 D* (2017)	Gravimetry (Dried at 103-105C)	Kelowna
Turbidity in Water	SM 2130 B (2017)	Nephelometry	Kelowna
Volatile Organic Compounds in Water	EPA 5030B / EPA 8260D	Purge&Trap / GC-MSD (SIM)	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

< Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units pH units pH < 7 = acidic, ph > 7 = basic

μg/L Micrograms per litre

μS/cm Microsiemens per centimetre

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:acrump@caro.ca

REPORTED TO

Ecoscape Environmental Ltd.

PROJECT 19-2850

19-2850 - Golden

WORK ORDER REPORTED 0032091

2020-04-01 13:28

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk)**: A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B0C2187									
Blank (B0C2187-BLK1)			Prepared	d: 2020-03-2	26, Analyze	d: 2020-0	03-26		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B0C2187-BLK2)			Prepared	d: 2020-03-2	26, Analyze	d: 2020-0	03-26		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B0C2187-BLK3)			Prepared	d: 2020-03-2	26, Analyze	d: 2020-0	03-26		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B0C2187-BS1)			Prepared	d: 2020-03-2	26, Analyze	d: 2020-0	03-26		
Bromide	4.07	0.10 mg/L	4.00		102	85-115			
Chloride	16.1	0.10 mg/L	16.0		100	90-110			
Fluoride	4.06	0.10 mg/L	4.00		102	88-108			
Nitrate (as N)	4.06	0.010 mg/L	4.00		102	90-110			
Nitrite (as N)	2.09	0.010 mg/L	2.00		105	85-115			
Sulfate	15.8	1.0 mg/L	16.0		99	90-110			
LCS (B0C2187-BS2)			Prepared	d: 2020-03-2	26, Analyze	d: 2020-0	03-26		
Bromide	4.03	0.10 mg/L	4.00		101	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Fluoride	4.08	0.10 mg/L	4.00		102	88-108			
Nitrate (as N)	4.03	0.010 mg/L	4.00		101	90-110			

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0032091
PROJECT	19-2850 - Golden	REPORTED	2020-04-01 13:28

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier				
Anions, Batch B0C2187, Continued													
LCS (B0C2187-BS2), Continued	Prepared: 2020-03-26, Analyzed: 2020-03-26												
Nitrite (as N)	2.07	0.010 mg/L	2.00		104	85-115							
Sulfate	15.8	1.0 mg/L	16.0		99	90-110							
LCS (B0C2187-BS3)			Prepared	l: 2020-03-2	6, Analyze	d: 2020-0	03-26						
Bromide	4.09	0.10 mg/L	4.00		102	85-115							
Chloride	16.0	0.10 mg/L	16.0		100	90-110							
Fluoride	4.07	0.10 mg/L	4.00		102	88-108							
Nitrate (as N)	4.05	0.010 mg/L	4.00		101	90-110							
Nitrite (as N)	2.07	0.010 mg/L	2.00		103	85-115							
Sulfate	15.8	1.0 mg/L	16.0		99	90-110							

Dissolved Metals, Batch B0C2355

Aluminum, dissolved

Blank (B0C2355-BLK1)			Prepared: 2020-03-27, Analy	/zed: 2020-03-27
Lithium, dissolved	< 0.00010	0.00010 mg/L		
Aluminum, dissolved	< 0.0050	0.0050 mg/L		
Antimony, dissolved	< 0.00020	0.00020 mg/L		
Arsenic, dissolved	< 0.00050	0.00050 mg/L		
Barium, dissolved	< 0.0050	0.0050 mg/L		
Beryllium, dissolved	< 0.00010	0.00010 mg/L		
Bismuth, dissolved	< 0.00010	0.00010 mg/L		
Boron, dissolved	< 0.0050	0.0050 mg/L		
Cadmium, dissolved	< 0.000010	0.000010 mg/L		
Calcium, dissolved	< 0.20	0.20 mg/L		
Chromium, dissolved	< 0.00050	0.00050 mg/L		
Cobalt, dissolved	< 0.00010	0.00010 mg/L		
Copper, dissolved	< 0.00040	0.00040 mg/L		
Iron, dissolved	< 0.010	0.010 mg/L		
Lead, dissolved	< 0.00020	0.00020 mg/L		
Magnesium, dissolved	< 0.010	0.010 mg/L		
Manganese, dissolved	< 0.00020	0.00020 mg/L		
Molybdenum, dissolved	< 0.00010	0.00010 mg/L		
Nickel, dissolved	< 0.00040	0.00040 mg/L		
Phosphorus, dissolved	< 0.050	0.050 mg/L		
Potassium, dissolved	< 0.10	0.10 mg/L		
Selenium, dissolved	< 0.00050	0.00050 mg/L		
Silicon, dissolved	< 1.0	1.0 mg/L		
Silver, dissolved	< 0.000050	0.000050 mg/L		
Sodium, dissolved	< 0.10	0.10 mg/L		
Strontium, dissolved	< 0.0010	0.0010 mg/L		
Sulfur, dissolved	< 3.0	3.0 mg/L		
Tellurium, dissolved	< 0.00050	0.00050 mg/L		
Thallium, dissolved	< 0.000020	0.000020 mg/L		
Thorium, dissolved	< 0.00010	0.00010 mg/L		
Tin, dissolved	< 0.00020	0.00020 mg/L		
Titanium, dissolved	< 0.0050	0.0050 mg/L		
Tungsten, dissolved	< 0.0010	0.0010 mg/L		
Uranium, dissolved	< 0.000020	0.000020 mg/L		
Vanadium, dissolved	< 0.0010	0.0010 mg/L		
Zinc, dissolved	< 0.0040	0.0040 mg/L		
Zirconium, dissolved	< 0.00010	0.00010 mg/L		
LCS (B0C2355-BS1)			Prepared: 2020-03-27, Analy	/zed: 2020-03-27
Lithium, dissolved	0.0206	0.00010 mg/L	0.0200 103	80-120
Aluminum dissolved	0.0016	0.0050 ma/l	0.0100 100	00.400

0.0199

108

80-120

0.0050 mg/L

0.0216

REPORTED TO PROJECT	Ecoscape Environment 19-2850 - Golden	al Ltd.					WORK REPOR	ORDER TED	0032 2020	091 -04-01	13:28
Analyte		Result	RL	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals,	Batch B0C2355, Continued	ı									
LCS (B0C2355-BS	1), Continued				Prepared	: 2020-03-27	7, Analyze	d: 2020-0	3-27		
Antimony, dissolved		0.0193	0.00020	mg/L	0.0200		97	80-120			
Arsenic, dissolved		0.0203	0.00050	mg/L	0.0200		102	80-120			
Barium, dissolved		0.0193	0.0050		0.0198		97	80-120			
Beryllium, dissolved		0.0210	0.00010		0.0198		106	80-120			
Bismuth, dissolved		0.0208	0.00010		0.0200		104	80-120			
Boron, dissolved Cadmium, dissolved		0.0163	0.0050 0.000010		0.0200 0.0199		82 96	80-120 80-120			
Calcium, dissolved		2.11		mg/L	2.02		104	80-120			
Chromium, dissolved		0.0202	0.00050		0.0198		102	80-120			
Cobalt, dissolved		0.0201	0.00010		0.0199		101	80-120			
Copper, dissolved		0.0208	0.00040		0.0200		104	80-120			
Iron, dissolved		1.96	0.010	mg/L	2.02		97	80-120			
Lead, dissolved		0.0202	0.00020		0.0199		101	80-120			
Magnesium, dissolved		1.93		mg/L	2.02		96	80-120			
Manganese, dissolve		0.0194	0.00020		0.0199		97	80-120			
Molybdenum, dissolve	ed	0.0199	0.00010		0.0200		99	80-120			
Nickel, dissolved Phosphorus, dissolve	d	2.00	0.00040	mg/L mg/L	0.0200 2.00		100	80-120 80-120			
Potassium, dissolved	u	1.94		mg/L	2.02		96	80-120			
Selenium, dissolved		0.0201	0.00050		0.0200		101	80-120			
Silicon, dissolved		2.2		mg/L	2.00		112	80-120			
Silver, dissolved		0.0190	0.000050		0.0200		95	80-120			
Sodium, dissolved		2.00	0.10	mg/L	2.02		99	80-120			
Strontium, dissolved		0.0198	0.0010	mg/L	0.0200		99	80-120			
Sulfur, dissolved		5.7		mg/L	5.00		114	80-120			
Tellurium, dissolved		0.0190	0.00050		0.0200		95	80-120			
Thallium, dissolved		0.0207	0.000020		0.0199		104	80-120			
Thorium, dissolved		0.0198	0.00010 0.00020		0.0200 0.0200		99	80-120 80-120			
Tin, dissolved Titanium, dissolved		0.0200	0.00020		0.0200		107	80-120			
Tungsten, dissolved		0.0210	0.0030		0.0200		100	80-120			
Uranium, dissolved		0.0202	0.000020		0.0200		101	80-120			
Vanadium, dissolved		0.0200	0.0010		0.0200		100	80-120			
Zinc, dissolved		0.0214	0.0040		0.0200		107	80-120			
Zirconium, dissolved		0.0197	0.00010	mg/L	0.0200		99	80-120			
Reference (B0C23	55-SRM1)				Prepared	: 2020-03-27	7, Analyze	d: 2020-0	3-27		
Lithium, dissolved		0.102	0.00010	mg/L	0.100		102	77-127			
Aluminum, dissolved		0.210	0.0050		0.235		90	79-114			
Antimony, dissolved		0.0441	0.00020		0.0431		102	89-123			
Arsenic, dissolved		0.440	0.00050		0.423		104	87-113			
Barium, dissolved		2.89	0.0050		3.30		88	85-114			
Beryllium, dissolved		0.221	0.00010		0.209		106	79-122			
Boron, dissolved		1.35	0.0050		1.65		82	79-117			
Calcium, dissolved		0.209 7.80	0.000010	mg/L mg/L	0.221 7.72		95	89-112 85-120			
Calcium, dissolved Chromium, dissolved		0.432	0.00050		0.434		101	87-113			
Cobalt, dissolved		0.432	0.00030		0.124		100	90-117			
Copper, dissolved		0.825	0.00040		0.815		101	90-115			
Iron, dissolved		1.25		mg/L	1.27		99	86-112			
Lead, dissolved		0.108	0.00020		0.110		98	90-113			
Magnesium, dissolved	d	6.35	0.010	mg/L	6.59		96	84-116			
Manganese, dissolve		0.323	0.00020		0.342		94	85-113			
Molybdenum, dissolve	ed	0.417	0.00010		0.404		103	87-112			
Nickel, dissolved		0.833	0.00040		0.835		100	90-114			
Phosphorus, dissolve	d	0.488	0.050	mg/L	0.499		98	74-119			

REPORTED TO PROJECT	Ecoscape Environme 19-2850 - Golden	ental Ltd.				WORK (0032 2020	2091 0-04-01	13:28
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals,	Batch B0C2355, Continu	ıed								
Reference (B0C23	55-SRM1), Continued			Prepared:	2020-03-27	, Analyzed	d: 2020-0	3-27		
Potassium, dissolved		2.84	0.10 mg/L	2.88		98	78-119			
Selenium, dissolved		0.0337	0.00050 mg/L	0.0324		104	89-123			
Sodium, dissolved		17.0	0.10 mg/L	18.0		94	81-117			
Strontium, dissolved		0.896	0.0010 mg/L 0.000020 mg/L	0.935 0.0385		96 102	82-111 90-113			
Thallium, dissolved Uranium, dissolved		0.0392	0.000020 mg/L	0.0363		95	87-113			
Vanadium, dissolved		0.856	0.00020 mg/L	0.873		98	85-110			
Zinc, dissolved		0.887	0.0040 mg/L	0.848		105	88-114			
Dissolved Metals,	Batch B0C2465									
Blank (B0C2465-B	∟K1)			Prepared:	2020-03-30	, Analyzed	d: 2020-0	3-31		
Mercury, dissolved		< 0.000010	0.000010 mg/L							
Reference (B0C246	55-SRM1)			Prepared:	2020-03-30	, Analyzed	d: 2020-0	3-31		
Mercury, dissolved		0.00507	0.000010 mg/L	0.00489		104	80-120			
Blank (B0C2196-B	LK1)	.0.000	0.000	Prepared:	2020-03-26	, Analyzed	d: 2020-0	3-26		
Ammonia, Total (as N		< 0.020	0.020 mg/L							
Blank (B0C2196-Bl	<u> </u>	10.000	0.000 //	Prepared:	2020-03-26	, Analyzed	1: 2020-0	3-26		
Ammonia, Total (as N		< 0.020	0.020 mg/L							
Blank (B0C2196-Bl	· · · · · · · · · · · · · · · · · · ·	< 0.020	0.020 ma/l	Prepared:	2020-03-26	, Analyzed	1: 2020-0	3-26		
Ammonia, Total (as N		< 0.020	0.020 mg/L		0000 00 00					
LCS (B0C2196-BS	•				2020-03-26			3-26		
Ammonia, Total (as N)	0.942	0.020 mg/L	1.00		94	90-115			
LCS (B0C2196-BS2	•				2020-03-26			3-26		
Ammonia, Total (as N		0.979	0.020 mg/L	1.00		98	90-115			
LCS (B0C2196-BS	·	0.070	0.000	· · · · · · · · · · · · · · · · · · ·	2020-03-26			3-26		
Ammonia, Total (as N)	0.972	0.020 mg/L	1.00		97	90-115			
General Parameters	s, Batch B0C2209									
Blank (B0C2209-Bl	LK1)			Prepared:	2020-03-26	, Analyzed	d: 2020-0	3-26		
Chemical Oxygen De	mand	< 20	20 mg/L							
LCS (B0C2209-BS	1)			Prepared:	2020-03-26	, Analyzed	d: 2020-0	3-26		
Chemical Oxygen De	mand	506	20 mg/L	500		101	89-115			
General Parameters	s, Batch B0C2231									
Blank (B0C2231-B	LK1)			Prepared:	2020-03-26	, Analyzed	d: 2020-0	3-31		
BOD, 5-day		< 2.0	2.0 mg/L							
LCS (B0C2231-BS	1)			Prepared:	2020-03-26	, Analyzed	d: 2020-0	3-31		
BOD, 5-day		189	2.0 mg/L	180		105	85-115			

REPORTED TO Ecoscape Environme PROJECT 19-2850 - Golden	nental Ltd.				WORK REPOR	ORDER RTED	0032 2020	2091 0-04-01	13:28
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B0C2299, Co	ntinued								
Blank (B0C2299-BLK1)			Prepared	: 2020-03-2	7, Analyze	ed: 2020-0	3-27		
Solids, Total Suspended	< 2.0	2.0 mg/L	•						
		<u> </u>	Dropared	: 2020-03-2	7 Apolyzo	.d. 2020 0	2 27		
Blank (B0C2299-BLK2)	100	0.0	Prepared	. 2020-03-2	7, Analyze	a. 2020-0	3-21		
Solids, Total Suspended	< 2.0	2.0 mg/L							
LCS (B0C2299-BS1)			Prepared	: 2020-03-2	7, Analyze	ed: 2020-0	3-27		
Solids, Total Suspended	92.0	10.0 mg/L	100		92	85-115			
LCS (B0C2299-BS2)			Prepared	: 2020-03-2	7, Analyze	ed: 2020-0	3-27		
Solids, Total Suspended	94.0	10.0 mg/L	100		94	85-115			
				. 0000 00 0			0.07		
Duplicate (B0C2299-DUP2)		rce: 0032091-04	Prepared	: 2020-03-2	7, Analyze	ed: 2020-0			
Solids, Total Suspended	30.4	2.0 mg/L		28.4			7	20	
General Parameters, Batch B0C2300 Blank (B0C2300-BLK1)			Prepared	: 2020-03-2	7, Analyze	ed: 2020-0	3-27		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0 < 1.0	1.0 mg/L 1.0 mg/L							
Conductivity (EC)	< 2.0	2.0 µS/cm							
Blank (B0C2300-BLK2)		·	Prepared	: 2020-03-2	7, Analyze	ed: 2020-0	3-27		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3) Conductivity (EC)	< 1.0 < 2.0	1.0 mg/L 2.0 µS/cm							
	· 2.0	2.0 μο/οπ							
LCS (B0C2300-BS1)				: 2020-03-2			3-27		
Alkalinity, Total (as CaCO3)	106	1.0 mg/L	100		106	80-120			
LCS (B0C2300-BS2)			Prepared	: 2020-03-2	7, Analyze	ed: 2020-0	3-27		
Alkalinity, Total (as CaCO3)	104	1.0 mg/L	100		104	80-120			
LCS (B0C2300-BS3)			Prepared	: 2020-03-2	7, Analyze	ed: 2020-0	3-27		
Conductivity (EC)	1400	2.0 µS/cm	1410		100	95-104			
LCS (B0C2300-BS4)				: 2020-03-2			3-27		
Conductivity (EC)	1400	2.0 µS/cm	1410		99	95-104			
Duplicate (B0C2300-DUP2)		ce: 0032091-01		: 2020-03-2			3-27		
Alkalinity, Total (as CaCO3)	975	1.0 mg/L	· · · · · · · · · · · · · · · · · · ·	975			< 1	10	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L		< 1.0				10	
Alkalinity, Bicarbonate (as CaCO3)	975	1.0 mg/L		975			< 1	10	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L		< 1.0				10	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L		< 1.0				10	
Conductivity (EC)	3890	2.0 µS/cm		3990			3	5	
рН	7.70	0.10 pH units		7.69			< 1	4	
Reference (B0C2300-SRM1)			Prepared	: 2020-03-2	7, Analyze	ed: 2020-0	3-27		
pH	6.97	0.10 pH units	7.01		99	98-102			

REPORTED TO PROJECT	Ecoscape Environmer 19-2850 - Golden	ntal Ltd.				WORK (0032 2020	2091 0-04-01	13:28
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters	, Batch B0C2300, Contin	nued								
Reference (B0C230	0-SRM2)			Prepared	: 2020-03-27	, Analyze	d: 2020-0	3-27		
рН		6.96	0.10 pH units	7.01		99	98-102			
General Parameters	, Batch B0C2310									
Blank (B0C2310-BL	_K1)			Prepared	: 2020-03-27	, Analyze	d: 2020-0	4-01		
BOD, 5-day		< 2.0	2.0 mg/L							
LCS (B0C2310-BS1)			Prepared	: 2020-03-27	, Analyze	d: 2020-0	4-01		
BOD, 5-day		191	40.6 mg/L	180		106	85-115			
General Parameters	, Batch B0C2348									
Blank (B0C2348-BL	_K1)			Prepared	: 2020-03-27	, Analyze	d: 2020-0	3-27		
Turbidity		< 0.10	0.10 NTU	•		-				
Blank (B0C2348-BL	-K2)			Prepared	: 2020-03-27	, Analyze	d: 2020-0	3-27		
Turbidity	,	< 0.10	0.10 NTU							
LCS (B0C2348-BS1)			Prepared	: 2020-03-27	'. Analyze	d: 2020-0	3-27		
Turbidity	,	37.8	0.10 NTU	40.0		94	90-110			
LCS (B0C2348-BS2	N			Drenared	: 2020-03-27	Δnalyze	4· 2020-0	13-27		
Turbidity	.,	39.6	0.10 NTU	40.0	. 2020-00-21	99	90-110	10-21		
Duplicate (B0C234	R_DLIP1)	Sou	rce: 0032091-02	Prepared	: 2020-03-27	' Analyze	4· 2020 - 0	13-27		
Turbidity	J-201 1,	43.5	0.10 NTU	1 Toparou	41.5	, , and , , 20	J. 2020 C	5	15	
Duplicate (B0C234	P DIID2\		rce: 0032091-04	Drenared	: 2020-03-27	Δnalyze	4· 2020-0			
Turbidity	3-D0F2)	52.9	0.10 NTU	1 Toparcu	52.4	, Analyzo	1. 2020-0	< 1	15	
General Parameters	s, Batch B0C2378								<u> </u>	
Blank (B0C2378-BL	-K1)			Prepared	: 2020-03-28	, Analyze	d: 2020-0	3-28		
Alkalinity, Total (as Ca	CO3)	< 1.0	1.0 mg/L							
Alkalinity Dhanalahtha										
	alein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate	alein (as CaCO3) (as CaCO3)	< 1.0	1.0 mg/L 1.0 mg/L							
	alein (as CaCO3) (as CaCO3) as CaCO3)		1.0 mg/L							
Alkalinity, Bicarbonate (alein (as CaCO3) (as CaCO3) as CaCO3)	< 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L							
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (a	alein (as CaCO3) (as CaCO3) as CaCO3) as CaCO3)	< 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	: 2020-03-28	s, Analyzeo	d: 2020-0	3-28		
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (a Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca	alein (as CaCO3) (as CaCO3) as CaCO3) as CaCO3) as CaCO3) CCO3)	< 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	: 2020-03-28	s, Analyze	d: 2020-0	3-28		
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Phenolphtha	alein (as CaCO3) (as CaCO3) as CaCO3) as CaCO3) LK2) CO3) alein (as CaCO3)	< 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	: 2020-03-28	s, Analyzeo	d: 2020-0	3-28		
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Phenolphtha Alkalinity, Bicarbonate	alein (as CaCO3) (as CaCO3) as CaCO3) as CaCO3) LK2) CO3) alein (as CaCO3) (as CaCO3)	< 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	: 2020-03-28	s, Analyzed	d: 2020-C	13-28		
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Phenolphtha Alkalinity, Bicarbonate (Alkalinity, Carbonate (Alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3)	< 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	: 2020-03-28	s, Analyzeo	d: 2020-0	3-28		
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Phenolphtha Alkalinity, Bicarbonate	Alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3)	< 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared	: 2020-03-28	s, Analyzeo	d: 2020-C	3-28		
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (a Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Phenolphtha Alkalinity, Bicarbonate (Alkalinity, Carbonate (Alkalinity, Hydroxide (a Conductivity (EC)	alein (as CaCO3) (as CaCO3) as CaCO3) as CaCO3) as CaCO3) LK2) CO3) alein (as CaCO3) (as CaCO3) as CaCO3) as CaCO3)	< 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L							
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (a Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Phenolphtha Alkalinity, Bicarbonate Alkalinity, Carbonate (a Alkalinity, Hydroxide (a Conductivity (EC) Blank (B0C2378-BL	alein (as CaCO3) (as CaCO3) as CaCO3) as CaCO3) as CaCO3) LK2) CO3) alein (as CaCO3) (as CaCO3) as CaCO3) as CaCO3)	< 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm		: 2020-03-28 : 2020-03-28					
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (a Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Phenolphtha Alkalinity, Bicarbonate (Alkalinity, Carbonate (Alkalinity, Hydroxide (a Conductivity (EC)	Alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3)	< 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L							
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (a Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Phenolphtha Alkalinity, Ecarbonate (Alkalinity, Hydroxide (a Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Phenolphtha Alkalinity, Phenolphtha Alkalinity, Bicarbonate	alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3)	< 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm							
Alkalinity, Bicarbonate Alkalinity, Carbonate (Alkalinity, Hydroxide (a Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Phenolphtha Alkalinity, Bicarbonate (a Alkalinity, Hydroxide (a Conductivity (EC) Blank (B0C2378-BL Alkalinity, Total (as Ca Alkalinity, Total (as Ca Alkalinity, Phenolphtha	alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (alein (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3) (as CaCO3)	< 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L 2.0 µS/cm							

1,2-Dichloroethane

1,1-Dichloroethylene

APPENDIX 2: QUALITY CONTROL RESULTS

								_		
REPORTED TO PROJECT	Ecoscape Environmer 19-2850 - Golden	ntal Ltd.				WORK REPOR	ORDER RTED	0032 2020	2091)-04-01	13:28
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
General Parameter	s, Batch B0C2378, Conti	nued								
LCS (B0C2378-BS	1)			Prepared	: 2020-03-28	3, Analyze	ed: 2020-0	3-28		
Alkalinity, Total (as Ca	aCO3)	103	1.0 mg/L	100		103	80-120			
•				Droparad	: 2020-03-28	Apolyzo	4. 3030 0	2 20		
LCS (B0C2378-BS	•	103	4.0	100	. 2020-03-20	103		3-20		
Alkalinity, Total (as Ca	aCO3)	103	1.0 mg/L				80-120			
LCS (B0C2378-BS	3)			Prepared	: 2020-03-28	3, Analyze	d: 2020-0	3-28		
Alkalinity, Total (as Ca	aCO3)	103	1.0 mg/L	100		103	80-120			
LCS (B0C2378-BS	4)			Prepared	: 2020-03-30), Analyze	ed: 2020-0	3-30		
Conductivity (EC)	,	1380	2.0 µS/cm	1410		98	95-104			
• • •					. 2020 02 20			2.20		
LCS (B0C2378-BS	5)				: 2020-03-30			3-30		
Conductivity (EC)		1410	2.0 µS/cm	1410		100	95-104			
LCS (B0C2378-BS	6)			Prepared	: 2020-03-30), Analyze	d: 2020-0	3-30		
Conductivity (EC)		1420	2.0 µS/cm	1410		101	95-104			
Reference (B0C23	78_SDM1\			Prenared	: 2020-03-28	R Δnalvze	4· 3030-0	3-28		
pH	70-3KW11)	6.96	0.10 pH units	7.01	. 2020-05-20	99	98-102	3-20		
рп		0.90	0.10 pri units							
Reference (B0C23)	78-SRM2)			Prepared	: 2020-03-28	3, Analyze	ed: 2020-0	3-28		
рН		6.96	0.10 pH units	7.01		99	98-102			
Reference (B0C23	78-SRM3)			Prepared	: 2020-03-28	3, Analyze	ed: 2020-0	3-28		
pH	•	6.95	0.10 pH units	7.01		99	98-102			
Blank (B0C2435-B Solids, Total Dissolve	d	< 15	15 mg/L	•	: 2020-03-30	•				
LCS (B0C2435-BS	•	222	45 "		: 2020-03-30			3-30		
Solids, Total Dissolve	d .	238	15 mg/L	240		99	85-115			
Duplicate (B0C243	85-DUP1)	Soul	rce: 0032091-03	Prepared	: 2020-03-30), Analyze	ed: 2020-0	3-30		
Solids, Total Dissolve	d	1530	15 mg/L		1550			1	15	
/olatile Organic Co	ompounds (VOC), Batch	B0C2401								
Blank (B0C2401-B	LK1)			Prepared	: 2020-04-01	l, Analyze	ed: 2020-0	4-01		
Benzene		< 0.5	0.5 μg/L							
Bromodichloromethar	ne	< 1.0	1.0 µg/L							
Bromoform Carbon tetraphlerida		< 1.0	1.0 µg/L							
Carbon tetrachloride Chlorobenzene		< 0.5 < 1.0	0.5 μg/L 1.0 μg/L							
Chloroethane		< 2.0	2.0 µg/L							
Chloroform		< 1.0	1.0 µg/L							
Dibromochlorometha	ne	< 1.0	1.0 μg/L							
1,2-Dibromoethane	·	< 0.3	0.3 µg/L							
Dibromomethane		< 1.0	1.0 μg/L							
1,2-Dichlorobenzene		< 0.5	0.5 μg/L							
1,3-Dichlorobenzene		< 1.0	1.0 µg/L							
1,4-Dichlorobenzene 1,1-Dichloroethane		< 1.0 < 1.0	1.0 μg/L 1.0 μg/L							
1,1-Dichloroethane		< 1.0	1.0 µg/L							

1.0 µg/L

1.0 µg/L

< 1.0

< 1.0

					_					
REPORTED TO PROJECT	Ecoscape Environme 19-2850 - Golden	ntal Ltd.				WORK REPOR	ORDER TED	0032 2020	:091 -04-01	13:28
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Volatile Organic Co	ompounds (VOC), Batch	B0C2401, Con	tinued							
Blank (B0C2401-B	BLK1), Continued			Prepared	: 2020-04-0	1, Analyze	d: 2020-0	4-01		
cis-1,2-Dichloroethyle	ene	< 1.0	1.0 µg/L							
trans-1,2-Dichloroeth	nylene	< 1.0	1.0 µg/L							
Dichloromethane	,	< 3.0	3.0 µg/L							
1,2-Dichloropropane		< 1.0	1.0 µg/L							
1,3-Dichloropropene	(cis + trans)	< 1.0	1.0 µg/L							
Ethylbenzene		< 1.0	1.0 µg/L							
Methyl tert-butyl ethe	er	< 1.0	1.0 µg/L							
Styrene		< 1.0	1.0 µg/L							
1,1,2,2-Tetrachloroet	hane	< 0.5	0.5 μg/L							
Tetrachloroethylene		< 1.0	1.0 μg/L							
Toluene		< 1.0	1.0 μg/L							
1,1,1-Trichloroethane		< 1.0	1.0 µg/L							
1,1,2-Trichloroethane	9	< 1.0	1.0 μg/L							
Trichloroethylene		< 1.0	1.0 µg/L							
Trichlorofluorometha	ne	< 1.0	1.0 µg/L							
Vinyl chloride		< 1.0	1.0 µg/L							
Xylenes (total)		< 2.0	2.0 µg/L							
Surrogate: Toluene-d	18	25.9	μg/L	26.5		98	70-130			
Surrogate: 4-Bromofi	luorobenzene	24.6	μg/L	24.9		99	70-130			
Surrogate: 1,4-Dichlo	orobenzene-d4	20.8	μg/L	25.5		82	70-130			
LCS (B0C2401-BS	51)			Prepared	: 2020-03-2	9, Analyze	d: 2020-0	3-29		
Benzene		18.8	0.5 µg/L	20.0		94	70-130			
Bromodichlorometha	ne	19.6	1.0 µg/L	20.0		98	70-130			
Bromoform		19.2	1.0 µg/L	20.1		96	70-130			
Carbon tetrachloride		19.5	0.5 μg/L	20.2		96	70-130			
Chlorobenzene		20.6	1.0 μg/L	20.1		103	70-130			
Chloroethane		17.9	2.0 µg/L	20.0		90	60-140			
Chloroform		19.9	1.0 µg/L	20.1		99	70-130			
Dibromochlorometha	ine	19.3	1.0 µg/L	20.2		95	70-130			
1,2-Dibromoethane		19.4	0.3 µg/L	20.0		97	70-130			
Dibromomethane		19.0	1.0 µg/L	20.0		95	70-130			
1,2-Dichlorobenzene		21.6	0.5 μg/L	20.1		107	70-130			
1,3-Dichlorobenzene		23.0	1.0 µg/L	20.1		114	70-130			
1,4-Dichlorobenzene	!	24.9	1.0 µg/L	20.1		124 94	70-130			
1,1-Dichloroethane 1,2-Dichloroethane		19.0 19.8	1.0 μg/L 1.0 μg/L	20.1		99	70-130 70-130			
1,1-Dichloroethylene		17.5	1.0 μg/L	20.0		88	70-130			
cis-1,2-Dichloroethyle		19.4	1.0 μg/L 1.0 μg/L	20.0		97	70-130			
trans-1,2-Dichloroeth		18.9	1.0 μg/L	20.0		95	70-130			
Dichloromethane	iyiciic	19.1	3.0 µg/L	20.1		95	70-130			
1,2-Dichloropropane		19.2	1.0 μg/L	20.1		95	70-130			
1,3-Dichloropropene		37.5	1.0 μg/L	40.0		94	70-130			
Ethylbenzene	(old : truins)	18.8	1.0 μg/L	20.0		94	70-130			
Methyl tert-butyl ethe	er	19.2	1.0 µg/L	20.0		96	70-130			
Styrene	•	18.1	1.0 µg/L	20.0		90	70-130			
1,1,2,2-Tetrachloroet	hane	20.1	0.5 μg/L	20.1		100	70-130			
Tetrachloroethylene		20.2	1.0 µg/L	20.1		101	70-130			
Toluene		22.1	1.0 µg/L	20.0		111	70-130			
1,1,1-Trichloroethane	 e	18.0	1.0 µg/L	20.0		90	70-130			
1,1,2-Trichloroethane		19.8	1.0 µg/L	20.1		98	70-130			
Trichloroethylene		20.9	1.0 µg/L	20.1		104	70-130			
Trichlorofluorometha	ne	19.7	1.0 µg/L	20.0		98	60-140			
Vinyl chloride		18.7	1.0 µg/L	20.0		94	60-140			
Xylenes (total)		58.3	2.0 µg/L	60.0		97	70-130			
Surrogate: Toluene-d	d8	28.2	μg/L	26.5		106	70-130			
			<i>⊬9′</i>	20.0		, 55	. 5 , 50			

REPORTED TOEcoscape Environmental Ltd.WORK ORDER0032091PROJECT19-2850 - GoldenREPORTED2020-04-01 13:28

Analyte Result RL Units Spike Source % REC REC % RPD Qualifier Level Result Limit Limit

Volatile Organic Compounds (VOC), Batch B0C2401, Continued

LCS (B0C2401-BS1), Continued Prepared: 2020-03-29, Analyzed: 2020-03-29

 Surrogate: 4-Bromofluorobenzene
 32.8
 µg/L
 24.9
 132
 70-130
 S02

 Surrogate: 1,4-Dichlorobenzene-d4
 33.0
 µg/L
 25.5
 129
 70-130

QC Qualifiers:

S02 Surrogate recovery outside of control limits. Data accepted based on acceptable recovery of other surrogates.

67 1	of 35
	35
	Page

'n	H)	I		Ĭ	M		ı	ı	1
ı	Ш	ı	Ш	ı	ı	Н	Н	L	
ı	Ш	Ц		I	I	Ш		ı	
ď	***	Ħ	75	8	P			۴.	90

COST IN P. ROBBOT MICH

COMPANY ASSESSMENT OF oporass 1000 Williams On Rolling BO, VIV SME

HEROTE DE

468	
-	
	- 73
	- 4
No.	-
450	1
42.72	100
1909	and)

ø	ì	11	ţ.	'n	ij	1	W	h	me	d	ķ	4	ŧ,	н	de	gi.	in.	ij	k	4	ķ	٧,	d	ģ
ŕ	1	ġ	1	'n	7	×	Н	ú	ы	ij	ý	ű,	ý	ij.	ú	6	dir.	Ų.	131		ä	ŕ	Ä	è
ÿ	t.	ij	ij	ń	ú	É	Š,	'n	ni	r	þ	'n	į	ú	ú	rec	in.	Ü	ú	Ġ	ŝ	Ē	11	i

Training American File, to	trinmas, all Typ ii	1
DARCE LOS	THE WHAT HE WAS TO SEE	Š
COMPANY LONGOR IN	of a stimus I	
ADDRESS.		_

Lancate and April			
en interes	EVEROSO.	100	
	Wally Scho	no.	

Chertone Pitata Copy 15:	man Cupy ABD Debyle.	T#104903023412035
CHANGOF CLISTODY RE		540C (10
H F MACE	T TEL MINISTE	Term In Special
Total and the requestion of the control of the cont	THE ARTHUR PROPERTY.	TENNE SAN

	8	The State of the State of
TATIONAL DESCRIPTION OF THE PERSON OF THE PE	TOTAL PROPERTY OF THE OWNER.	Vicing a soul
The local Country (Country)	NAME OF A OTHER PARTY.	#1353F) 4: =13
(Bellet Section 4 Section 1999)	\$25000\$ May 10 10 10	以为古 <i>科</i> 年已 当时 自相
eren, it einte frei zu Sant un neben nach.	TO SHAW THE ALL THE	PATT .
SEAT BANKET HO	100	_
Control of the Contro	A Charles and the Park See Line	Octobrocks

Alber = τ.+	Affactive Office	The Line of the Control of the Contr	O'Congagordia Hill gil Coldanida (887) = (308) colyada
AMALYSES I	TOURSTED		

THUMAN: 250'SE 7357	TF-(T)O;	AKALYSES REQUESTED	
Uniting the Court of Court of Sec. (Court of Sec. (Court of Sec.) (Court of Se	Hotel Dis-Officials Short & Hotel & Per- Al II Hove Reschopeds now accom- ment State Contillinguas agents now here a		W.M. STATES
	som the Super a part there we want to the part of the Super	그의 보다 되는 사람 회사를 받았습니다. 나니	1 2 3 3
AMPLINDS RT	TATELS SAMPLES GONALITES		
	1 DATE THE FEET		2 2 1 4 3 2 1
CLIENT SAMPLE ID:	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		E 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CMAN-ARM		- 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	* T
NAT-25	Servinge 15		
NASS I	197 MSEZO 1520 1-1	**	10000
Morr&ct	25merz 230 -1-		Perse
(M) 782 A	JUNA 20 1355		11111
1 3 3 3 5 5	1990年末185	-	10 10 10 10 10 10 10 10 10 10 10 10 10 1
J. 100 100 100 100 100 100 100 100 100 10	191000	~ · · · · · · · · · · · · · · · · · · ·	CHICKEN B
UNAVICE .	Nandezi (455		直はないしい リ
LHA		2 2221	10000
H2435-4075	(340)	7 2 2 2 7	
ra in	9-24mm20 (55 -	5 657	23005
			: Parital . madd
HUNGERSTEIN AND AND AND A			

MILETERS.	estimens.s	Ser Service
Edplica.	A CONTRACTOR	-941000444471

ì	NAME PROTEKTION: YOU WERE HAD NOT ASSESS
	what was -
	The proper of the part of the

SUM LEHISCENT CE	AND TROPE
COCCUTA SECTION	一种 的原
COMMUNICATION	(3 F. +1)
2 (1) HE 2 703	772

CERTIFICATE OF ANALYSIS

REPORTED TO Ecoscape Environmental Ltd.

#102 - 450 Neave Court Kelowna. BC V1V 2M2

ATTENTION Kelsey Tanaka

PO NUMBER 19-2850

PROJECT 19-2850 - Golden

PROJECT INFO Golden

WORK ORDER 0051806

RECEIVED / TEMP 2020-05-21 13:45 / 2°C

REPORTED 2020-05-28 17:38 COC NUMBER No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO 17025:2005 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

Ahead of the Curve

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at acrump@caro.ca

Authorized By:

Alana Crump Team Lead, Client Service MEGT

1-888-311-8846 | www.caro.ca

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

REPORTED 2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-06S (0051806-01) Matrix: Water	Sampled: 2020-05-20 12:2	5			
Anions					
Bromide	0.34	0.10	mg/L	2020-05-24	
Chloride	398	0.10	mg/L	2020-05-24	
Fluoride	0.16	0.10	mg/L	2020-05-24	
Nitrate (as N)	43.4	0.010	mg/L	2020-05-24	HT1
Nitrite (as N)	0.480	0.010	mg/L	2020-05-24	HT1
Sulfate	611	1.0	mg/L	2020-05-24	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-05-27	
VPHw	< 100		μg/L	N/A	
EPHw10-19	< 250		μg/L	2020-05-25	
EPHw19-32	< 250		μg/L	2020-05-25	
LEPHw	< 250		μg/L	N/A	
HEPHw	< 250	250	μg/L	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	83	60-126	%	2020-05-25	
Calculated Parameters					
Hardness, Total (as CaCO3)	1450	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0449	0.00010	mg/L	2020-05-24	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-05-24	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Arsenic, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Barium, dissolved	0.0551	0.0050	mg/L	2020-05-24	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Boron, dissolved	1.76	0.0050	mg/L	2020-05-24	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-05-24	
Calcium, dissolved	161	0.20	mg/L	2020-05-24	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Cobalt, dissolved	0.00157	0.00010	mg/L	2020-05-24	
Copper, dissolved	0.00247	0.00040	mg/L	2020-05-24	
Iron, dissolved	< 0.010	0.010	mg/L	2020-05-24	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Magnesium, dissolved	254	0.010	mg/L	2020-05-24	
Manganese, dissolved	0.0685	0.00020	mg/L	2020-05-24	
Mercury, dissolved	< 0.000010	0.000010		2020-05-26	
Molybdenum, dissolved	0.00033	0.00010		2020-05-24	
Nickel, dissolved	0.0114	0.00040		2020-05-24	
Phosphorus, dissolved	< 0.050	0.050		2020-05-24	
Potassium, dissolved	175		mg/L	2020-05-24	
Selenium, dissolved	< 0.00050	0.00050		2020-05-24	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0051806

PRTED 2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-06S (0051806-01) Matrix: Water	Sampled: 2020-05-20 12:2	5, Continued			
Dissolved Metals, Continued					
Silicon, dissolved	13.8	1.0	mg/L	2020-05-24	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-05-24	
Sodium, dissolved	263	0.10	mg/L	2020-05-24	
Strontium, dissolved	1.69	0.0010	mg/L	2020-05-24	
Sulfur, dissolved	231	3.0	mg/L	2020-05-24	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Thallium, dissolved	0.000037	0.000020	mg/L	2020-05-24	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Tin, dissolved	0.00021	0.00020	mg/L	2020-05-24	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-05-24	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-05-24	
Uranium, dissolved	0.00737	0.000020	mg/L	2020-05-24	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-05-24	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-05-24	
Zirconium, dissolved	0.00016	0.00010		2020-05-24	
General Parameters					
Alkalinity, Total (as CaCO3)	944	1.0	mg/L	2020-05-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Alkalinity, Bicarbonate (as CaCO3)	944	1.0	mg/L	2020-05-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Bicarbonate (HCO3)	1150	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	1.53	0.050	mg/L	2020-05-25	
BOD, 5-day	< 6.1	2.0	mg/L	2020-05-27	
Chemical Oxygen Demand	41	20	mg/L	2020-05-22	
Conductivity (EC)	3910	2.0	μS/cm	2020-05-26	
pH	7.73	0.10	pH units	2020-05-26	HT2
Solids, Total Dissolved	2590	15	mg/L	2020-05-26	
Solids, Total Suspended	42.0		mg/L	2020-05-27	
Turbidity	19.0		NTU	2020-05-22	
Polycyclic Aromatic Hydrocarbons (PAH)					
Acenaphthene	< 0.050	0.050	· -	2020-05-26	
Acenaphthylene	< 0.200	0.200	· -	2020-05-26	
Acridine	< 0.050	0.050	· -	2020-05-26	
Anthracene	< 0.010	0.010	μg/L	2020-05-26	
Benz(a)anthracene	< 0.010	0.010	· -	2020-05-26	
Benzo(a)pyrene	< 0.010	0.010	μg/L	2020-05-26	
Benzo(b+j)fluoranthene	< 0.050	0.050	μg/L	2020-05-26	
Benzo(g,h,i)perylene	< 0.050	0.050	ua/l	2020-05-26	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0051806

PORTED 2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-06S (0051806-01) Matrix: Wa	ter Sampled: 2020-05-20 12:25	, Continued			
Polycyclic Aromatic Hydrocarbons (PAH), Continued				
Benzo(k)fluoranthene	< 0.050	0.050	μg/L	2020-05-26	
2-Chloronaphthalene	< 0.100	0.100	μg/L	2020-05-26	
Chrysene	< 0.050	0.050	μg/L	2020-05-26	
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L	2020-05-26	
Fluoranthene	< 0.030	0.030	μg/L	2020-05-26	
Fluorene	< 0.050	0.050	μg/L	2020-05-26	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050		2020-05-26	
1-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-26	
2-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-26	
Naphthalene	< 0.200	0.200	μg/L	2020-05-26	
Phenanthrene	< 0.100	0.100	μg/L	2020-05-26	
Pyrene	< 0.020	0.020	μg/L	2020-05-26	
Quinoline	< 0.050	0.050	μg/L	2020-05-26	
Surrogate: Acridine-d9	60	50-140	%	2020-05-26	
Surrogate: Naphthalene-d8	108	50-140	%	2020-05-26	
Surrogate: Perylene-d12	95	50-140	%	2020-05-26	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-05-27	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-05-27	
Bromoform	< 1.0	1.0	μg/L	2020-05-27	
Carbon tetrachloride	< 0.5	0.5	10	2020-05-27	
Chlorobenzene	< 1.0	1.0	μg/L	2020-05-27	
Chloroethane	< 2.0	2.0	10		
Chloroform	< 1.0		μg/L	2020-05-27	
Dibromochloromethane		1.0		2020-05-27	
	< 1.0	1.0	μg/L	2020-05-27 2020-05-27	
1,2-Dibromoethane	< 1.0 < 0.3	1.0 0.3	μg/L μg/L	2020-05-27 2020-05-27 2020-05-27	
Dibromomethane	< 1.0 < 0.3 < 1.0	1.0 0.3 1.0	μg/L μg/L μg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene	< 1.0 < 0.3 < 1.0 < 0.5	1.0 0.3 1.0 0.5	μg/L μg/L μg/L μg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0	1.0 0.3 1.0 0.5 1.0	μg/L μg/L μg/L μg/L μg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0	µg/L µg/L µg/L µg/L µg/L µg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0 1.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0 1.0 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Dichloromethane	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 3.0	1.0 0.3 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Dichloromethane 1,2-Dichloropropane	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Dichloromethane 1,2-Dichloropropane 1,3-Dichloropropene (cis + trans)	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0 1.0 1.0 1.0 1.0 3.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Dichloromethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene (cis + trans) Ethylbenzene	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Dichloromethane 1,2-Dichloropropane 1,3-Dichloropropene (cis + trans)	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Dichloromethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene (cis + trans) Ethylbenzene	< 1.0 < 0.3 < 1.0 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 0.3 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27 2020-05-27	

Hardness, Total (as CaCO3)

Dissolved MetalsLithium, dissolved

Aluminum, dissolved

Antimony, dissolved

Arsenic, dissolved

Barium, dissolved

Beryllium, dissolved

Bismuth, dissolved

Boron, dissolved

PROJECT 19-2850 - Golden	al Ltd.		WORK ORDER REPORTED	0051806 2020-05-2	8 17:38
Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-06S (0051806-01) Matrix: Water S	sampled: 2020-05-20 12:25	, Continued			
/olatile Organic Compounds (VOC), Continue	d				
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-05-27	
Toluene	< 1.0	1.0	μg/L	2020-05-27	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-05-27	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-05-27	
Trichloroethylene	< 1.0	1.0	μg/L	2020-05-27	
Trichlorofluoromethane	< 1.0	1.0		2020-05-27	
Vinyl chloride	< 1.0	1.0	μg/L	2020-05-27	
Xylenes (total)	< 2.0	2.0	μg/L	2020-05-27	
Surrogate: Toluene-d8	100	70-130	%	2020-05-27	
Surrogate: 4-Bromofluorobenzene	94	70-130	%	2020-05-27	
Surrogate: 1,4-Dichlorobenzene-d4	93 mpled: 2020-05-20 17:50	70-130	%	2020-05-27	
-		70-130	%	2020-05-27	
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Sa			% mg/L	2020-05-27	
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Sa	mpled: 2020-05-20 17:50	0.10			
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Sa Anions Bromide	mpled: 2020-05-20 17:50 < 0.10	0.10 0.10	mg/L	2020-05-24	
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Sa Anions Bromide Chloride	mpled: 2020-05-20 17:50 < 0.10 555	0.10 0.10	mg/L mg/L mg/L	2020-05-24 2020-05-24	HT1
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Sa Anions Bromide Chloride Fluoride	<pre>mpled: 2020-05-20 17:50 < 0.10</pre>	0.10 0.10 0.10	mg/L mg/L mg/L mg/L	2020-05-24 2020-05-24 2020-05-24	HT1 HT1
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Sa Anions Bromide Chloride Fluoride Nitrate (as N)	<pre>mpled: 2020-05-20 17:50 < 0.10</pre>	0.10 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2020-05-24 2020-05-24 2020-05-24 2020-05-24	
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Sa Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	<pre>mpled: 2020-05-20 17:50 < 0.10</pre>	0.10 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24	
MW10-08 (0051806-02) Matrix: Water Sa Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons	<pre>mpled: 2020-05-20 17:50 < 0.10</pre>	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24	
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Sa Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	<pre>mpled: 2020-05-20 17:50 < 0.10</pre>	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24	
MW10-08 (0051806-02) Matrix: Water Sa Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10)	<pre>mpled: 2020-05-20 17:50 < 0.10</pre>	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L µg/L	2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-27	
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Sate of the second	<pre>mpled: 2020-05-20 17:50 < 0.10</pre>	0.10 0.10 0.010 0.010 1.0 100 100 250	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L	2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-27 N/A	HT1
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Satarions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw EPHw10-19	<pre>mpled: 2020-05-20 17:50 < 0.10</pre>	0.10 0.10 0.010 0.010 1.0 100 100	mg/L mg/L mg/L mg/L mg/L mg/L µg/L	2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-27 N/A 2020-05-26	HT1
Surrogate: 1,4-Dichlorobenzene-d4 MW10-08 (0051806-02) Matrix: Water Satarions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw EPHw10-19 EPHw19-32	<pre>mpled: 2020-05-20 17:50 < 0.10</pre>	0.10 0.10 0.010 0.010 1.0 100 100	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L	2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-24 2020-05-27 N/A 2020-05-26 2020-05-26	HT1

N/A

2020-05-24

2020-05-24

2020-05-24

2020-05-24

2020-05-24

2020-05-24

2020-05-24

2020-05-24

0.500 mg/L

0.00010 mg/L

0.0050 mg/L

0.00020 mg/L

0.00050 mg/L

0.0050 mg/L

0.00010 mg/L

0.00010 mg/L

0.0050 mg/L

669

0.0199

< 0.0050

< 0.00020

< 0.00010

< 0.00010

0.00439

0.200

0.256

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

REPORTED 2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifier
MW10-08 (0051806-02) Matrix: Water	Sampled: 2020-05-20 17:5	0, Continued			
Dissolved Metals, Continued					
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-05-24	
Calcium, dissolved	94.2		mg/L	2020-05-24	
Chromium, dissolved	< 0.00050	0.00050		2020-05-24	
Cobalt, dissolved	< 0.00010	0.00010		2020-05-24	
Copper, dissolved	0.00126	0.00040	mg/L	2020-05-24	
Iron, dissolved	< 0.010	0.010	mg/L	2020-05-24	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Magnesium, dissolved	105	0.010		2020-05-24	
Manganese, dissolved	0.00098	0.00020		2020-05-24	
Mercury, dissolved	< 0.000010	0.000010		2020-05-26	
Molybdenum, dissolved	0.00069	0.00010	mg/L	2020-05-24	
Nickel, dissolved	0.00089	0.00040	mg/L	2020-05-24	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-05-24	
Potassium, dissolved	5.77	0.10	mg/L	2020-05-24	
Selenium, dissolved	< 0.00050	0.00050		2020-05-24	
Silicon, dissolved	10.8		mg/L	2020-05-24	
Silver, dissolved	< 0.000050	0.000050		2020-05-24	
Sodium, dissolved	296		mg/L	2020-05-24	
Strontium, dissolved	1.23	0.0010		2020-05-24	
Sulfur, dissolved	15.3		mg/L	2020-05-24	
Tellurium, dissolved	< 0.00050	0.00050		2020-05-24	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-05-24	
Thorium, dissolved	< 0.00010	0.00010		2020-05-24	
Tin, dissolved	< 0.00020	0.00020		2020-05-24	
Titanium, dissolved	< 0.0050	0.0050		2020-05-24	
Tungsten, dissolved	0.0047	0.0010		2020-05-24	
Uranium, dissolved	0.00229	0.000020		2020-05-24	
Vanadium, dissolved	< 0.0010	0.0010		2020-05-24	
Zinc, dissolved	< 0.0040	0.0040		2020-05-24	
Zirconium, dissolved	< 0.00010	0.00010		2020-05-24	
General Parameters					
Alkalinity, Total (as CaCO3)	511	1.0	mg/L	2020-05-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-05-26	
Alkalinity, Bicarbonate (as CaCO3)	511		mg/L	2020-05-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-05-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-05-26	
Bicarbonate (HCO3)	623		mg/L	N/A	
Carbonate (CO3)	< 0.600		mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	< 0.050	0.050		2020-05-25	
BOD, 5-day	< 6.1		mg/L	2020-05-27	
Chemical Oxygen Demand	24		mg/L	2020-05-22	
	A T		···ə· –	2020 00 22	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0051806
PROJECT	19-2850 - Golden	REPORTED	2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifie
MW10-08 (0051806-02) Matrix: Wat	er Sampled: 2020-05-20 17:50,	Continued			
General Parameters, Continued					
Conductivity (EC)	2590	2.0	μS/cm	2020-05-26	
рН	7.98	0.10	pH units	2020-05-26	HT2
Solids, Total Dissolved	1290	15	mg/L	2020-05-26	
Solids, Total Suspended	6.4	2.0	mg/L	2020-05-27	
Turbidity	3.48	0.10	NTU	2020-05-22	
Polycyclic Aromatic Hydrocarbons (PA	Н)				
Acenaphthene	< 0.050	0.050	ua/L	2020-05-27	
Acenaphthylene	< 0.200	0.200	· -	2020-05-27	
Acridine	< 0.050	0.050		2020-05-27	
Anthracene	< 0.010	0.010		2020-05-27	
Benz(a)anthracene	< 0.010	0.010		2020-05-27	
Benzo(a)pyrene	< 0.010	0.010		2020-05-27	
Benzo(b+j)fluoranthene	< 0.050	0.050	μg/L	2020-05-27	
Benzo(g,h,i)perylene	< 0.050	0.050		2020-05-27	
Benzo(k)fluoranthene	< 0.050	0.050		2020-05-27	
2-Chloronaphthalene	< 0.100	0.100	μg/L	2020-05-27	
Chrysene	< 0.050	0.050		2020-05-27	
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L	2020-05-27	
Fluoranthene	< 0.030	0.030	μg/L	2020-05-27	
Fluorene	< 0.050	0.050	μg/L	2020-05-27	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	μg/L	2020-05-27	
1-Methylnaphthalene	< 0.100	0.100		2020-05-27	
2-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-27	
Naphthalene	< 0.200	0.200	μg/L	2020-05-27	
Phenanthrene	< 0.100	0.100	μg/L	2020-05-27	
Pyrene	< 0.020	0.020	μg/L	2020-05-27	
Quinoline	< 0.050	0.050	μg/L	2020-05-27	
Surrogate: Acridine-d9	58	50-140	%	2020-05-27	
Surrogate: Naphthalene-d8	105	50-140	%	2020-05-27	
Surrogate: Perylene-d12	81	50-140	%	2020-05-27	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-05-27	
Bromodichloromethane	< 1.0		μg/L	2020-05-27	
Bromoform	< 1.0		μg/L	2020-05-27	
Carbon tetrachloride	< 0.5		μg/L	2020-05-27	
Chlorobenzene	< 1.0		μg/L	2020-05-27	
Chloroethane	< 2.0		μg/L	2020-05-27	
Chloroform	< 1.0		μg/L	2020-05-27	
Dibromochloromethane	< 1.0		μg/L	2020-05-27	
1,2-Dibromoethane	< 0.3		μg/L	2020-05-27	
Dibromomethane	< 1.0		μg/L	2020-05-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0051806

TED 2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifie
MW10-08 (0051806-02) Matrix: Water \$	Sampled: 2020-05-20 17:50, C	Continued			
/olatile Organic Compounds (VOC), Continu	ıed				
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-05-27	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-05-27	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-05-27	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-05-27	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-05-27	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-05-27	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-05-27	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-05-27	
Dichloromethane	< 3.0	3.0	μg/L	2020-05-27	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-05-27	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-05-27	
Ethylbenzene	< 1.0	1.0	μg/L	2020-05-27	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-05-27	
Styrene	< 1.0	1.0	μg/L	2020-05-27	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-05-27	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-05-27	
Toluene	< 1.0	1.0	μg/L	2020-05-27	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-05-27	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-05-27	
Trichloroethylene	< 1.0	1.0	μg/L	2020-05-27	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-05-27	
Vinyl chloride	< 1.0	1.0	μg/L	2020-05-27	
Xylenes (total)	< 2.0	2.0	μg/L	2020-05-27	
Surrogate: Toluene-d8	97	70-130	%	2020-05-27	
Surrogate: 4-Bromofluorobenzene	92	70-130	%	2020-05-27	
Surrogate: 1,4-Dichlorobenzene-d4	90	70-130	%	2020-05-27	

MW18-10 (0051806-03) | Matrix: Water | Sampled: 2020-05-20 15:45

Anions					
Bromide	0.15	0.10	mg/L	2020-05-24	
Chloride	342	0.10	mg/L	2020-05-24	
Fluoride	0.31	0.10	mg/L	2020-05-24	
Nitrate (as N)	21.3	0.010	mg/L	2020-05-24	HT1
Nitrite (as N)	0.388	0.010	mg/L	2020-05-24	HT1
Sulfate	71.1	1.0	mg/L	2020-05-24	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-05-27	
VPHw	< 100	100	μg/L	N/A	
EPHw10-19	< 250	250	μg/L	2020-05-25	
EPHw19-32	< 250	250	μg/L	2020-05-25	
LEPHw	< 250	250	μg/L	N/A	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifier
MW18-10 (0051806-03) Matrix: Water S	ampled: 2020-05-20 15:45	i, Continued			
BCMOE Aggregate Hydrocarbons, Continued	d				
HEPHw	< 250	250	μg/L	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	85	60-126	%	2020-05-25	
Calculated Parameters					
Hardness, Total (as CaCO3)	796	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0150	0.00010	ma/l	2020-05-27	
Aluminum, dissolved	0.0102	0.0050		2020-05-27	
Antimony, dissolved	< 0.00020	0.00020		2020-05-27	
Arsenic, dissolved	0.00107	0.00020		2020-05-27	
Barium, dissolved	0.277	0.0050		2020-05-27	
Beryllium, dissolved	< 0.00010	0.00010		2020-05-27	
Bismuth, dissolved	< 0.00010	0.00010		2020-05-27	
Boron, dissolved	0,223	0.0050		2020-05-27	
Cadmium, dissolved	0.000020	0.000010		2020-05-27	
Calcium, dissolved	72.7		mg/L	2020-05-27	
Chromium, dissolved	< 0.00050	0.00050		2020-05-27	
Cobalt, dissolved	0.00468	0.00010		2020-05-27	
Copper, dissolved	0.00110	0.00040		2020-05-27	
Iron, dissolved	0.049	0.010		2020-05-27	
Lead, dissolved	< 0.00020	0.00020		2020-05-27	
Magnesium, dissolved	149	0.010		2020-05-27	
Manganese, dissolved	0.149	0.00020		2020-05-27	
Mercury, dissolved	< 0.000010	0.000010		2020-05-26	
Molybdenum, dissolved	0.00076	0.00010		2020-05-27	
Nickel, dissolved	0.0338	0.00040		2020-05-27	
Phosphorus, dissolved	< 0.050	0.050		2020-05-27	
Potassium, dissolved	16.4		mg/L	2020-05-27	
Selenium, dissolved	< 0.00050	0.00050		2020-05-27	
Silicon, dissolved	7.3		mg/L	2020-05-27	
Silver, dissolved	< 0.000050	0.000050		2020-05-27	
Sodium, dissolved	127		mg/L	2020-05-27	
Strontium, dissolved	1.15	0.0010		2020-05-27	
Sulfur, dissolved	20.4		mg/L	2020-05-27	
Tellurium, dissolved	< 0.00050	0.00050		2020-05-27	
Thallium, dissolved	0.000075	0.00030		2020-05-27	
Thorium, dissolved	< 0.00010	0.00010		2020-05-27	
Tin, dissolved	0.00010	0.00010		2020-05-27	
Titanium, dissolved	< 0.0050	0.00020		2020-05-27	
Tungsten, dissolved	< 0.0050	0.0050		2020-05-27	
Uranium, dissolved		0.000020		2020-05-27	
	0.00324				
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-05-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0051806

RTED 2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualific
MW18-10 (0051806-03) Matrix: Water S	ampled: 2020-05-20 15:45,	Continued			
Dissolved Metals, Continued					
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-05-27	
Zirconium, dissolved	0.00013	0.00010	mg/L	2020-05-27	
General Parameters					
Alkalinity, Total (as CaCO3)	729	1.0	mg/L	2020-05-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-05-26	
Alkalinity, Bicarbonate (as CaCO3)	729		mg/L	2020-05-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-05-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-05-26	
Bicarbonate (HCO3)	889	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	1.68	0.050	mg/L	2020-05-25	
BOD, 5-day	< 6.1	2.0	mg/L	2020-05-27	
Chemical Oxygen Demand	41	20	mg/L	2020-05-22	
Conductivity (EC)	2420	2.0	μS/cm	2020-05-26	
pH	7.90	0.10	pH units	2020-05-26	HT2
Solids, Total Dissolved	1310	15	mg/L	2020-05-26	
Solids, Total Suspended	61.3	2.0	mg/L	2020-05-27	
Turbidity	73.2	0.10	NTU	2020-05-22	
Polycyclic Aromatic Hydrocarbons (PAH)					
Acenaphthene	< 0.050	0.050	μg/L	2020-05-26	
Acenaphthylene	< 0.200	0.200	μg/L	2020-05-26	
Acridine	< 0.050	0.050	μg/L	2020-05-26	
Anthracene	< 0.010	0.010	μg/L	2020-05-26	
Benz(a)anthracene	< 0.010	0.010	μg/L	2020-05-26	
Benzo(a)pyrene	< 0.010	0.010	μg/L	2020-05-26	
Benzo(b+j)fluoranthene	< 0.050	0.050	μg/L	2020-05-26	
Benzo(g,h,i)perylene	< 0.050	0.050	μg/L	2020-05-26	
Benzo(k)fluoranthene	< 0.050	0.050	μg/L	2020-05-26	
2-Chloronaphthalene	< 0.100	0.100		2020-05-26	
Chrysene	< 0.050	0.050	μg/L	2020-05-26	
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L	2020-05-26	
Fluoranthene	< 0.030	0.030	μg/L	2020-05-26	
Fluorene	< 0.050	0.050	μg/L	2020-05-26	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	μg/L	2020-05-26	
1-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-26	
2-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-26	
Naphthalene	< 0.200	0.200	μg/L	2020-05-26	
Phenanthrene	< 0.100	0.100	μg/L	2020-05-26	
Pyrene	< 0.020	0.020	μg/L	2020-05-26	
	< 0.050		μg/L	2020-05-26	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-10 (0051806-03) Matrix: Water	Sampled: 2020-05-20 15:45, (Continued			
Polycyclic Aromatic Hydrocarbons (PAH), C	Continued				
Surrogate: Acridine-d9	73	50-140	%	2020-05-26	
Surrogate: Naphthalene-d8	106	50-140	%	2020-05-26	
Surrogate: Perylene-d12	94	50-140	%	2020-05-26	
/olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-05-27	
Bromodichloromethane	< 1.0	1.0		2020-05-27	
Bromoform	< 1.0	1.0		2020-05-27	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-05-27	
Chlorobenzene	< 1.0	1.0	μg/L	2020-05-27	
Chloroethane	< 2.0	2.0	μg/L	2020-05-27	
Chloroform	< 1.0	1.0	μg/L	2020-05-27	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-05-27	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-05-27	
Dibromomethane	< 1.0	1.0	μg/L	2020-05-27	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-05-27	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-05-27	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-05-27	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-05-27	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-05-27	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-05-27	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-05-27	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-05-27	
Dichloromethane	< 3.0	3.0	μg/L	2020-05-27	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-05-27	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-05-27	
Ethylbenzene	< 1.0	1.0	μg/L	2020-05-27	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-05-27	
Styrene	< 1.0	1.0	μg/L	2020-05-27	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-05-27	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-05-27	
Toluene	< 1.0	1.0	μg/L	2020-05-27	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-05-27	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-05-27	
Trichloroethylene	< 1.0	1.0	μg/L	2020-05-27	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-05-27	
Vinyl chloride	< 1.0	1.0	μg/L	2020-05-27	
Xylenes (total)	< 2.0	2.0	μg/L	2020-05-27	
Surrogate: Toluene-d8	100	70-130	%	2020-05-27	
Surrogate: 4-Bromofluorobenzene	95	70-130	%	2020-05-27	
Surrogate: 1,4-Dichlorobenzene-d4	93	70-130	%	2020-05-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-11 (0051806-04) Matrix: Water	Sampled: 2020-05-20 13:50				
Anions					
Bromide	< 0.10	0.10	mg/L	2020-05-24	
Chloride	60.6		mg/L	2020-05-24	
Fluoride	0.96		mg/L	2020-05-24	
Nitrate (as N)	0.022	0.010	mg/L	2020-05-24	HT1
Nitrite (as N)	0.061	0.010	mg/L	2020-05-24	HT1
Sulfate	116	1.0	mg/L	2020-05-24	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-05-27	
VPHw	< 100	100		N/A	
EPHw10-19	< 250	250		2020-05-26	
EPHw19-32	313	250		2020-05-26	
LEPHw	< 250	250		N/A	
HEPHw	313	250		N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	62	60-126	%	2020-05-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	589	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0229	0.00010	mg/L	2020-05-24	
Aluminum, dissolved	< 0.0050	0.0050		2020-05-24	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Arsenic, dissolved	0.0358	0.00050	mg/L	2020-05-24	
Barium, dissolved	0.0338	0.0050	mg/L	2020-05-24	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Boron, dissolved	0.325	0.0050	mg/L	2020-05-24	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-05-24	
Calcium, dissolved	59.2	0.20	mg/L	2020-05-24	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Cobalt, dissolved	0.00048	0.00010	mg/L	2020-05-24	
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-05-24	
Iron, dissolved	2.28		mg/L	2020-05-24	
Lead, dissolved	< 0.00020	0.00020		2020-05-24	
Magnesium, dissolved	107	0.010		2020-05-24	
Manganese, dissolved	0.0301	0.00020		2020-05-24	
Mercury, dissolved	< 0.000010	0.000010		2020-05-26	
Molybdenum, dissolved	0.00061	0.00010	mg/L	2020-05-24	
Nickel, dissolved	0.00474	0.00040	mg/L	2020-05-24	
Phosphorus, dissolved	< 0.050	0.050		2020-05-24	
Potassium, dissolved	7.86		mg/L	2020-05-24	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0051806

Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-11 (0051806-04) Matrix: Water \$	Sampled: 2020-05-20 13:50,	Continued			
Dissolved Metals, Continued					
Silicon, dissolved	4.7	1.0	mg/L	2020-05-24	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-05-24	
Sodium, dissolved	104	0.10	mg/L	2020-05-24	
Strontium, dissolved	1.02	0.0010	mg/L	2020-05-24	
Sulfur, dissolved	41.5	3.0	mg/L	2020-05-24	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-05-24	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-05-24	
Tungsten, dissolved	< 0.0010	0.0010		2020-05-24	
Uranium, dissolved	0.000084	0.000020	mg/L	2020-05-24	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-05-24	
Zinc, dissolved	0.0132	0.0040	mg/L	2020-05-24	
Zirconium, dissolved	0.00014	0.00010		2020-05-24	
Seneral Parameters					
Alkalinity, Total (as CaCO3)	648	1.0	mg/L	2020-05-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Alkalinity, Bicarbonate (as CaCO3)	648	1.0	mg/L	2020-05-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Bicarbonate (HCO3)	791	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	0.257	0.050	mg/L	2020-05-25	
BOD, 5-day	< 6.1	2.0	mg/L	2020-05-27	
Chemical Oxygen Demand	34	20	mg/L	2020-05-22	
	1390		μS/cm	2020-05-26	
pH	7.93	0.10	pH units	2020-05-26	HT2
Solids, Total Dissolved	849	15	mg/L	2020-05-26	
Solids, Total Suspended	119			2020-05-27	
Turbidity	112		NTU	2020-05-22	
Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended	34 1390 7.93 849 119	20 2.0 0.10 15 2.0	mg/L μS/cm pH units mg/L mg/L		2020-05-22 2020-05-26 2020-05-26 2020-05-26 2020-05-27
lycyclic Aromatic Hydrocarbons (PAH)					
Acenaphthene	< 0.050	0.050	· -	2020-05-27	
Acenaphthylene	< 0.200	0.200	μg/L	2020-05-27	·
Acridine	< 0.050	0.050	μg/L	2020-05-27	
Anthracene	< 0.010	0.010		2020-05-27	
Benz(a)anthracene	< 0.010	0.010		2020-05-27	
Benzo(a)pyrene	< 0.010	0.010	· -	2020-05-27	
Benzo(b+j)fluoranthene	< 0.050	0.050	· -	2020-05-27	
Benzo(g,h,i)perylene	< 0.050	0.050		2020-05-27	
Denzo(g,n,i)peryiene	< 0.050	0.050	µg/L	2020-05-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0051806

ORTED 2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-11 (0051806-04) Matrix: Wate	r Sampled: 2020-05-20 13:50, 0	Continued			
Polycyclic Aromatic Hydrocarbons (PAH,), Continued				
Benzo(k)fluoranthene	< 0.050	0.050	μg/L	2020-05-27	
2-Chloronaphthalene	< 0.100	0.100	μg/L	2020-05-27	
Chrysene	< 0.050	0.050	μg/L	2020-05-27	
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L	2020-05-27	
Fluoranthene	< 0.030	0.030	μg/L	2020-05-27	
Fluorene	< 0.050	0.050	μg/L	2020-05-27	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	μg/L	2020-05-27	
1-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-27	
2-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-27	
Naphthalene	< 0.200	0.200	μg/L	2020-05-27	
Phenanthrene	< 0.100	0.100	μg/L	2020-05-27	
Pyrene	< 0.020	0.020	μg/L	2020-05-27	
Quinoline	< 0.050	0.050	μg/L	2020-05-27	
Surrogate: Acridine-d9	101	50-140	%	2020-05-27	
Surrogate: Naphthalene-d8	102	50-140	%	2020-05-27	
Surrogate: Perylene-d12	93	50-140	%	2020-05-27	
olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-05-27	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-05-27	
Bromoform	< 1.0	1.0	μg/L	2020-05-27	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-05-27	
Chlorobenzene	< 1.0	1.0	μg/L	2020-05-27	
Chloroethane	< 6.0	2.0	μg/L	2020-05-27	RA1
Chloroform	< 1.0	1.0	μg/L	2020-05-27	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-05-27	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-05-27	
Dibromomethane	< 1.0	1.0	μg/L	2020-05-27	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-05-27	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-05-27	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-05-27	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-05-27	
1,2-Dichloroethane	< 1.0		μg/L	2020-05-27	
1,1-Dichloroethylene	< 1.0		μg/L	2020-05-27	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-05-27	
trans-1,2-Dichloroethylene	< 1.0	1.0		2020-05-27	
Dichloromethane	< 3.0	3.0	μg/L	2020-05-27	
1,2-Dichloropropane	< 1.0		μg/L	2020-05-27	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-05-27	
Ethylbenzene	< 1.0		μg/L	2020-05-27	
Methyl tert-butyl ether	< 1.0		μg/L	2020-05-27	
Styrene	< 1.0		μg/L	2020-05-27	
Styrene	٠١.٥				

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0051806
PROJECT	19-2850 - Golden	REPORTED	2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifier
MW18-11 (0051806-04) Matrix: Water \$	Sampled: 2020-05-20 13:50), Continued			
Volatile Organic Compounds (VOC), Continu	ıed				
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-05-27	
Toluene	< 1.0	1.0	μg/L	2020-05-27	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-05-27	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-05-27	
Trichloroethylene	< 1.0	1.0	μg/L	2020-05-27	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-05-27	
Vinyl chloride	< 1.0	1.0	μg/L	2020-05-27	
Xylenes (total)	< 2.0	2.0	μg/L	2020-05-27	
Surrogate: Toluene-d8	98	70-130	%	2020-05-27	
Surrogate: 4-Bromofluorobenzene	92	70-130	%	2020-05-27	
Surrogate: 1,4-Dichlorobenzene-d4	90	70-130	%	2020-05-27	
Town Well #4 (0051806-05) Matrix: Wat	er Sampled: 2020-05-20 0	6:45			
Bromide	< 0.10	0.10	mg/L	2020-05-24	
Chloride	96.5		mg/L	2020-05-24	
Fluoride	< 0.10		mg/L	2020-05-24	
Nitrate (as N)	1.50	0.010		2020-05-24	HT1
Nitrite (as N)	0.122	0.010		2020-05-24	HT1
Sulfate	43.0		mg/L	2020-05-24	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-05-27	
VPHw	< 100		μg/L μg/L	N/A	
EPHw10-19	< 250		μg/L	2020-05-26	
EPHw19-32	< 250		μg/L	2020-05-26	
LEPHw	< 250		μg/L	N/A	
HEPHw	< 250		μg/L	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	73	60-126	%	2020-05-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	396	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.00193	0.00010	mg/L	2020-05-24	
Aluminum, dissolved	< 0.0050	0.0050		2020-05-24	
Antimony, dissolved	< 0.00020	0.00020		2020-05-24	
Arsenic, dissolved	< 0.00050	0.00050		2020-05-24	
Barium, dissolved	0.218	0.0050		2020-05-24	
Beryllium, dissolved	< 0.00010	0.00010		2020-05-24	
	< 0.00010	0.00010		2020-05-24	
Bismuth, dissolved	< 0.000 TO	0.00010	mg/L	2020-00-24	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

REPORTED 2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifier
Town Well #4 (0051806-05) Matrix: Wa	nter Sampled: 2020-05-	20 06:45, Continued			
Dissolved Metals, Continued					
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-05-24	
Calcium, dissolved	92.2	0.20	mg/L	2020-05-24	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Copper, dissolved	0.0127	0.00040	mg/L	2020-05-24	
Iron, dissolved	< 0.010	0.010	mg/L	2020-05-24	
Lead, dissolved	0.00123	0.00020	mg/L	2020-05-24	
Magnesium, dissolved	40.2	0.010	mg/L	2020-05-24	
Manganese, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-05-26	
Molybdenum, dissolved	0.00018	0.00010	mg/L	2020-05-24	
Nickel, dissolved	< 0.00040	0.00040	mg/L	2020-05-24	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-05-24	
Potassium, dissolved	1.87	0.10	mg/L	2020-05-24	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Silicon, dissolved	5.6	1.0	mg/L	2020-05-24	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-05-24	
Sodium, dissolved	55.4	0.10	mg/L	2020-05-24	
Strontium, dissolved	0.465	0.0010	mg/L	2020-05-24	
Sulfur, dissolved	13.6		mg/L	2020-05-24	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-05-24	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-05-24	
Tungsten, dissolved	< 0.0010	0.0010		2020-05-24	
Uranium, dissolved	0.00128	0.000020	mg/L	2020-05-24	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-05-24	
Zinc, dissolved	0.0359	0.0040	mg/L	2020-05-24	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
General Parameters					
Alkalinity, Total (as CaCO3)	365	1.0	mg/L	2020-05-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Alkalinity, Bicarbonate (as CaCO3)	365	1.0	mg/L	2020-05-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Bicarbonate (HCO3)	446	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2020-05-25	
BOD, 5-day	< 6.1	2.0	mg/L	2020-05-27	
Chemical Oxygen Demand	< 20	20	mg/L	2020-05-22	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden **WORK ORDER**

0051806

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifier
Town Well #4 (0051806-05) Matrix: \	Vater Sampled: 2020-05-20 06	45, Continued			
General Parameters, Continued					
Conductivity (EC)	997	2.0	μS/cm	2020-05-26	
pH	7.93	0.10	pH units	2020-05-26	HT2
Solids, Total Dissolved	562	15	mg/L	2020-05-26	
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-05-27	
Turbidity	< 0.10	0.10	NTU	2020-05-22	
Polycyclic Aromatic Hydrocarbons (PAH)				
Acenaphthene	< 0.050	0.050	μg/L	2020-05-27	
Acenaphthylene	< 0.200	0.200		2020-05-27	
Acridine	< 0.050	0.050		2020-05-27	
Anthracene	< 0.010	0.010		2020-05-27	
Benz(a)anthracene	< 0.010	0.010	μg/L	2020-05-27	
Benzo(a)pyrene	< 0.010	0.010	μg/L	2020-05-27	
Benzo(b+j)fluoranthene	< 0.050	0.050	μg/L	2020-05-27	
Benzo(g,h,i)perylene	< 0.050	0.050	μg/L	2020-05-27	
Benzo(k)fluoranthene	< 0.050	0.050	μg/L	2020-05-27	
2-Chloronaphthalene	< 0.100	0.100	μg/L	2020-05-27	
Chrysene	< 0.050	0.050	μg/L	2020-05-27	
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L	2020-05-27	
Fluoranthene	< 0.030	0.030	μg/L	2020-05-27	
Fluorene	< 0.050	0.050	μg/L	2020-05-27	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	μg/L	2020-05-27	
1-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-27	
2-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-27	
Naphthalene	< 0.200	0.200	μg/L	2020-05-27	
Phenanthrene	< 0.100	0.100	μg/L	2020-05-27	
Pyrene	< 0.020	0.020	μg/L	2020-05-27	
Quinoline	< 0.050	0.050	μg/L	2020-05-27	
Surrogate: Acridine-d9	58	50-140	%	2020-05-27	
Surrogate: Naphthalene-d8	94	50-140	%	2020-05-27	
Surrogate: Perylene-d12	69	50-140	%	2020-05-27	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-05-27	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-05-27	
Bromoform	< 1.0	1.0	μg/L	2020-05-27	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-05-27	
Chlorobenzene	< 1.0	1.0	μg/L	2020-05-27	
Chloroethane	< 2.0	2.0	μg/L	2020-05-27	
Chloroform	< 1.0	1.0	μg/L	2020-05-27	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-05-27	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-05-27	
Dibromomethane	< 1.0	1.0	μg/L	2020-05-27	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

REPORTED 2020-05-28 17:38

Analyte	Result	RL U	Jnits	Analyzed	Qualifie
Town Well #4 (0051806-05) Matrix: Wate	er Sampled: 2020-05-20 06:4	15, Continued			
/olatile Organic Compounds (VOC), Continu	ued				
1,2-Dichlorobenzene	< 0.5	0.5 μ	ıg/L	2020-05-27	
1,3-Dichlorobenzene	< 1.0	1.0 µ	ıg/L	2020-05-27	
1,4-Dichlorobenzene	< 1.0	1.0 µ	ıg/L	2020-05-27	
1,1-Dichloroethane	< 1.0	1.0 µ	ıg/L	2020-05-27	
1,2-Dichloroethane	< 1.0	1.0 µ	ıg/L	2020-05-27	
1,1-Dichloroethylene	< 1.0	1.0 µ	ıg/L	2020-05-27	
cis-1,2-Dichloroethylene	< 1.0	1.0 µ	ıg/L	2020-05-27	
trans-1,2-Dichloroethylene	< 1.0	1.0 µ	ıg/L	2020-05-27	
Dichloromethane	< 3.0	3.0 µ	ıg/L	2020-05-27	
1,2-Dichloropropane	< 1.0	1.0 µ	ıg/L	2020-05-27	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0 µ	ıg/L	2020-05-27	
Ethylbenzene	< 1.0	1.0 µ	ıg/L	2020-05-27	
Methyl tert-butyl ether	< 1.0	1.0 μ	ıg/L	2020-05-27	
Styrene	< 1.0	1.0 µ	ıg/L	2020-05-27	
1,1,2,2-Tetrachloroethane	< 0.5	0.5 μ	ıg/L	2020-05-27	
Tetrachloroethylene	< 1.0	1.0 µ	ıg/L	2020-05-27	
Toluene	< 1.0	1.0 µ	ıg/L	2020-05-27	
1,1,1-Trichloroethane	< 1.0	1.0 µ	ıg/L	2020-05-27	
1,1,2-Trichloroethane	< 1.0	1.0 µ	ıg/L	2020-05-27	
Trichloroethylene	< 1.0	1.0 µ	ıg/L	2020-05-27	
Trichlorofluoromethane	< 1.0	1.0 µ	ıg/L	2020-05-27	
Vinyl chloride	< 1.0	1.0 μ	ıg/L	2020-05-27	
Xylenes (total)	< 2.0	2.0 μ	ıg/L	2020-05-27	
Surrogate: Toluene-d8	98	70-130 %	%	2020-05-27	
Surrogate: 4-Bromofluorobenzene	94	70-130 %	%	2020-05-27	
Surrogate: 1,4-Dichlorobenzene-d4	91	70-130 %	%	2020-05-27	

DMW20-01 (0051806-06) | Matrix: Water | Sampled: 2020-05-20 07:35

Anions					
Bromide	< 0.10	0.10	mg/L	2020-05-24	
Chloride	34.4	0.10	mg/L	2020-05-24	
Fluoride	0.16	0.10	mg/L	2020-05-24	
Nitrate (as N)	0.294	0.010	mg/L	2020-05-24	HT1
Nitrite (as N)	0.050	0.010	mg/L	2020-05-24	HT1
Sulfate	24.6	1.0	mg/L	2020-05-24	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-05-28	
VPHw	< 100	100	μg/L	N/A	
EPHw10-19	< 250	250	μg/L	2020-05-25	
EPHw19-32	< 250	250	μg/L	2020-05-25	
LEPHw	< 250	250	μg/L	N/A	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

Analyte	Result	RL	Units	Analyzed Qualif				
DMW20-01 (0051806-06) Matrix: Water Sampled: 2020-05-20 07:35, Continued								
BCMOE Aggregate Hydrocarbons, Continued	d							
HEPHw	< 250	250	μg/L	N/A				
Surrogate: 2-Methylnonane (EPH/F2-4)	81	60-126		2020-05-25				
Calculated Parameters								
Hardness, Total (as CaCO3)	237	0.500	mg/L	N/A				
Dissolved Metals								
Lithium, dissolved	0.00137	0.00010	ma/l	2020-05-24				
Aluminum, dissolved	< 0.0050	0.0050		2020-05-24				
Antimony, dissolved	< 0.00020	0.00020		2020-05-24				
Arsenic, dissolved	< 0.00050	0.00050		2020-05-24				
Barium, dissolved	0.110	0.0050		2020-05-24				
Beryllium, dissolved	< 0.00010	0.00010		2020-05-24				
Bismuth, dissolved	< 0.00010	0.00010		2020-05-24				
Boron, dissolved	0.0617	0.0050		2020-05-24				
Cadmium, dissolved	< 0.000010	0.000010		2020-05-24				
Calcium, dissolved	48.5		mg/L	2020-05-24				
Chromium, dissolved	< 0.00050	0.00050		2020-05-24				
Cobalt, dissolved	< 0.00010	0.00010		2020-05-24				
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-05-24				
Iron, dissolved	0.103	0.010	mg/L	2020-05-24				
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-05-24				
Magnesium, dissolved	28.1	0.010	mg/L	2020-05-24				
Manganese, dissolved	0.0194	0.00020	mg/L	2020-05-24				
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-05-26				
Molybdenum, dissolved	0.00073	0.00010	mg/L	2020-05-24				
Nickel, dissolved	< 0.00040	0.00040	mg/L	2020-05-24				
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-05-24				
Potassium, dissolved	1.01	0.10	mg/L	2020-05-24				
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24				
Silicon, dissolved	4.0	1.0	mg/L	2020-05-24				
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-05-24				
Sodium, dissolved	17.9	0.10	mg/L	2020-05-24				
Strontium, dissolved	0.329	0.0010	mg/L	2020-05-24				
Sulfur, dissolved	8.1	3.0	mg/L	2020-05-24				
Tellurium, dissolved	< 0.00050	0.00050		2020-05-24				
Thallium, dissolved	< 0.000020	0.000020		2020-05-24				
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24				
Tin, dissolved	< 0.00020	0.00020		2020-05-24				
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-05-24				
Tungsten, dissolved	< 0.0010	0.0010		2020-05-24				
Uranium, dissolved	0.000648	0.000020		2020-05-24				
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-05-24				

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

Analyte	Result	RL	Units	Analyzed	Qualific			
DMW20-01 (0051806-06) Matrix: Water Sampled: 2020-05-20 07:35, Continued								
Dissolved Metals, Continued								
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-05-24				
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24				
General Parameters								
Alkalinity, Total (as CaCO3)	233	1.0	mg/L	2020-05-26				
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-05-26				
Alkalinity, Bicarbonate (as CaCO3)	233		mg/L	2020-05-26				
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-05-26				
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26				
Bicarbonate (HCO3)	284	1.22	mg/L	N/A				
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A				
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A				
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2020-05-25				
BOD, 5-day	< 6.1	2.0	mg/L	2020-05-27				
Chemical Oxygen Demand	< 20	20	mg/L	2020-05-22				
Conductivity (EC)	530	2.0	μS/cm	2020-05-26				
pH	8.14	0.10	pH units	2020-05-26	HT2			
Solids, Total Dissolved	293	15	mg/L	2020-05-26				
Solids, Total Suspended	2.0	2.0	mg/L	2020-05-27				
Turbidity	5.04	0.10	NTU	2020-05-22				
Polycyclic Aromatic Hydrocarbons (PAH)								
Acenaphthene	< 0.050	0.050	μg/L	2020-05-26				
Acenaphthylene	< 0.200	0.200	μg/L	2020-05-26				
Acridine	< 0.050	0.050	μg/L	2020-05-26				
Anthracene	< 0.010	0.010	μg/L	2020-05-26				
Benz(a)anthracene	< 0.010	0.010	μg/L	2020-05-26				
Benzo(a)pyrene	< 0.010	0.010	μg/L	2020-05-26				
Benzo(b+j)fluoranthene	< 0.050	0.050	μg/L	2020-05-26				
Benzo(g,h,i)perylene	< 0.050	0.050	μg/L	2020-05-26				
Benzo(k)fluoranthene	< 0.050	0.050	μg/L	2020-05-26				
2-Chloronaphthalene	< 0.100	0.100		2020-05-26				
Chrysene	< 0.050	0.050	μg/L	2020-05-26				
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L	2020-05-26				
Fluoranthene	< 0.030	0.030	μg/L	2020-05-26				
Fluorene	< 0.050	0.050	μg/L	2020-05-26				
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	μg/L	2020-05-26				
1-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-26				
2-Methylnaphthalene	< 0.100	0.100		2020-05-26				
Naphthalene	< 0.200	0.200	μg/L	2020-05-26				
Phenanthrene	< 0.100	0.100	μg/L	2020-05-26				
Pyrene	< 0.020	0.020	μg/L	2020-05-26				
	< 0.050	0.050		2020-05-26				

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

Analyte	Result	RL	Units	Analyzed	Qualifier
DMW20-01 (0051806-06) Matrix: Water	Sampled: 2020-05-20 07:3	5, Continued			
Polycyclic Aromatic Hydrocarbons (PAH), (Continued				
Surrogate: Acridine-d9	70	50-140	%	2020-05-26	
Surrogate: Naphthalene-d8	108	50-140	%	2020-05-26	
Surrogate: Perylene-d12	90	50-140	%	2020-05-26	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-05-28	
Bromodichloromethane	< 1.0		μg/L	2020-05-28	
Bromoform	< 1.0		μg/L	2020-05-28	
Carbon tetrachloride	< 0.5		μg/L	2020-05-28	
Chlorobenzene	< 1.0	1.0		2020-05-28	
Chloroethane	< 2.0	2.0		2020-05-28	
Chloroform	< 1.0	1.0		2020-05-28	
Dibromochloromethane	< 1.0	1.0		2020-05-28	
1,2-Dibromoethane	< 0.3		μg/L	2020-05-28	
Dibromomethane	< 1.0	1.0		2020-05-28	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-05-28	
1,3-Dichlorobenzene	< 1.0	1.0		2020-05-28	
1,4-Dichlorobenzene	< 1.0	1.0		2020-05-28	
1,1-Dichloroethane	< 1.0	1.0		2020-05-28	
1,2-Dichloroethane	< 1.0	1.0		2020-05-28	
1,1-Dichloroethylene	< 1.0	1.0		2020-05-28	
cis-1,2-Dichloroethylene	< 1.0	1.0		2020-05-28	
trans-1,2-Dichloroethylene	< 1.0	1.0		2020-05-28	
Dichloromethane	< 3.0	3.0		2020-05-28	
1,2-Dichloropropane	< 1.0	1.0		2020-05-28	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0		2020-05-28	
Ethylbenzene	< 1.0	1.0	μg/L	2020-05-28	
Methyl tert-butyl ether	< 1.0	1.0	μg/L μg/L	2020-05-28	
Styrene	< 1.0	1.0		2020-05-28	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L μg/L	2020-05-28	
Tetrachloroethylene	< 1.0		μg/L	2020-05-28	
Toluene	< 1.0		μg/L μg/L	2020-05-28	
	< 1.0		μg/L μg/L	2020-05-28	
1,1,1-Trichloroethane 1,1,2-Trichloroethane	< 1.0		μg/L μg/L	2020-05-28	
<u> </u>					
Trichloroethylene Trichlorofluoromethane	< 1.0 < 1.0		μg/L	2020-05-28	
			μg/L		
Vinyl chloride	< 1.0		μg/L	2020-05-28	
Xylenes (total)	< 2.0		μg/L	2020-05-28	
Surrogate: Toluene-d8	96	70-130		2020-05-28	
Surrogate: 4-Bromofluorobenzene	92	70-130		2020-05-28	
Surrogate: 1,4-Dichlorobenzene-d4	89	70-130	%	2020-05-28	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

REPORTED

2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW-1b (0051806-07) Matrix: Water Sa	ampled: 2020-05-20 15:25				
Anions					
Bromide	< 0.10	0.10	mg/L	2020-05-24	
Chloride	8.79	0.10	mg/L	2020-05-24	
Fluoride	0.76	0.10	mg/L	2020-05-24	
Nitrate (as N)	0.666	0.010	mg/L	2020-05-24	HT1
Nitrite (as N)	< 0.010	0.010	mg/L	2020-05-24	HT1
Sulfate	213	1.0	mg/L	2020-05-24	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-05-28	
VPHw	< 100	100		N/A	
EPHw10-19	< 250	250		2020-05-26	S09
EPHw19-32	< 250	250	μg/L	2020-05-26	S09
LEPHw	< 250	250	μg/L	N/A	
HEPHw	< 250	250	μg/L	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	56	60-126	%	2020-05-26	S09
Calculated Parameters					
Hardness, Total (as CaCO3)	549	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0397	0.00010	mg/L	2020-05-24	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-05-24	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Arsenic, dissolved	0.00104	0.00050	mg/L	2020-05-24	
Barium, dissolved	0.0173	0.0050	mg/L	2020-05-24	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Boron, dissolved	0.289	0.0050	mg/L	2020-05-24	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-05-24	
Calcium, dissolved	74.6	0.20	mg/L	2020-05-24	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Cobalt, dissolved	0.00093	0.00010	mg/L	2020-05-24	
Copper, dissolved	0.0212	0.00040	mg/L	2020-05-24	
Iron, dissolved	< 0.010	0.010	mg/L	2020-05-24	
Lead, dissolved	0.00023	0.00020	mg/L	2020-05-24	
Magnesium, dissolved	88.0	0.010	mg/L	2020-05-24	
Manganese, dissolved	0.00261	0.00020	mg/L	2020-05-24	
Mercury, dissolved	< 0.000010	0.000010		2020-05-26	
Molybdenum, dissolved	0.00087	0.00010		2020-05-24	
Nickel, dissolved	0.00140	0.00040		2020-05-24	
Phosphorus, dissolved	< 0.050	0.050		2020-05-24	
Potassium, dissolved	6.87		mg/L	2020-05-24	
Selenium, dissolved	0.00058	0.00050		2020-05-24	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

Analyte	Result	RL	Units	Analyzed	Qualif			
DMW-1b (0051806-07) Matrix: Water Sampled: 2020-05-20 15:25, Continued								
Dissolved Metals, Continued								
Silicon, dissolved	7.9	1.0	mg/L	2020-05-24				
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-05-24				
Sodium, dissolved	33.5	0.10	mg/L	2020-05-24				
Strontium, dissolved	3.96	0.0010	mg/L	2020-05-24				
Sulfur, dissolved	76.8	3.0	mg/L	2020-05-24				
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24				
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-05-24				
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24				
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-05-24				
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-05-24				
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-05-24				
Uranium, dissolved	0.00155	0.000020	mg/L	2020-05-24				
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-05-24				
Zinc, dissolved	0.0262	0.0040	mg/L	2020-05-24				
Zirconium, dissolved	0.00047	0.00010	mg/L	2020-05-24				
General Parameters								
Alkalinity, Total (as CaCO3)	431	1.0	mg/L	2020-05-26				
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-05-26				
Alkalinity, Bicarbonate (as CaCO3)	431	1.0	mg/L	2020-05-26				
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26				
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26				
Bicarbonate (HCO3)	525	1.22	mg/L	N/A				
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A				
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A				
Ammonia, Total (as N)	0.161	0.050	mg/L	2020-05-25				
BOD, 5-day	< 6.1	2.0	mg/L	2020-05-27				
Chemical Oxygen Demand	< 20	20	mg/L	2020-05-22				
Conductivity (EC)	1060	2.0	μS/cm	2020-05-26				
рН	8.03	0.10	pH units	2020-05-26	HT2			
Solids, Total Dissolved	727	15	mg/L	2020-05-26				
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-05-27				
Turbidity	0.14	0.10	NTU	2020-05-22				
Polycyclic Aromatic Hydrocarbons (PAH)								
Acenaphthene	< 0.050	0.050	μg/L	2020-05-27				
Acenaphthylene	< 0.200	0.200	μg/L	2020-05-27				
Acridine	< 0.050	0.050	μg/L	2020-05-27				
Anthracene	< 0.010	0.010	μg/L	2020-05-27				
Benz(a)anthracene	< 0.010	0.010	μg/L	2020-05-27				
Benzo(a)pyrene	< 0.010	0.010	μg/L	2020-05-27				
Benzo(b+j)fluoranthene	< 0.050	0.050	μg/L	2020-05-27				
Benzo(g,h,i)perylene	< 0.050	0.050		2020-05-27				

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0051806

TED 2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW-1b (0051806-07) Matrix: Water	Sampled: 2020-05-20 15:25, C	Continued			
Polycyclic Aromatic Hydrocarbons (PAH),	Continued				
Benzo(k)fluoranthene	< 0.050	0.050	μg/L	2020-05-27	
2-Chloronaphthalene	< 0.100	0.100	μg/L	2020-05-27	
Chrysene	< 0.050	0.050	μg/L	2020-05-27	
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L	2020-05-27	
Fluoranthene	< 0.030	0.030	μg/L	2020-05-27	
Fluorene	< 0.050	0.050	μg/L	2020-05-27	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	μg/L	2020-05-27	
1-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-27	
2-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-27	
Naphthalene	< 0.200	0.200	μg/L	2020-05-27	
Phenanthrene	< 0.100	0.100	μg/L	2020-05-27	
Pyrene	< 0.020	0.020	μg/L	2020-05-27	
Quinoline	< 0.050	0.050		2020-05-27	
Surrogate: Acridine-d9	67	50-140	%	2020-05-27	
Surrogate: Naphthalene-d8	85	50-140	%	2020-05-27	
Surrogate: Perylene-d12	60	50-140	%	2020-05-27	
Benzene Bromodichloromethane	< 0.5 < 1.0	1.0	μg/L μg/L	2020-05-28 2020-05-28	
Bromoform Carbon tetrachloride	< 1.0 < 0.5	1.0	μg/L	2020-05-28	
Chlorobenzene	< 1.0		μg/L	2020-05-28	
Chloroethane	< 2.0		μg/L	2020-05-28	
Chloroform	< 1.0		μg/L	2020-05-28	
Dibromochloromethane			μg/L		
	< 1.0		μg/L	2020-05-28	
1,2-Dibromoethane Dibromomethane	< 0.3 < 1.0	1.0	μg/L	2020-05-28	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-05-28	
·			μg/L	2020-05-28	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 1.0		μg/L		
<u>'</u>	< 1.0			2020-05-28	
1,1-Dichloroethane	< 1.0		μg/L	2020-05-28	
1,2-Dichloroethane	< 1.0		μg/L	2020-05-28	
1,1-Dichloroethylene	< 1.0		μg/L	2020-05-28	
cis-1,2-Dichloroethylene	< 1.0	1.0		2020-05-28	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-05-28	
Dichloromethane	< 3.0		μg/L	2020-05-28	
1,2-Dichloropropane	< 1.0		μg/L	2020-05-28	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-05-28	
			ua/l	2020-05-28	
Ethylbenzene	< 1.0	1.0			
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-05-28	
		1.0 1.0			

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0051806
PROJECT	19-2850 - Golden	REPORTED	2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifier
DMW-1b (0051806-07) Matrix: Water S	ampled: 2020-05-20 15:25,	Continued			
Volatile Organic Compounds (VOC), Continu	red				
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-05-28	
Toluene	< 1.0	1.0	μg/L	2020-05-28	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-05-28	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-05-28	
Trichloroethylene	< 1.0	1.0	μg/L	2020-05-28	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-05-28	
Vinyl chloride	< 1.0	1.0	μg/L	2020-05-28	
Xylenes (total)	< 2.0	2.0	μg/L	2020-05-28	
Surrogate: Toluene-d8	96	70-130	%	2020-05-28	
Surrogate: 4-Bromofluorobenzene	91	70-130	%	2020-05-28	
Surrogate: 1,4-Dichlorobenzene-d4	89	70-130	%	2020-05-28	
DMW-4 (0051806-08) Matrix: Water Sa	mpled: 2020-05-20 15:10				
Bromide	< 0.10	0.10	mg/L	2020-05-24	
Chloride	40.5		mg/L	2020-05-24	
Fluoride	1.47		mg/L	2020-05-24	
Nitrate (as N)	< 0.010		mg/L	2020-05-24	HT1
Nitrite (as N)	0.039		mg/L	2020-05-24	HT1
Sulfate	127		mg/L	2020-05-24	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-05-28	
VPHw	< 100		μg/L μg/L	N/A	
EPHw10-19	< 250		μg/L	2020-05-27	S09
EPHw19-32	< 250		μg/L	2020-05-27	S09
LEPHw	< 250		μg/L	N/A	000
HEPHW	< 250		μg/L	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	56	60-126	%	2020-05-27	S09
Calculated Parameters		33 ,23			
Hardness, Total (as CaCO3)	630	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0248	0.00010	mg/L	2020-05-24	
Aluminum, dissolved	< 0.0050	0.0050		2020-05-24	
Antimony, dissolved	< 0.00020	0.00020		2020-05-24	
Arsenic, dissolved	0.0533	0.00050		2020-05-24	
Barium, dissolved	0.0245	0.0050		2020-05-24	
Beryllium, dissolved	0.00012	0.00010		2020-05-24	
Derymum, dissolved					
Bismuth, dissolved	< 0.00010	0.00010		2020-05-24	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

Analyte	Result	RL	Units	Analyzed	Qualifie			
DMW-4 (0051806-08) Matrix: Water Sampled: 2020-05-20 15:10, Continued								
Dissolved Metals, Continued								
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-05-24				
Calcium, dissolved	72.7	0.20	mg/L	2020-05-24				
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24				
Cobalt, dissolved	0.00029	0.00010	mg/L	2020-05-24				
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-05-24				
Iron, dissolved	0.669	0.010		2020-05-24				
Lead, dissolved	< 0.00020	0.00020		2020-05-24				
Magnesium, dissolved	109	0.010		2020-05-24				
Manganese, dissolved	0.0153	0.00020		2020-05-24				
Mercury, dissolved	< 0.000010	0.000010		2020-05-26				
Molybdenum, dissolved	0.00027	0.00010		2020-05-24				
Nickel, dissolved	0.00182	0.00040		2020-05-24				
Phosphorus, dissolved	< 0.050	0.050		2020-05-24				
Potassium, dissolved	4.82		mg/L	2020-05-24				
Selenium, dissolved	< 0.00050	0.00050		2020-05-24				
Silicon, dissolved	8.8		mg/L	2020-05-24				
Silver, dissolved	< 0.000050	0.000050		2020-05-24				
Sodium, dissolved	25.3		mg/L	2020-05-24				
Strontium, dissolved	1.75	0.0010		2020-05-24				
Sulfur, dissolved	48.1		mg/L	2020-05-24				
Tellurium, dissolved	< 0.00050	0.00050		2020-05-24				
Thallium, dissolved	< 0.000000	0.000020		2020-05-24				
Thorium, dissolved	< 0.00010	0.00010		2020-05-24				
Tin, dissolved	< 0.00010	0.00010		2020-05-24				
Titanium, dissolved	< 0.0050	0.0050		2020-05-24				
Tungsten, dissolved	< 0.0030	0.0030		2020-05-24				
Uranium, dissolved	0.000161	0.000020		2020-05-24				
Vanadium, dissolved	< 0.0010	0.00020		2020-05-24				
				2020-05-24				
Zinc, dissolved	0.0065	0.0040						
Zirconium, dissolved	0.00155	0.00010	mg/L	2020-05-24				
Alkalinity, Total (as CaCO3)	516	1 0	mg/L	2020-05-26				
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-05-26				
Alkalinity, Bicarbonate (as CaCO3)	516		mg/L	2020-05-26				
·	< 1.0		mg/L	2020-05-26				
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-05-26				
Alkalinity, Hydroxide (as CaCO3)								
Bicarbonate (HCO3)	629	0.600	mg/L	N/A				
Carbonate (CO3)	< 0.600			N/A				
Hydroxide (OH)	< 0.340	0.340		N/A				
Ammonia, Total (as N)	0.206	0.050		2020-05-25				
BOD, 5-day	< 6.1		mg/L	2020-05-27				
Chemical Oxygen Demand	< 20	20	mg/L	2020-05-22				

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0051806
PROJECT	19-2850 - Golden	REPORTED	2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifier			
DMW-4 (0051806-08) Matrix: Water Sampled: 2020-05-20 15:10, Continued								
General Parameters, Continued								
Conductivity (EC)	1150	2.0	μS/cm	2020-05-26				
pH	8.02	0.10	pH units	2020-05-26	HT2			
Solids, Total Dissolved	712	15	mg/L	2020-05-26				
Solids, Total Suspended	2.0	2.0	mg/L	2020-05-27				
Turbidity	4.90	0.10	NTU	2020-05-22				
Polycyclic Aromatic Hydrocarbons (PA	H)							
Acenaphthene	< 0.050	0.050	μg/L	2020-05-27				
Acenaphthylene	< 0.200	0.200	· -	2020-05-27				
Acridine	< 0.050	0.050	· -	2020-05-27				
Anthracene	< 0.010	0.010	· -	2020-05-27				
Benz(a)anthracene	< 0.010	0.010		2020-05-27				
Benzo(a)pyrene	< 0.010	0.010	μg/L	2020-05-27				
Benzo(b+j)fluoranthene	< 0.050	0.050	μg/L	2020-05-27				
Benzo(g,h,i)perylene	< 0.050	0.050	μg/L	2020-05-27				
Benzo(k)fluoranthene	< 0.050	0.050	μg/L	2020-05-27				
2-Chloronaphthalene	< 0.100	0.100	μg/L	2020-05-27				
Chrysene	< 0.050	0.050	μg/L	2020-05-27				
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L	2020-05-27				
Fluoranthene	< 0.030	0.030	μg/L	2020-05-27				
Fluorene	< 0.050	0.050	μg/L	2020-05-27				
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	μg/L	2020-05-27				
1-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-27				
2-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-27				
Naphthalene	< 0.200	0.200	μg/L	2020-05-27				
Phenanthrene	< 0.100	0.100	μg/L	2020-05-27				
Pyrene	< 0.020	0.020	μg/L	2020-05-27				
Quinoline	< 0.050	0.050	μg/L	2020-05-27				
Surrogate: Acridine-d9	63	50-140	%	2020-05-27				
Surrogate: Naphthalene-d8	91	50-140	%	2020-05-27				
Surrogate: Perylene-d12	63	50-140	%	2020-05-27				
Volatile Organic Compounds (VOC)								
Benzene	< 0.5	0.5	μg/L	2020-05-28				
Bromodichloromethane	< 1.0		μg/L	2020-05-28				
Bromoform	< 1.0		μg/L	2020-05-28				
Carbon tetrachloride	< 0.5		μg/L	2020-05-28				
Chlorobenzene	< 1.0		μg/L	2020-05-28				
Chloroethane	< 2.0		μg/L	2020-05-28				
Chloroform	< 1.0		μg/L	2020-05-28				
Dibromochloromethane	< 1.0		μg/L	2020-05-28				
1,2-Dibromoethane	< 0.3		μg/L	2020-05-28				
Dibromomethane	< 1.0		μg/L	2020-05-28				

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0051806

ED 2020-05-28 17:38

Analyte	Result	RL Units	Analyzed	Qualifier
DMW-4 (0051806-08) Matrix: Water Sa	mpled: 2020-05-20 15:10, Cor	ntinued		
/olatile Organic Compounds (VOC), Continu	ıed			
1,2-Dichlorobenzene	< 0.5	0.5 μg/L	2020-05-28	
1,3-Dichlorobenzene	< 1.0	1.0 µg/L	2020-05-28	
1,4-Dichlorobenzene	< 1.0	1.0 µg/L	2020-05-28	
1,1-Dichloroethane	< 1.0	1.0 µg/L	2020-05-28	
1,2-Dichloroethane	< 1.0	1.0 µg/L	2020-05-28	
1,1-Dichloroethylene	< 1.0	1.0 µg/L	2020-05-28	
cis-1,2-Dichloroethylene	< 1.0	1.0 µg/L	2020-05-28	
trans-1,2-Dichloroethylene	< 1.0	1.0 µg/L	2020-05-28	
Dichloromethane	< 3.0	3.0 µg/L	2020-05-28	
1,2-Dichloropropane	< 1.0	1.0 µg/L	2020-05-28	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0 µg/L	2020-05-28	
Ethylbenzene	< 1.0	1.0 µg/L	2020-05-28	
Methyl tert-butyl ether	< 1.0	1.0 µg/L	2020-05-28	
Styrene	< 1.0	1.0 µg/L	2020-05-28	
1,1,2,2-Tetrachloroethane	< 0.5	0.5 µg/L	2020-05-28	
Tetrachloroethylene	< 1.0	1.0 µg/L	2020-05-28	
Toluene	< 1.0	1.0 µg/L	2020-05-28	
1,1,1-Trichloroethane	< 1.0	1.0 µg/L	2020-05-28	
1,1,2-Trichloroethane	< 1.0	1.0 µg/L	2020-05-28	
Trichloroethylene	< 1.0	1.0 µg/L	2020-05-28	
Trichlorofluoromethane	< 1.0	1.0 µg/L	2020-05-28	
Vinyl chloride	< 1.0	1.0 µg/L	2020-05-28	
Xylenes (total)	< 2.0	2.0 μg/L	2020-05-28	
Surrogate: Toluene-d8	93	70-130 %	2020-05-28	
Surrogate: 4-Bromofluorobenzene	89	70-130 %	2020-05-28	
Surrogate: 1,4-Dichlorobenzene-d4	88	70-130 %	2020-05-28	

MW09-06D (0051806-09) | Matrix: Water | Sampled: 2020-05-20 17:30

Anions					
Bromide	0.36	0.10	mg/L	2020-05-24	
Chloride	392	0.10	mg/L	2020-05-24	
Fluoride	0.15	0.10	mg/L	2020-05-24	
Nitrate (as N)	45.0	0.010	mg/L	2020-05-24	HT1
Nitrite (as N)	0.455	0.010	mg/L	2020-05-24	HT1
Sulfate	615	1.0	mg/L	2020-05-24	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-05-28	
VPHw	< 100	100	μg/L	N/A	
EPHw10-19	< 250	250	μg/L	2020-05-25	
EPHw19-32	< 250	250	μg/L	2020-05-25	
LEPHw	< 250	250	μg/L	N/A	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-06D (0051806-09) Matrix: Water	Sampled: 2020-05-20 17:	30, Continued			
BCMOE Aggregate Hydrocarbons, Continue	d				
HEPHw	< 250	250	μg/L	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	86	60-126	%	2020-05-25	
Calculated Parameters					
Hardness, Total (as CaCO3)	1420	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0428	0.00010	ma/L	2020-05-24	
Aluminum, dissolved	< 0.0050	0.0050		2020-05-24	
Antimony, dissolved	0.00029	0.00020		2020-05-24	
Arsenic, dissolved	< 0.00050	0.00050		2020-05-24	
Barium, dissolved	0.0532	0.0050		2020-05-24	
Beryllium, dissolved	< 0.00010	0.00010		2020-05-24	
Bismuth, dissolved	< 0.00010	0.00010		2020-05-24	
Boron, dissolved	1.73	0.0050		2020-05-24	
Cadmium, dissolved	0.000038	0.000010	mg/L	2020-05-24	
Calcium, dissolved	158	0.20	mg/L	2020-05-24	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Cobalt, dissolved	0.00179	0.00010	mg/L	2020-05-24	
Copper, dissolved	0.00298	0.00040	mg/L	2020-05-24	
Iron, dissolved	< 0.010	0.010	mg/L	2020-05-24	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Magnesium, dissolved	249	0.010	mg/L	2020-05-24	
Manganese, dissolved	0.108	0.00020	mg/L	2020-05-24	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-05-26	
Molybdenum, dissolved	0.00036	0.00010	mg/L	2020-05-24	
Nickel, dissolved	0.0121	0.00040	mg/L	2020-05-24	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-05-24	
Potassium, dissolved	173	0.10	mg/L	2020-05-24	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Silicon, dissolved	13.5	1.0	mg/L	2020-05-24	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-05-24	
Sodium, dissolved	268	0.10	mg/L	2020-05-24	
Strontium, dissolved	1.60	0.0010	mg/L	2020-05-24	
Sulfur, dissolved	224	3.0	mg/L	2020-05-24	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Thallium, dissolved	0.000041	0.000020	mg/L	2020-05-24	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Tin, dissolved	0.00039	0.00020	mg/L	2020-05-24	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-05-24	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-05-24	
Uranium, dissolved	0.00718	0.000020	mg/L	2020-05-24	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-05-24	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

Analyte	Result	RL	Units	Analyzed	Qualifi
MW09-06D (0051806-09) Matrix: Water	Sampled: 2020-05-20 17:30	, Continued			
Dissolved Metals, Continued					
Zinc, dissolved	0.0089	0.0040	mg/L	2020-05-24	
Zirconium, dissolved	0.00018	0.00010	mg/L	2020-05-24	
General Parameters					
Alkalinity, Total (as CaCO3)	934	1.0	mg/L	2020-05-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-05-26	
Alkalinity, Bicarbonate (as CaCO3)	934		mg/L	2020-05-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-05-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Bicarbonate (HCO3)	1140	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	1.53	0.050	mg/L	2020-05-25	
BOD, 5-day	< 6.1	2.0	mg/L	2020-05-27	
Chemical Oxygen Demand	96	20	mg/L	2020-05-22	
Conductivity (EC)	3960	2.0	μS/cm	2020-05-26	
pH	7.71	0.10	pH units	2020-05-26	HT2
Solids, Total Dissolved	2500	15	mg/L	2020-05-26	
Solids, Total Suspended	78.2	2.0	mg/L	2020-05-27	
Turbidity	46.5	0.10	NTU	2020-05-22	
Polycyclic Aromatic Hydrocarbons (PAH)					
Acenaphthene	< 0.050	0.050	μg/L	2020-05-26	
Acenaphthylene	< 0.200	0.200		2020-05-26	
Acridine	< 0.050	0.050	μg/L	2020-05-26	
Anthracene	< 0.010	0.010		2020-05-26	
Benz(a)anthracene	< 0.010	0.010		2020-05-26	
Benzo(a)pyrene	< 0.010	0.010		2020-05-26	
Benzo(b+j)fluoranthene	< 0.050	0.050		2020-05-26	
Benzo(g,h,i)perylene	< 0.050	0.050		2020-05-26	
Benzo(k)fluoranthene	< 0.050	0.050		2020-05-26	
2-Chloronaphthalene	< 0.100	0.100		2020-05-26	
Chrysene	< 0.050	0.050		2020-05-26	
Dibenz(a,h)anthracene	< 0.010	0.010		2020-05-26	
Fluoranthene	< 0.030	0.030		2020-05-26	
Fluorene	< 0.050	0.050		2020-05-26	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050		2020-05-26	
1-Methylnaphthalene	< 0.100	0.100		2020-05-26	
2-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-26	
Naphthalene	< 0.200	0.200	μg/L	2020-05-26	
Phenanthrene	< 0.100	0.100	μg/L	2020-05-26	
Pyrene	< 0.020	0.020	μg/L	2020-05-26	
Quinoline	< 0.050	0.050	ua/l	2020-05-26	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-06D (0051806-09) Matrix: Water	Sampled: 2020-05-20 17:30), Continued			
Polycyclic Aromatic Hydrocarbons (PAH), C	Continued				
Surrogate: Acridine-d9	80	50-140	%	2020-05-26	
Surrogate: Naphthalene-d8	97	50-140	%	2020-05-26	
Surrogate: Perylene-d12	94	50-140	%	2020-05-26	
/olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-05-28	
Bromodichloromethane	< 1.0		μg/L	2020-05-28	
Bromoform	< 1.0		μg/L	2020-05-28	
Carbon tetrachloride	< 0.5		μg/L	2020-05-28	
Chlorobenzene	< 1.0	1.0		2020-05-28	
Chloroethane	< 2.0	2.0		2020-05-28	
Chloroform	< 1.0	1.0		2020-05-28	
Dibromochloromethane	< 1.0	1.0		2020-05-28	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-05-28	
Dibromomethane	< 1.0	1.0	μg/L	2020-05-28	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-05-28	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-05-28	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-05-28	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-05-28	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-05-28	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-05-28	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-05-28	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-05-28	
Dichloromethane	< 3.0	3.0	μg/L	2020-05-28	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-05-28	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-05-28	
Ethylbenzene	< 1.0	1.0	μg/L	2020-05-28	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-05-28	
Styrene	< 1.0	1.0	μg/L	2020-05-28	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-05-28	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-05-28	
Toluene	< 1.0	1.0	μg/L	2020-05-28	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-05-28	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-05-28	
Trichloroethylene	< 1.0	1.0	μg/L	2020-05-28	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-05-28	
Vinyl chloride	< 1.0	1.0	μg/L	2020-05-28	
Xylenes (total)	< 2.0		μg/L	2020-05-28	
Surrogate: Toluene-d8	99	70-130		2020-05-28	
Surrogate: 4-Bromofluorobenzene	93	70-130	%	2020-05-28	
Surrogate: 1,4-Dichlorobenzene-d4	90	70-130		2020-05-28	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

Analyte	Result	RL	Units	Analyzed	Qualifie
DUP A (0051806-10) Matrix: Water San	npled: 2020-05-20 12:25				
Anions					
Bromide	0.35	0.10	mg/L	2020-05-24	
Chloride	399	0.10	mg/L	2020-05-24	
Fluoride	0.15	0.10	mg/L	2020-05-24	
Nitrate (as N)	39.7	0.010	mg/L	2020-05-24	HT1
Nitrite (as N)	0.381	0.010	mg/L	2020-05-24	HT1
Sulfate	624	1.0	mg/L	2020-05-24	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-05-28	
VPHw	< 100		μg/L	N/A	
EPHw10-19	< 250	250	μg/L	2020-05-25	
EPHw19-32	< 250	250	μg/L	2020-05-25	
LEPHw	< 250	250	μg/L	N/A	
HEPHw	< 250	250	μg/L	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	85	60-126	%	2020-05-25	
Calculated Parameters					
Hardness, Total (as CaCO3)	1450	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0426	0.00010	mg/L	2020-05-24	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-05-24	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Arsenic, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Barium, dissolved	0.0535	0.0050	mg/L	2020-05-24	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Boron, dissolved	1.92	0.0050	mg/L	2020-05-24	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-05-24	
Calcium, dissolved	158	0.20	mg/L	2020-05-24	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Cobalt, dissolved	0.00160	0.00010		2020-05-24	
Copper, dissolved	0.00242	0.00040	mg/L	2020-05-24	
Iron, dissolved	< 0.010	0.010	mg/L	2020-05-24	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-05-24	
Magnesium, dissolved	256	0.010	mg/L	2020-05-24	
Manganese, dissolved	0.0693	0.00020	mg/L	2020-05-24	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-05-26	
Molybdenum, dissolved	0.00028	0.00010	mg/L	2020-05-24	
Nickel, dissolved	0.0114	0.00040	mg/L	2020-05-24	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-05-24	
Potassium, dissolved	177		mg/L	2020-05-24	
Selenium, dissolved	< 0.00050	0.00050		2020-05-24	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0051806
PROJECT	19-2850 - Golden	REPORTED	2020-05-28 17:38

Analyte	Result	RL	Units	Analyzed	Qualifi
OUP A (0051806-10) Matrix: Water San	npled: 2020-05-20 12:25, C	ontinued			
Dissolved Metals, Continued					
Silicon, dissolved	14.1	1.0	mg/L	2020-05-24	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-05-24	
Sodium, dissolved	265	0.10	mg/L	2020-05-24	
Strontium, dissolved	1.67	0.0010	mg/L	2020-05-24	
Sulfur, dissolved	234	3.0	mg/L	2020-05-24	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-05-24	
Thallium, dissolved	0.000035	0.000020	mg/L	2020-05-24	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-05-24	
Tin, dissolved	0.00021	0.00020	mg/L	2020-05-24	
Titanium, dissolved	< 0.0050	0.0050		2020-05-24	
Tungsten, dissolved	< 0.0010	0.0010		2020-05-24	
Uranium, dissolved	0.00691	0.000020		2020-05-24	
Vanadium, dissolved	< 0.0010	0.0010		2020-05-24	
Zinc, dissolved	< 0.0040	0.0040		2020-05-24	
Zirconium, dissolved	0.00014	0.00010		2020-05-24	
General Parameters					
Alkalinity, Total (as CaCO3)	952	1.0	mg/L	2020-05-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Alkalinity, Bicarbonate (as CaCO3)	952	1.0	mg/L	2020-05-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-05-26	
Bicarbonate (HCO3)	1160	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	1.44	0.050	mg/L	2020-05-25	
BOD, 5-day	< 6.1	2.0	mg/L	2020-05-27	
Chemical Oxygen Demand	41	20	mg/L	2020-05-22	
Conductivity (EC)	3940	2.0	μS/cm	2020-05-26	
pH	7.80	0.10	pH units	2020-05-26	HT2
Solids, Total Dissolved	2550	15	mg/L	2020-05-26	
Solids, Total Suspended	43.8		mg/L	2020-05-27	
Turbidity	24.8		NTU	2020-05-22	
Polycyclic Aromatic Hydrocarbons (PAH)					
Acenaphthene	< 0.050	0.050	μg/L	2020-05-26	
Acenaphthylene	< 0.200	0.200	μg/L	2020-05-26	
Acridine	< 0.050	0.050	μg/L	2020-05-26	
Anthracene	< 0.010	0.010	· -	2020-05-26	
Benz(a)anthracene	< 0.010	0.010	· -	2020-05-26	
Benzo(a)pyrene	< 0.010	0.010	· -	2020-05-26	
Benzo(b+j)fluoranthene	< 0.050	0.050	· -	2020-05-26	
Benzo(g,h,i)perylene	< 0.050	0.050		2020-05-26	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0051806

Analyte	Result	RL	Units	Analyzed	Qualifie
DUP A (0051806-10) Matrix: Water \$	Sampled: 2020-05-20 12:25, Co	ntinued			
Polycyclic Aromatic Hydrocarbons (PAH)	, Continued				
Benzo(k)fluoranthene	< 0.050	0.050	μg/L	2020-05-26	
2-Chloronaphthalene	< 0.100	0.100	μg/L	2020-05-26	
Chrysene	< 0.050	0.050	μg/L	2020-05-26	
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L	2020-05-26	
Fluoranthene	< 0.030	0.030	μg/L	2020-05-26	
Fluorene	< 0.050	0.050	μg/L	2020-05-26	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	μg/L	2020-05-26	
1-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-26	
2-Methylnaphthalene	< 0.100	0.100	μg/L	2020-05-26	
Naphthalene	< 0.200	0.200	μg/L	2020-05-26	
Phenanthrene	< 0.100	0.100		2020-05-26	
Pyrene	< 0.020	0.020		2020-05-26	
Quinoline	< 0.050	0.050	μg/L	2020-05-26	
Surrogate: Acridine-d9	76	50-140	%	2020-05-26	
Surrogate: Naphthalene-d8	103	50-140	%	2020-05-26	
Surrogate: Perylene-d12	94	50-140	%	2020-05-26	
/olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-05-28	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-05-28	
Bromoform	< 1.0	1.0	μg/L	2020-05-28	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-05-28	
Chlorobenzene	< 1.0	1.0	μg/L	2020-05-28	
Chloroethane	< 2.0	2.0	μg/L	2020-05-28	
Chloroform	< 1.0	1.0		2020-05-28	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-05-28	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-05-28	
Dibromomethane	< 1.0	1.0	μg/L	2020-05-28	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-05-28	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-05-28	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-05-28	
1,1-Dichloroethane	< 1.0	1.0		2020-05-28	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-05-28	
1,1-Dichloroethylene	< 1.0		μg/L	2020-05-28	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-05-28	
trans-1,2-Dichloroethylene	< 1.0	1.0		2020-05-28	
Dichloromethane	< 3.0		μg/L	2020-05-28	
1,2-Dichloropropane	< 1.0		μg/L	2020-05-28	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-05-28	
Ethylbenzene	< 1.0		μg/L	2020-05-28	
Methyl tert-butyl ether	< 1.0		μg/L	2020-05-28	
Styrene	< 1.0		μg/L	2020-05-28	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-05-28	
1, 1,2,2- Totaomoroctilane	٠٠.٥	0.5	r9′-	2020-00-20	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0051806

2020-05-28 17:38

Analyte	Result	RL Units	Analyzed Qualifier
DUP A (0051806-10) Matrix: Water Sar	mpled: 2020-05-20 12:25, Co	ntinued	
Volatile Organic Compounds (VOC), Continu	ued		
Tetrachloroethylene	< 1.0	1.0 μg/L	2020-05-28
Toluene	< 1.0	1.0 µg/L	2020-05-28
1,1,1-Trichloroethane	< 1.0	1.0 µg/L	2020-05-28
1,1,2-Trichloroethane	< 1.0	1.0 µg/L	2020-05-28
Trichloroethylene	< 1.0	1.0 µg/L	2020-05-28
Trichlorofluoromethane	< 1.0	1.0 µg/L	2020-05-28
Vinyl chloride	< 1.0	1.0 µg/L	2020-05-28
Xylenes (total)	< 2.0	2.0 µg/L	2020-05-28
Surrogate: Toluene-d8	98	70-130 %	2020-05-28
Surrogate: 4-Bromofluorobenzene	93	70-130 %	2020-05-28
Surrogate: 1,4-Dichlorobenzene-d4	90	70-130 %	2020-05-28

Sample Qualifiers:

HT1 The sample was prepared and/or analyzed past the recommended holding time.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

RA1 The Reporting Limit has been raised due to matrix interference.

S09 The surrogate recovery for this sample is outside of established control limits .

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

REPORTED

2020-05-28 17:38

Analysis Description	Method Ref.	Technique	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	Kelowna
Ammonia, Total in Water	SM 4500-NH3 G* (2017)	Automated Colorimetry (Phenate)	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	Kelowna
Biochemical Oxygen Demand in Water	SM 5210 B (2017)	Dissolved Oxygen Meter	Kelowna
Chemical Oxygen Demand in Water	SM 5220 D* (2017)	Closed Reflux, Colorimetry	Kelowna
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	Richmond
EPH in Water	EPA 3511* / BCMOE EPHw	Hexane MicroExtraction (Base/Neutral) / Gas Chromatography (GC-FID)	Richmond
Hardness in Water	SM 2340 B (2017)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	N/A
HEPHw in Water	BCMOE LEPH/HEPH	Calculation	N/A
LEPHw in Water	BCMOE LEPH/HEPH	Calculation	N/A
Mercury, dissolved in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	Richmond
pH in Water	SM 4500-H+ B (2017)	Electrometry	Kelowna
Polycyclic Aromatic Hydrocarbons in Water	EPA 3511* / EPA 8270D	Hexane MicroExtraction (Base/Neutral) / GC-MSD (SIM)	Richmond
Solids, Total Dissolved in Water	SM 2540 C* (2017)	Gravimetry (Dried at 103-105C)	Kelowna
Solids, Total Suspended in Water	SM 2540 D* (2017)	Gravimetry (Dried at 103-105C)	Kelowna
Turbidity in Water	SM 2130 B (2017)	Nephelometry	Kelowna
VH in Water	EPA 5030B / BCMOE VHw	Purge&Trap / Gas Chromatography (GC-FID)	Richmond
Volatile Organic Compounds in Water	EPA 5030B / EPA 8260D	Purge&Trap / GC-MSD (SIM)	Richmond
VPHw in Water	BCMOE VPH	Calculation: VH - (Benzene + Toluene + Ethylbenzene + Xylenes + Styrene)	N/A

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units pH units pH < 7 = acidic, ph > 7 = basic

μg/L Micrograms per litre

μS/cm Microsiemens per centimetre

BCMOE British Columbia Environmental Laboratory Manual, British Columbia Ministry of Environment

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0051806

REPORTED 2020-05-28 17:38

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted red. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:acrump@caro.ca

REPORTED TO

Ecoscape Environmental Ltd.

PROJECT

19-2850 - Golden

WORK ORDER REPORTED

0051806

RTED 2020-05-28 17:38

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B0E1698									
Blank (B0E1698-BLK1)			Prepared	l: 2020-05-2	2, Analyze	d: 2020-0	05-23		
Bromide	< 0.10	0.10 mg/L	· ·		-				
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B0E1698-BLK2)			Prepared	l: 2020-05-2	2, Analyze	d: 2020-0	05-23		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B0E1698-BLK3)			Prepared	: 2020-05-2	2, Analyze	d: 2020-0	05-23		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B0E1698-BS1)			Prepared	l: 2020-05-2	2, Analyze	d: 2020-0	05-23		
Bromide	3.96	0.10 mg/L	4.00		99	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Fluoride	4.07	0.10 mg/L	4.00		102	88-108			
Nitrate (as N)	3.96	0.010 mg/L	4.00		99	90-110			
Nitrite (as N)	2.04	0.010 mg/L	2.00		102	85-115			
Sulfate	16.1	1.0 mg/L	16.0		100	90-110			
LCS (B0E1698-BS2)			Prepared	l: 2020-05-2	2, Analyze	d: 2020-0	05-23		
Bromide	3.91	0.10 mg/L	4.00		98	85-115			
Chloride	16.2	0.10 mg/L	16.0		101	90-110			
Fluoride	4.00	0.10 mg/L	4.00		100	88-108			
Nitrate (as N)	3.81	0.010 mg/L	4.00		95	90-110			

REPORTED TO PROJECT	Ecoscape Environme 19-2850 - Golden	ental Ltd.				WORK REPOR	ORDER RTED	0051 2020	806)-05-28	17:38
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B0E	1698, Continued									
LCS (B0E1698-BS2), Continued			Prepared	: 2020-05-2	2, Analyze	ed: 2020-0	5-23		
Nitrite (as N)		2.04	0.010 mg/L	2.00		102	85-115			
Sulfate		15.9	1.0 mg/L	16.0		100	90-110			
LCS (B0E1698-BS3)			Prepared	: 2020-05-2	2, Analyze	ed: 2020-0	5-23		
Bromide		3.95	0.10 mg/L	4.00		99	85-115			
Chloride		15.9	0.10 mg/L	16.0		99	90-110			
Fluoride		4.04	0.10 mg/L	4.00		101	88-108			
Nitrate (as N)		3.94 2.10	0.010 mg/L	4.00 2.00		98	90-110 85-115			
Nitrite (as N) Sulfate		16.1	0.010 mg/L 1.0 mg/L	16.0		105 100	90-110			
BCMOE Aggregate I	Hydrocarbons, Batch E	30E1825	-							
Blank (B0E1825-BL	.K1)			Prepared	: 2020-05-2	5, Analyze	ed: 2020-0)5-25		
EPHw10-19		< 250	250 μg/L							
EPHw19-32		< 250	250 µg/L							
Surrogate: 2-Methylno	nane (EPH/F2-4)	358	μg/L	444		81	60-126			
LCS (B0E1825-BS2)			•	: 2020-05-2)5-25		
EPHw10-19		12900	250 µg/L	15500		83	70-117			
EPHw19-32 Surrogate: 2-Methylno	nnane (EDH/E2 4)	18400 369	250 μg/L μg/L	22200 444		83 83	70-113 60-126			
		303	μу/∟		. 2020 05 2			NE 0E		
LCS Dup (B0E1825	-8502)	44400	050 "		: 2020-05-2					
EPHw10-19 EPHw19-32		14100 20300	250 μg/L	15500 22200		91 91	70-117 70-113	9	20	
Surrogate: 2-Methylno	nane (EPH/F2-4)	391	250 μg/L μg/L	444		88	60-126	10	20	
BCMOE Aggregate I	Hydrocarbons, Batch E .K1)	B0E1949		Prepared	: 2020-05-2	6, Analyze	ed: 2020-0	05-26		
EPHw10-19		< 250	250 μg/L			, <u>, , , , , , , , , , , , , , , , , , </u>				
EPHw19-32		< 250	250 µg/L							
Surrogate: 2-Methylno	nane (EPH/F2-4)	304	μg/L	471		64	60-126			
LCS (B0E1949-BS2)			Prepared	: 2020-05-2	6, Analyze	ed: 2020-0	5-26		
EPHw10-19		15100	250 μg/L	15800		96	70-117			
EPHw19-32		21100	250 μg/L	22600		93	70-113			
Surrogate: 2-Methylno	nane (EPH/F2-4)	425	μg/L	453		94	60-126			
LCS Dup (B0E1949	-BSD2)			Prepared	: 2020-05-2	6, Analyze	ed: 2020-0	5-26		
EPHw10-19		14300	250 μg/L	16300		88	70-117	5	20	
EPHw19-32		20600	250 μg/L	23400		88	70-113	2	20	
Surrogate: 2-Methylno	nane (EPH/F2-4)	329	μg/L	467		70	60-126			
BCMOE Aggregate I	Hydrocarbons, Batch E	B0E2045								
Blank (B0E2045-BL	.K1)			Prepared	: 2020-05-2	7, Analyze	ed: 2020-0	5-27		
VHw (6-10)		< 100	100 μg/L							
LCS (B0E2045-BS2)			Prepared	: 2020-05-2	7, Analyze	ed: 2020-0	5-27		
VHw (6-10)		3220	100 μg/L	3280		98	70-130			
Duplicate (B0E2045	5-DUP1)	Sou	rce: 0051806-10	Prepared	: 2020-05-2	8, Analyze	ed: 2020-0	5-28		
VHw (6-10)		< 100	100 μg/L		< 100				19	

 REPORTED TO
 Ecoscape Environmental Ltd.
 WORK ORDER
 0051806

 PROJECT
 19-2850 - Golden
 REPORTED
 2020-05-28 17:38

Analyte	Result	RL Units	Spike	Source	% REC	REC	% RPD RPD	Qualifier
			Level	Result	,,,,,	Limit	Limit	

issolved Metals, Batch B0E1807						
Blank (B0E1807-BLK1)			Prepared: 202	0-05-24, Analyze	ed: 2020-05-24	
Lithium, dissolved	< 0.00010	0.00010 mg/L				
Aluminum, dissolved	< 0.0050	0.0050 mg/L				
Antimony, dissolved	< 0.00020	0.00020 mg/L				
Arsenic, dissolved	< 0.00050	0.00050 mg/L				
Barium, dissolved	< 0.0050	0.0050 mg/L				
Beryllium, dissolved	< 0.00010	0.00010 mg/L				
Bismuth, dissolved	< 0.00010	0.00010 mg/L				
Boron, dissolved	< 0.0050	0.0050 mg/L				
Cadmium, dissolved	< 0.000010	0.000010 mg/L				
Calcium, dissolved	< 0.20	0.20 mg/L				
Chromium, dissolved	< 0.00050	0.00050 mg/L				
Cobalt, dissolved	< 0.00010	0.00010 mg/L				
Copper, dissolved	< 0.00040	0.00040 mg/L				
ron, dissolved	< 0.010	0.010 mg/L				
_ead, dissolved	< 0.00020	0.00020 mg/L				
Magnesium, dissolved	< 0.010	0.010 mg/L				
Manganese, dissolved	< 0.00020	0.00020 mg/L				
Molybdenum, dissolved	< 0.00010	0.00010 mg/L				
Nickel, dissolved	< 0.00040	0.00040 mg/L				
Phosphorus, dissolved	< 0.050	0.050 mg/L				
Potassium, dissolved	< 0.10	0.10 mg/L				
Selenium, dissolved	< 0.00050	0.00050 mg/L				
Silicon, dissolved	< 1.0	1.0 mg/L				
Silver, dissolved	< 0.000050	0.000050 mg/L				
Sodium, dissolved	< 0.10	0.10 mg/L				
Strontium, dissolved	< 0.0010	0.0010 mg/L				
Sulfur, dissolved	< 3.0	3.0 mg/L				
Tellurium, dissolved	< 0.00050	0.00050 mg/L				
Thallium, dissolved	< 0.000020	0.000020 mg/L				
Thorium, dissolved	< 0.00010	0.00010 mg/L				
Fin, dissolved	< 0.00020	0.00020 mg/L				
Titanium, dissolved	< 0.0050	0.0050 mg/L				
Fungsten, dissolved	< 0.0010	0.0010 mg/L				
Jranium, dissolved	< 0.00000	0.000020 mg/L				
Vanadium, dissolved	< 0.0010	0.0010 mg/L				
Zinc, dissolved	< 0.0040	0.0040 mg/L				
Zirconium, dissolved	< 0.00010	0.00010 mg/L				
LCS (B0E1807-BS1)	0.000.0	0.000 to mg/_	Prepared: 202	0-05-24, Analyze	ed: 2020-05-24	
_ithium, dissolved	0.0215	0.00010 mg/L	0.0200	107	80-120	
Aluminum, dissolved	0.0221	0.0050 mg/L	0.0199	111	80-120	
Antimony, dissolved	0.0193	0.00020 mg/L	0.0200	96	80-120	
Arsenic, dissolved	0.0203	0.00050 mg/L	0.0200	102	80-120	
Barium, dissolved	0.0202	0.0050 mg/L	0.0198	102	80-120	
Beryllium, dissolved	0.0209	0.00010 mg/L	0.0198	106	80-120	
Bismuth, dissolved	0.0211	0.00010 mg/L	0.0200	105	80-120	
Boron, dissolved	0.0169	0.0050 mg/L	0.0200	85	80-120	
Cadmium, dissolved	0.0203	0.000010 mg/L	0.0199	102	80-120	
Calcium, dissolved	2.18	0.20 mg/L	2.02	108	80-120	
Chromium, dissolved	0.0197	0.00050 mg/L	0.0198	99	80-120	
Cobalt, dissolved	0.0199	0.00030 mg/L	0.0199	100	80-120	
Copper, dissolved	0.0205	0.00040 mg/L	0.0200	103	80-120	
ron, dissolved	1.95	0.00040 mg/L	2.02	97	80-120	
Lead, dissolved	0.0204	0.00020 mg/L	0.0199	102	80-120	
Leau, dissolved	0.0204	U.UUUZU IIIY/L	0.0199	102	00-120	

REPORTED TO PROJECT	Ecoscape Environmer 19-2850 - Golden	ntal Ltd.				WORK REPOR	ORDER	0051 2020	806 -05-28	17:38
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals	Batch B0E1807, Continue	ed								
ŕ	•	-u		5				5.04		
LCS (B0E1807-BS	1), Continued			Prepared	I: 2020-05-2	24, Analyze	d: 2020-0	5-24		
Manganese, dissolve	ed	0.0198	0.00020 mg/L	0.0199		100	80-120			
Molybdenum, dissolv	/ed	0.0194	0.00010 mg/L	0.0200		97	80-120			
Nickel, dissolved		0.0201	0.00040 mg/L	0.0200		101	80-120			
Phosphorus, dissolve		1.94	0.050 mg/L	2.00		97	80-120			
Potassium, dissolved	<u>t</u>	1.94	0.10 mg/L	2.02		96	80-120			
Selenium, dissolved		0.0204	0.00050 mg/L	0.0200		102	80-120			
Silicon, dissolved		2.3	1.0 mg/L	2.00		114	80-120			
Silver, dissolved		0.0199	0.000050 mg/L	0.0200		99	80-120			
Sodium, dissolved		1.97	0.10 mg/L	2.02		97	80-120			
Strontium, dissolved		0.0198	0.0010 mg/L	0.0200		99	80-120			
Sulfur, dissolved		4.5	3.0 mg/L	5.00		90	80-120			
Tellurium, dissolved		0.0197	0.00050 mg/L	0.0200		99	80-120			
Thallium, dissolved		0.0206	0.000020 mg/L	0.0199		103	80-120			
Thorium, dissolved		0.0199	0.00010 mg/L	0.0200		99	80-120			
Tin, dissolved		0.0196	0.00020 mg/L	0.0200		98	80-120			
Titanium, dissolved		0.0196	0.0050 mg/L	0.0200		98	80-120			
Tungsten, dissolved		0.0199	0.0010 mg/L	0.0200		100	80-120			
Uranium, dissolved		0.0206	0.000020 mg/L	0.0200		103	80-120			
Vanadium, dissolved		0.0196	0.0010 mg/L	0.0200		98	80-120			
Zinc, dissolved		0.0205	0.0040 mg/L	0.0200		102	80-120			
Zirconium, dissolved		0.0193	0.00010 mg/L	0.0200		96	80-120			
Reference (B0E18	07-SRM1)			Prepared	I: 2020-05-2	24, Analyze	d: 2020-0	5-24		
Lithium, dissolved		0.113	0.00010 mg/L	0.100		113	77-127			
Aluminum, dissolved		0.242	0.0050 mg/L	0.235		103	79-114			
Antimony, dissolved		0.0458	0.00020 mg/L	0.0431		106	89-123			
Arsenic, dissolved		0.452	0.00050 mg/L	0.423		107	87-113			
Barium, dissolved		3.32	0.0050 mg/L	3.30		101	85-114			
Beryllium, dissolved		0.226	0.00010 mg/L	0.209		108	79-122			
Boron, dissolved		1.47	0.0050 mg/L	1.65		89	79-117			
Cadmium, dissolved		0.227	0.000010 mg/L	0.221		103	89-112			
Calcium, dissolved		7.74	0.20 mg/L	7.72		100	85-120			
Chromium, dissolved	ı	0.436	0.00050 mg/L	0.434		100	87-113			
Cobalt, dissolved		0.127	0.00010 mg/L	0.124		102	90-117			
Copper, dissolved		0.845	0.00040 mg/L	0.815		104	90-115			
Iron, dissolved		1.26	0.010 mg/L	1.27		99	86-112			
Lead, dissolved		0.115	0.00020 mg/L	0.110		105	90-113			
Magnesium, dissolve	ed	6.56	0.010 mg/L	6.59		99	84-116			
Manganese, dissolve	∍d	0.339	0.00020 mg/L	0.342		99	85-113			
Molybdenum, dissolv	/ed	0.412	0.00010 mg/L	0.404		102	87-112			
Nickel, dissolved		0.851	0.00040 mg/L	0.835		102	90-114			
Phosphorus, dissolve	ed	0.527	0.050 mg/L	0.499		106	74-119			
Potassium, dissolved	t	2.91	0.10 mg/L	2.88		101	78-119			
Selenium, dissolved		0.0351	0.00050 mg/L	0.0324		108	89-123			
Sodium, dissolved		17.5	0.10 mg/L	18.0		97	81-117			
Strontium, dissolved		0.926	0.0010 mg/L	0.935		99	82-111			
Thallium, dissolved		0.0400	0.000020 mg/L	0.0385		104	90-113			
Uranium, dissolved		0.256	0.000020 mg/L	0.258		99	87-113			
Vanadium, dissolved		0.857	0.0010 mg/L	0.873		98	85-110			
Zinc, dissolved		0.907	0.0040 mg/L	0.848		107	88-114			

Dissolved Metals, Batch B0E1881

Blank (B0E1881-BLK1) Prepared: 2020-05-25, Analyzed: 2020-05-26

Mercury, dissolved < 0.000010 0.000010 mg/L

Arsenic, dissolved

Barium, dissolved

APPENDIX 2: QUALITY CONTROL RESULTS

	·								
REPORTED TO PROJECT	Ecoscape Environmental Ltd. 19-2850 - Golden				WORK REPOR	ORDER	0051 2020	806)-05-28	17:38
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Dissolved Metals, B	atch B0E1881, Continued								
Blank (B0E1881-BL	K2)		Prepared	: 2020-05-2	25, Analyze	ed: 2020-0	5-26		
Mercury, dissolved	< 0.000010	0.000010 mg/L	<u> </u>		<u>, , , , , , , , , , , , , , , , , , , </u>				
•				2222 25					
Reference (B0E1881	•			: 2020-05-2			5-26		
Mercury, dissolved	0.00541	0.000010 mg/L	0.00489		111	80-120			
Reference (B0E1881	i-SRM2)		Prepared	: 2020-05-2	25, Analyze	ed: 2020-0	5-26		
Mercury, dissolved	0.00432	0.000010 mg/L	0.00489		88	80-120			
Dissolved Metals, B Blank (B0E1903-BLI			Prepared	: 2020-05-2	27, Analyze	ed: 2020-0	5-27		
Lithium, dissolved	< 0.00010	0.00010 mg/L							
Aluminum, dissolved	< 0.0050	0.0050 mg/L							
Antimony, dissolved	< 0.00020 < 0.00050	0.00020 mg/L 0.00050 mg/L							
Arsenic, dissolved Barium, dissolved	< 0.0050	0.0050 mg/L 0.0050 mg/L							
Beryllium, dissolved	< 0.0030	0.00010 mg/L							
Bismuth, dissolved	< 0.00010	0.00010 mg/L							
Boron, dissolved	< 0.0050	0.0050 mg/L							
Cadmium, dissolved	< 0.000010	0.000010 mg/L							
Calcium, dissolved	< 0.20	0.20 mg/L							
Chromium, dissolved	< 0.00050	0.00050 mg/L							
Cobalt, dissolved	< 0.00010	0.00010 mg/L							
Copper, dissolved	< 0.00040	0.00040 mg/L							
Iron, dissolved Lead, dissolved	< 0.010 < 0.00020	0.010 mg/L 0.00020 mg/L							
Magnesium, dissolved	< 0.0020	0.00020 mg/L							
Manganese, dissolved	< 0.00020	0.00020 mg/L							
Molybdenum, dissolved		0.00010 mg/L							
Nickel, dissolved	< 0.00040	0.00040 mg/L							
Phosphorus, dissolved	< 0.050	0.050 mg/L							
Potassium, dissolved	< 0.10	0.10 mg/L							
Selenium, dissolved	< 0.00050	0.00050 mg/L							
Silicon, dissolved	< 1.0	1.0 mg/L							
Silver, dissolved Sodium, dissolved	< 0.000050 < 0.10	0.000050 mg/L 0.10 mg/L							
Strontium, dissolved	< 0.0010	0.0010 mg/L							
Sulfur, dissolved	< 3.0	3.0 mg/L							
Tellurium, dissolved	< 0.00050	0.00050 mg/L							
Thallium, dissolved	< 0.000020	0.000020 mg/L							
Thorium, dissolved	< 0.00010	0.00010 mg/L							
Tin, dissolved	< 0.00020	0.00020 mg/L							
Titanium, dissolved	< 0.0050	0.0050 mg/L							
Tungsten, dissolved	< 0.0010	0.0010 mg/L							
Uranium, dissolved Vanadium, dissolved	< 0.000020 < 0.0010	0.000020 mg/L 0.0010 mg/L							
Zinc, dissolved	< 0.0010	0.0010 mg/L 0.0040 mg/L							
Zirc, dissolved Zirconium, dissolved	< 0.0040	0.0040 mg/L							
LCS (B0E1903-BS1)			Prepared	: 2020-05-2	27, Analyze	ed: 2020-0	5-27		
Lithium, dissolved	0.0166	0.00010 mg/L	0.0200		83	80-120			
Aluminum, dissolved	0.0206	0.0050 mg/L	0.0199		103	80-120			
Antimony, dissolved	0.0195	0.00020 mg/L	0.0200		98	80-120			
Arsenic dissolved	0.0187	0.00050 mg/l	0.0200		94	80-120			

0.0200

0.0198

0.00050 mg/L

0.0050 mg/L

0.0187

0.0209

94

80-120

80-120

REPORTED TO PROJECT	Ecoscape Environment 19-2850 - Golden	tal Ltd.					WORK REPOR	ORDER TED		806 -05-28	17:38
Analyte		Result	RL	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals,	Batch B0E1903, Continued	1									
LCS (B0E1903-BS	1), Continued				Prepared	: 2020-05-2	7, Analyze	d: 2020-0)5-27		
Beryllium, dissolved		0.0170	0.00010	ma/L	0.0198		86	80-120			
Bismuth, dissolved		0.0216	0.00010		0.0200		108	80-120			
Boron, dissolved		0.0174	0.0050	mg/L	0.0200		87	80-120			
Cadmium, dissolved		0.0202	0.000010	mg/L	0.0199		102	80-120			
Calcium, dissolved		1.90	0.20	mg/L	2.02		94	80-120			
Chromium, dissolved		0.0176	0.00050	mg/L	0.0198		89	80-120			
Cobalt, dissolved		0.0183	0.00010	mg/L	0.0199		92	80-120			
Copper, dissolved		0.0192	0.00040	mg/L	0.0200		96	80-120			
Iron, dissolved		1.81	0.010	mg/L	2.02		89	80-120			
Lead, dissolved		0.0209	0.00020		0.0199		105	80-120			
Magnesium, dissolve		1.92		mg/L	2.02		95	80-120			
Manganese, dissolve		0.0205	0.00020		0.0199		103	80-120			
Molybdenum, dissolve	ed	0.0191	0.00010		0.0200		96	80-120			
Nickel, dissolved		0.0181	0.00040		0.0200		91	80-120			
Phosphorus, dissolve		1.87		mg/L	2.00		93	80-120			
Potassium, dissolved		1.85		mg/L	2.02		91	80-120			
Selenium, dissolved		0.0199	0.00050		0.0200		100	80-120			
Silicon, dissolved		1.7		mg/L	2.00		84	80-120			
Silver, dissolved		0.0202	0.000050	mg/L	0.0200 2.02		101 87	80-120 80-120			
Sodium, dissolved Strontium, dissolved		0.0190	0.0010		0.0200		95	80-120			
Sulfur, dissolved		4.8		mg/L	5.00		95	80-120			
Tellurium, dissolved		0.0210	0.00050		0.0200		105	80-120			
Thallium, dissolved		0.0193	0.000020		0.0199		97	80-120			
Thorium, dissolved		0.0205	0.00010		0.0200		102	80-120			
Tin, dissolved		0.0203	0.00020		0.0200		102	80-120			
Titanium, dissolved		0.0169	0.0050		0.0200		84	80-120			
Tungsten, dissolved		0.0196	0.0010	mg/L	0.0200		98	80-120			
Uranium, dissolved		0.0212	0.000020		0.0200		106	80-120			
Vanadium, dissolved		0.0174	0.0010	mg/L	0.0200		87	80-120			
Zinc, dissolved		0.0201	0.0040	mg/L	0.0200		100	80-120			
Zirconium, dissolved		0.0190	0.00010	mg/L	0.0200		95	80-120			
Reference (B0E19	03-SRM1)				Prepared	: 2020-05-2	7, Analyze	d: 2020-0)5-27		
Lithium, dissolved	•	0.00883	0.00010	ma/l	0.0100		88	77-127			
Aluminum, dissolved		0.0236	0.0050		0.0235		101	79-114			
Antimony, dissolved		0.00488	0.00020		0.00431		113	89-123			
Arsenic, dissolved		0.0433	0.00050		0.0423		102	87-113			
Barium, dissolved		0.357	0.0050		0.330		108	85-114			
Beryllium, dissolved		0.0194	0.00010		0.0209		93	79-122			
Boron, dissolved		0.147	0.0050	mg/L	0.165		89	79-117			
Cadmium, dissolved		0.0237	0.000010	mg/L	0.0221		107	89-112			
Calcium, dissolved		0.81	0.20	mg/L	0.772		104	85-120			
Chromium, dissolved		0.0402	0.00050		0.0434		93	87-113			
Cobalt, dissolved		0.0122	0.00010		0.0124		98	90-117			
Copper, dissolved		0.0829	0.00040		0.0815		102	90-115			
Iron, dissolved		0.121		mg/L	0.127		95	86-112			
Lead, dissolved		0.0123	0.00020		0.0110		112	90-113			
Magnesium, dissolve		0.661		mg/L	0.659		100	84-116			
Manganese, dissolve		0.0356	0.00020		0.0342		104	85-113			
Molybdenum, dissolve	ea	0.0429	0.00010		0.0404		106	87-112			
Nickel, dissolved	٨	0.0802	0.00040		0.0835		96	90-114			
Phosphorus, dissolved		< 0.050		mg/L	0.0499		98	74-119			
Potassium, dissolved Selenium, dissolved		0.26	0.0050	mg/L	0.288		90	78-119 89-123			
Sodium, dissolved		1.61		mg/L mg/L	1.80		89	81-117			
Jouluin, dissolved		1.01	0.10	my/L	1.00		09	01-11/			

					REPOR	RTED	2020)-05-28	17:38
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B0E1903, Cont	inued								
Reference (B0E1903-SRM1), Continued			Prepared	: 2020-05-2	7, Analyze	d: 2020-0	5-27		
Strontium, dissolved	0.0919	0.0010 mg/L	0.0935		98	82-111			
Thallium, dissolved	0.00397	0.000020 mg/L	0.00385		103	90-113			
Uranium, dissolved Vanadium, dissolved	0.0287 0.0784	0.000020 mg/L 0.0010 mg/L	0.0258 0.0873		111 90	87-113 85-110			
Zinc, dissolved	0.0860	0.0040 mg/L	0.0848		101	88-114			
General Parameters, Batch B0E1637									
Blank (B0E1637-BLK1)			Prepared	: 2020-05-2	2, Analyze	d: 2020-0	5-27		
BOD, 5-day	< 2.0	2.0 mg/L							
LCS (B0E1637-BS1)			Prepared	: 2020-05-2	2, Analyze	d: 2020-0	5-27		
BOD, 5-day	165	50.7 mg/L	180		92	85-115			
General Parameters, Batch B0E1651									
Blank (B0E1651-BLK1)			Prepared	: 2020-05-2	2, Analyze	d: 2020-0	5-22		
Turbidity	< 0.10	0.10 NTU							
Blank (B0E1651-BLK2)			Prepared	: 2020-05-2	2, Analyze	d: 2020-0	5-22		
Turbidity	< 0.10	0.10 NTU							
Blank (B0E1651-BLK3)			Prepared	: 2020-05-2	2, Analyze	d: 2020-0	5-22		
Turbidity	< 0.10	0.10 NTU	•						
LCS (B0E1651-BS1)			Prepared	: 2020-05-2	2. Analyze	d: 2020-0	5-22		
Turbidity	39.0	0.10 NTU	40.0		98	90-110			
LCS (B0E1651-BS2)			Prenared	: 2020-05-2	2 Analyze	4· 3030-0	5_22		
Turbidity	39.2	0.10 NTU	40.0	. 2020 00 2	98	90-110	0 22		
•				: 2020-05-2			5 22		
LCS (B0E1651-BS3) Turbidity	39.1	0.10 NTU	40.0	. 2020-05-2	2, Allaly2e 98	90-110	0- 22		
•									
Duplicate (B0E1651-DUP2)		urce: 0051806-06	Prepared	: 2020-05-2	2, Analyze	d: 2020-0		45	
Turbidity	5.06	0.10 NTU		5.04			< 1	15	
General Parameters, Batch B0E1660				0000 05 0			5 00		
Blank (B0E1660-BLK1)	- 20	20"	⊢repared	: 2020-05-2	∠, ∧naiyze	u: 2020-0	3-22		
Chemical Oxygen Demand	< 20	20 mg/L							
LCS (B0E1660-BS1)				: 2020-05-2			5-22		
Chemical Oxygen Demand	510	20 mg/L	500		102	89-115			
General Parameters, Batch B0E1816									
Blank (B0E1816-BLK1)			Prepared	: 2020-05-2	5, Analyze	d: 2020-0	5-25		
Ammonia, Total (as N)	< 0.050	0.050 mg/L							
Blank (B0E1816-BLK2)			Prepared	: 2020-05-2	5, Analyze	d: 2020-0	5-25		
Ammonia, Total (as N)	< 0.050	0.050 mg/L							
Blank (B0E1816-BLK3)			Prepared	: 2020-05-2	5, Analyze	d: 2020-0	5-25		
Ammonia, Total (as N)	< 0.050	0.050 mg/L	•		<u> </u>				

PROJECT	Ecoscape Environmer 19-2850 - Golden	ntal Ltd.				WORK (0051 2020	806 0-05-28	17:38
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
General Parameter	s, Batch B0E1816, Contir	nued								
Blank (B0E1816-B	LK4)			Prepared:	2020-05-25	, Analyzed	d: 2020-0	5-25		
Ammonia, Total (as N)	< 0.050	0.050 mg/L							
LCS (B0E1816-BS	1)			Prepared:	2020-05-25	, Analyzed	d: 2020-0	5-25		
Ammonia, Total (as N)	0.932	0.050 mg/L	1.00		93	90-115			
LCS (B0E1816-BS	2)			Prepared:	2020-05-25	, Analyzed	d: 2020-0	5-25		
Ammonia, Total (as N	•	0.916	0.050 mg/L	1.00		92	90-115			
LCS (B0E1816-BS	3)			Prepared:	2020-05-25	. Analyzed	d: 2020-0	5-25		
Ammonia, Total (as N	•	0.928	0.050 mg/L	1.00		93	90-115			
LCS (B0E1816-BS4			<u> </u>	Prenared:	2020-05-25	Analyzeo	4· 2020 - 0	5-25		
Ammonia, Total (as N		0.908	0.050 mg/L	1.00	2020 00 20	91	90-115	0 20		
,					2020-05-25			5.25		
Duplicate (B0E181 Ammonia, Total (as N	·	0.218	0.050 mg/L	Fiepareu.	0.206	, Analyzec	1. 2020-0	3-23	15	
				D		A I	1. 0000 0	- OF	10	
Matrix Spike (B0E ² Ammonia, Total (as N	· · · · · · · · · · · · · · · · · · ·	0.439	0.050 mg/L	0.250	0.206	, Analyzed 93	75-125	5-25		
LCS (B0E1909-BS	45				0000 05 00	A no. 1, 700		E 00		
Solids, Total Dissolve	d	227	15 mg/L	240	2020-05-26	95	85-115			
•	d 9-DUP1)		15 mg/L arce: 0051806-02 15 mg/L	240	2020-05-26 2020-05-26 1290	95	85-115		15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameters Blank (B0E1910-B	g-DUP1) d s, <i>Batch B0E1910</i>	Sou 1230	15 mg/L	240 Prepared:	2020-05-26	95 , Analyzed	85-115 d: 2020-0	5-26 5	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameters	g-DUP1) d s, <i>Batch B0E1910</i>	Sou	ırce: 0051806-02	240 Prepared:	2020-05-26 1290	95 , Analyzed	85-115 d: 2020-0	5-26 5	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameter: Blank (B0E1910-B) Solids, Total Suspend Blank (B0E1910-B)	d 9-DUP1) d s, Batch B0E1910 LK1) led	1230 < 2.0	15 mg/L 2.0 mg/L	240 Prepared: Prepared:	2020-05-26 1290	95 , Analyzed , Analyzed	85-115 d: 2020-0	5-26 5 5-27	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameters Blank (B0E1910-B) Solids, Total Suspend	d 9-DUP1) d s, Batch B0E1910 LK1) led	Sou 1230	15 mg/L	240 Prepared: Prepared:	2020-05-26 1290 2020-05-27	95 , Analyzed , Analyzed	85-115 d: 2020-0	5-26 5 5-27	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameter: Blank (B0E1910-B) Solids, Total Suspend Blank (B0E1910-B)	d 9-DUP1) d s, Batch B0E1910 LK1) led LK2)	1230 < 2.0	15 mg/L 2.0 mg/L	240 Prepared: Prepared: Prepared:	2020-05-26 1290 2020-05-27	95 , Analyzed , Analyzed	85-115 d: 2020-0 d: 2020-0 d: 2020-0	5-26 5 5-27 5-27	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameters Blank (B0E1910-B Solids, Total Suspend Blank (B0E1910-B Solids, Total Suspend	d 9-DUP1) d s, Batch B0E1910 LK1) led LK2)	1230 < 2.0	15 mg/L 2.0 mg/L	240 Prepared: Prepared: Prepared:	2020-05-26 1290 2020-05-27 2020-05-27	95 , Analyzed , Analyzed	85-115 d: 2020-0 d: 2020-0 d: 2020-0	5-26 5 5-27 5-27	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameters Blank (B0E1910-B Solids, Total Suspend Blank (B0E1910-B Solids, Total Suspend LCS (B0E1910-BS	d 9-DUP1) d s, Batch B0E1910 LK1) led LK2) led led	< 2.0 < 2.0	2.0 mg/L	Prepared: Prepared: Prepared: Prepared: 100	2020-05-26 1290 2020-05-27 2020-05-27	95 , Analyzed , Analyzed , Analyzed , Analyzed	85-115 d: 2020-0 d: 2020-0 d: 2020-0 d: 2020-0 85-115	5-26 5 5-27 5-27 5-27	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameter: Blank (B0E1910-B) Solids, Total Suspend Blank (B0E1910-B) Solids, Total Suspend LCS (B0E1910-BS) Solids, Total Suspend	d 9-DUP1) d s, Batch B0E1910 LK1) led LK2) led	< 2.0 < 2.0	2.0 mg/L	Prepared: Prepared: Prepared: Prepared: 100	2020-05-26 1290 2020-05-27 2020-05-27 2020-05-27	95 , Analyzed , Analyzed , Analyzed , Analyzed	85-115 d: 2020-0 d: 2020-0 d: 2020-0 d: 2020-0 85-115	5-26 5 5-27 5-27 5-27	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameters Blank (B0E1910-B Solids, Total Suspend Blank (B0E1910-B Solids, Total Suspend LCS (B0E1910-BS Solids, Total Suspend LCS (B0E1910-BS Golids, Total Suspend General Parameters	d 9-DUP1) d s, Batch B0E1910 LK1) led LK2) led 11) led 22)	< 2.0 < 2.0 94.0	2.0 mg/L 2.0 mg/L	Prepared: Prepared: Prepared: Prepared: 100 Prepared: 100	2020-05-26 1290 2020-05-27 2020-05-27 2020-05-27	95 , Analyzed , Analyzed , Analyzed 94 , Analyzed 99	85-115 d: 2020-0 d: 2020-0 d: 2020-0 85-115 d: 2020-0 85-115	5-26 5 5-27 5-27 5-27	15	
Duplicate (B0E190 Solids, Total Dissolve Beneral Parameters Blank (B0E1910-B) Solids, Total Suspend Blank (B0E1910-B) Solids, Total Suspend LCS (B0E1910-BS) Solids, Total Suspend LCS (B0E1910-BS) Solids, Total Suspend CS (B0E1910-BS) Solids, Total Suspend Blank (B0E1910-BS) Solids, Total Suspend Blank (B0E1910-BS)	d 9-DUP1) d s, Batch B0E1910 LK1) led LK2) led 1) led 2)	< 2.0 < 2.0 94.0 99.0	2.0 mg/L 2.0 mg/L 10.0 mg/L	Prepared: Prepared: Prepared: Prepared: 100 Prepared: 100	2020-05-26 1290 2020-05-27 2020-05-27 2020-05-27	95 , Analyzed , Analyzed , Analyzed 94 , Analyzed 99	85-115 d: 2020-0 d: 2020-0 d: 2020-0 85-115 d: 2020-0 85-115	5-26 5 5-27 5-27 5-27	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameters Blank (B0E1910-B Solids, Total Suspend LCS (B0E1910-BS Solids, Total Suspend LCS (B0E1910-BS Solids, Total Suspend General Parameters Blank (B0E1910-BS Alkalinity, Total (as Ca	d 9-DUP1) d s, Batch B0E1910 LK1) led LK2) led 1) led 2) led s, Batch B0E1970 LK1)	\$001230< 2.0< 2.094.099.0< 1.0	2.0 mg/L 2.0 mg/L 10.0 mg/L 10.0 mg/L	Prepared: Prepared: Prepared: Prepared: 100 Prepared: 100	2020-05-26 1290 2020-05-27 2020-05-27 2020-05-27	95 , Analyzed , Analyzed , Analyzed 94 , Analyzed 99	85-115 d: 2020-0 d: 2020-0 d: 2020-0 85-115 d: 2020-0 85-115	5-26 5 5-27 5-27 5-27	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameter: Blank (B0E1910-B) Solids, Total Suspend Blank (B0E1910-B) Solids, Total Suspend LCS (B0E1910-BS) Solids, Total Suspend LCS (B0E1910-BS) Solids, Total Suspend General Parameter: Blank (B0E1970-B) Alkalinity, Total (as Ca Alkalinity, Phenolphth	d 9-DUP1) d s, Batch B0E1910 LK1) led LK2) led 1) led s, Batch B0E1970 LK1) aCO3) alein (as CaCO3)	\$00 1230 < 2.0 < 2.0 94.0 99.0	15 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared: Prepared: Prepared: Prepared: 100 Prepared: 100	2020-05-26 1290 2020-05-27 2020-05-27 2020-05-27	95 , Analyzed , Analyzed , Analyzed 94 , Analyzed 99	85-115 d: 2020-0 d: 2020-0 d: 2020-0 85-115 d: 2020-0 85-115	5-26 5 5-27 5-27 5-27	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameters Blank (B0E1910-B Solids, Total Suspend LCS (B0E1910-BS Solids, Total Suspend LCS (B0E1910-BS Solids, Total Suspend General Parameters Blank (B0E1910-BS Alkalinity, Total (as Ca	d 9-DUP1) d s, Batch B0E1910 LK1) led LK2) led 1) led 2) led s, Batch B0E1970 LK1) aCO3) alein (as CaCO3) e (as CaCO3)	\$001230< 2.0< 2.094.099.0< 1.0	15 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L 10.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared: Prepared: Prepared: Prepared: 100 Prepared: 100	2020-05-26 1290 2020-05-27 2020-05-27 2020-05-27	95 , Analyzed , Analyzed , Analyzed 94 , Analyzed 99	85-115 d: 2020-0 d: 2020-0 d: 2020-0 85-115 d: 2020-0 85-115	5-26 5 5-27 5-27 5-27	15	
Solids, Total Dissolve Duplicate (B0E190 Solids, Total Dissolve General Parameter: Blank (B0E1910-B) Solids, Total Suspend Blank (B0E1910-B) Solids, Total Suspend LCS (B0E1910-BS) Solids, Total Suspend LCS (B0E1910-BS) Solids, Total Suspend General Parameter: Blank (B0E1970-B) Alkalinity, Total (as Callalinity, Phenolphth Alkalinity, Bicarbonate	d 9-DUP1) d s, Batch B0E1910 LK1) led LK2) led 1) led s, Batch B0E1970 LK1) aCO3) alein (as CaCO3) e (as CaCO3) (as CaCO3)	\$00 1230 < 2.0 < 2.0 94.0 99.0 < 1.0 < 1.0 < 1.0	15 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L 1.0 mg/L 1.0 mg/L 1.0 mg/L	Prepared: Prepared: Prepared: Prepared: 100 Prepared: 100	2020-05-26 1290 2020-05-27 2020-05-27 2020-05-27	95 , Analyzed , Analyzed , Analyzed 94 , Analyzed 99	85-115 d: 2020-0 d: 2020-0 d: 2020-0 85-115 d: 2020-0 85-115	5-26 5 5-27 5-27 5-27	15	

REPORTED TO PROJECT	Ecoscape Environ 19-2850 - Golden	mental Ltd.				WORK REPOR	ORDER TED		1806)-05-28	17:38
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
General Parameters	s, Batch B0E1970, Co	ontinued								
Blank (B0E1970-B	LK2)			Prepared	: 2020-05-2	6, Analyze	d: 2020-0)5-26		
Alkalinity, Total (as Ca	aCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphth		< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate Alkalinity, Carbonate		< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (· ,	< 1.0 < 1.0	1.0 mg/L 1.0 mg/L							
Conductivity (EC)	(40 04000)	< 2.0	2.0 µS/cm							
Blank (B0E1970-Bl	LK3)			Prepared	: 2020-05-2	6, Analyze	d: 2020-0)5-26		
Alkalinity, Total (as Ca	•	< 1.0	1.0 mg/L							
Alkalinity, Phenolphth	· · · · · · · · · · · · · · · · · · ·	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate		< 1.0	1.0 mg/L							
Alkalinity, Carbonate		< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (Conductivity (EC)	as CaCO3)	< 1.0 < 2.0	1.0 mg/L 2.0 μS/cm							
, ,	4)	< 2.0	2.0 μ5/απ	Droporod	: 2020-05-2	G Analyza	۳. ۵۵۵۵ ر)E 06		
LCS (B0E1970-BS ² Alkalinity, Total (as Ca	•	107	1.0 mg/L	100	. 2020-05-2	.o, Analyze 107	80-120	J3-20		
		107	1.0 mg/L		. 2020 05 2)F 26		
Alkalinity, Total (as Ca	,	110	1.0 mg/L	100	: 2020-05-2	6, Anaiyze 110	80-120	J5-26		
		110	1.0 mg/L		. 2020 05 0			NE 20		
Alkalinity Total (on Co	,	108	1.0 mg/L	100	: 2020-05-2	6, Anaiyze	80-120	J5-26		
Alkalinity, Total (as Ca		100	1.0 mg/L							
Conductivity (EC)	4)	1390	2.0 µS/cm	Prepared 1410	: 2020-05-2	6, Analyze	d: 2020-0 95-104)5-26		
Conductivity (EC)		1390	2.0 μ3/cm		0000 05 0					
Canductivity (EC)	5)	1380	2.0. uS/am	•	: 2020-05-2	6, Analyze	d: 2020-0 95-104)5-26		
Conductivity (EC)		1300	2.0 µS/cm	1410						
Canductivity (EC)	6)	1410	2.0 µS/cm	Prepared 1410	: 2020-05-2)5-26		
Conductivity (EC)						100	95-104			
Duplicate (B0E197	•		ce: 0051806-02	Prepared	: 2020-05-2	6, Analyze	d: 2020-0			
Alkalinity, Total (as Ca Alkalinity, Phenolphth		513 < 1.0	1.0 mg/L 1.0 mg/L		511 < 1.0			< 1	10 10	
Alkalinity, Bicarbonate		513	1.0 mg/L		511			< 1	10	
Alkalinity, Carbonate		< 1.0	1.0 mg/L		< 1.0				10	
Alkalinity, Hydroxide (< 1.0	1.0 mg/L		< 1.0				10	
Conductivity (EC)		2580	2.0 μS/cm		2590			< 1	5	
pH		7.97	0.10 pH units		7.98			< 1	4	
Reference (B0E197	70-SRM1)			Prepared	: 2020-05-2	6, Analyze	d: 2020-0)5-26		
pH		7.01	0.10 pH units	7.01		100	98-102			
Reference (B0E197	70-SRM2)			Prepared	: 2020-05-2	6, Analyze	d: 2020-0)5-26		
рН		7.03	0.10 pH units	7.01		100	98-102			
Reference (B0E197	70-SRM3)			Prepared	: 2020-05-2	6, Analyze	d: 2020-0)5-26		
pH		7.03	0.10 pH units	7.01		100	98-102			
Polycyclic Aromatic	c Hydrocarbons (PAH), Batch B0E1825	5							
Blank (B0E1825-B	LK1)			Prepared	: 2020-05-2	5, Analyze	d: 2020-0)5-25		
Acenaphthene		< 0.050	0.050 μg/L							
Acenaphthylene		< 0.200	0.200 µg/L							

REPORTED TO PROJECT	Ecoscape Environm 19-2850 - Golden	nental Ltd.				WORK REPOR	ORDER TED		806 -05-28	17:38
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Polycyclic Aromati	c Hydrocarbons (PAH),	Batch B0E182	5, Continued							
Blank (B0E1825-B	LK1), Continued			Prepared	d: 2020-05-2	25, Analyze	d: 2020-0)5-25		
Acridine		< 0.050	0.050 µg/L							
Anthracene		< 0.010	0.010 μg/L							
Benz(a)anthracene		< 0.010	0.010 μg/L							
Benzo(a)pyrene		< 0.010	0.010 µg/L							
Benzo(b+j)fluoranthe	ne	< 0.050	0.050 µg/L							
Benzo(g,h,i)perylene Benzo(k)fluoranthene	<u> </u>	< 0.050 < 0.050	0.050 μg/L 0.050 μg/L							
2-Chloronaphthalene		< 0.100	0.000 μg/L 0.100 μg/L							
Chrysene		< 0.050	0.050 μg/L							
Dibenz(a,h)anthracer	ne	< 0.010	0.010 µg/L							
Fluoranthene		< 0.030	0.030 µg/L							
Fluorene		< 0.050	0.050 μg/L							
Indeno(1,2,3-cd)pyrei	ne	< 0.050	0.050 μg/L							
1-Methylnaphthalene		< 0.100	0.100 µg/L							
2-Methylnaphthalene		< 0.100	0.100 μg/L							
Naphthalene		< 0.200	0.200 µg/L							
Phenanthrene		< 0.100	0.100 μg/L							
Pyrene Quinoline		< 0.020 < 0.050	0.020 µg/L							
Surrogate: Acridine-o	10	1.94	0.050 μg/L	1 17		12	50-140			S02
Surrogate: Naphthale		4.94	μg/L	4.47		43	50-140			302
Surrogate: Perylene-		4.27	μg/L μg/L	4.47 4.47		111 96	50-140			
LCS (B0E1825-BS		7.27	μg/L		d: 2020-05-2)5-25		
Acenaphthene		4.77	0.050 µg/L	4.44		107	55-137			
Acenaphthylene		4.92	0.200 µg/L	4.44		111	53-140			
Acridine		3.79	0.050 µg/L	4.42		86	50-120			
Anthracene		4.27	0.010 µg/L	4.44		96	64-130			
Benz(a)anthracene		3.97	0.010 µg/L	4.44		89	57-140			
Benzo(a)pyrene		4.41	0.010 µg/L	4.44		99	63-133			
Benzo(b+j)fluoranthe	ne	9.04	0.050 μg/L	8.89		102	60-129			
Benzo(g,h,i)perylene		4.70	0.050 μg/L	4.44		106	52-139			
Benzo(k)fluoranthene		4.37	0.050 μg/L	4.44		98	50-138			
2-Chloronaphthalene		4.86	0.100 µg/L	4.49		108	50-139			
Chrysene	20	4.07 4.52	0.050 μg/L	4.44		92 102	59-140 53-136			
Dibenz(a,h)anthracer Fluoranthene	IC .	4.49	0.010 μg/L 0.030 μg/L	4.44		102	67-135			
Fluorene		4.44	0.050 μg/L	4.44		100	57-134			
Indeno(1,2,3-cd)pyrei	ne	4.61	0.050 μg/L	4.44		104	52-129			
1-Methylnaphthalene		5.17	0.100 µg/L	4.44		116	50-140			
2-Methylnaphthalene		4.84	0.100 µg/L	4.44		109	50-140			
Naphthalene		5.89	0.200 µg/L	4.44		133	50-140			
Phenanthrene		4.56	0.100 μg/L	4.44		103	61-134			
Pyrene		4.45	0.020 μg/L	4.44		100	66-131			
Quinoline		5.46	0.050 μg/L	4.80		114	50-140			
Surrogate: Acridine-o		3.51	μg/L	4.47		79	50-140			
Surrogate: Naphthale		6.17	μg/L	4.47		138	50-140			
Surrogate: Perylene-	d12	4.11	μg/L	4.47		92	50-140			
LCS Dup (B0E182	5-BSD1)			<u> </u>	d: 2020-05-2					
Acenaphthene		5.14	0.050 μg/L	4.44		116	55-137	7	18	
Acenaphthylene		5.31	0.200 µg/L	4.44		119	53-140	8	20	
Acridine		4.19	0.050 μg/L	4.42		95	50-120	10	30	
Anthracene		4.64	0.010 µg/L	4.44		104	64-130	8	15	
Benza(a)anthracene		4.30	0.010 µg/L	4.44		97	57-140	8	25	
Benzo(a)pyrene		4.71	0.010 μg/L	4.44		106	63-133	7	18	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0051806
PROJECT	19-2850 - Golden	REPORTED	2020-05-28 17:38

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Polycyclic Aromatic Hydrocarbons (PAH),	Batch B0E1825	, Continued							
LCS Dup (B0E1825-BSD1), Continued			Prepared	l: 2020-05-2	25, Analyze	d: 2020-0)5-25		
Benzo(b+j)fluoranthene	9.49	0.050 µg/L	8.89		107	60-129	5	17	
Benzo(g,h,i)perylene	4.90	0.050 µg/L	4.44		110	52-139	4	22	
Benzo(k)fluoranthene	4.48	0.050 µg/L	4.44		101	50-138	2	26	
2-Chloronaphthalene	5.18	0.100 μg/L	4.49		115	50-139	6	23	
Chrysene	4.37	0.050 µg/L	4.44		98	59-140	7	23	
Dibenz(a,h)anthracene	4.71	0.010 µg/L	4.44		106	53-136	4	21	
Fluoranthene	4.57	0.030 µg/L	4.44		103	67-135	2	18	
Fluorene	4.84	0.050 µg/L	4.44		109	57-134	9	18	
Indeno(1,2,3-cd)pyrene	4.87	0.050 µg/L	4.44		110	52-129	5	21	
1-Methylnaphthalene	5.25	0.100 µg/L	4.44		118	50-140	1	20	
2-Methylnaphthalene	4.93	0.100 µg/L	4.44		111	50-140	2	21	
Naphthalene	5.84	0.200 µg/L	4.44		131	50-140	< 1	22	
Phenanthrene	4.88	0.100 µg/L	4.44		110	61-134	7	17	
Pyrene	4.53	0.020 µg/L	4.44		102	66-131	2	19	
Quinoline	5.54	0.050 µg/L	4.80		115	50-140	2	14	
Surrogate: Acridine-d9	3.83	μg/L	4.47		86	50-140			
Surrogate: Naphthalene-d8	5.67	μg/L	4.47		127	50-140			
Surrogate: Perylene-d12	4.42	μg/L	4.47		99	50-140			

Polycyclic Aromatic Hydrocarbons (PAH), Batch B0E1949

Blank (B0E1949-BLK1)		Prepared: 2020-05-26, Analyzed: 2020-05-27						
Acenaphthene	< 0.050	0.050 µg/L						
Acenaphthylene	< 0.200	0.200 µg/L						
Acridine	< 0.050	0.050 µg/L						
Anthracene	< 0.010	0.010 µg/L						
Benz(a)anthracene	< 0.010	0.010 µg/L						
Benzo(a)pyrene	< 0.010	0.010 µg/L						
Benzo(b+j)fluoranthene	< 0.050	0.050 µg/L						
Benzo(g,h,i)perylene	< 0.050	0.050 µg/L						
Benzo(k)fluoranthene	< 0.050	0.050 µg/L						
2-Chloronaphthalene	< 0.100	0.100 µg/L						
Chrysene	< 0.050	0.050 µg/L						
Dibenz(a,h)anthracene	< 0.010	0.010 µg/L						
Fluoranthene	< 0.030	0.030 µg/L						
Fluorene	< 0.050	0.050 µg/L						
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 µg/L						
1-Methylnaphthalene	< 0.100	0.100 µg/L						
2-Methylnaphthalene	< 0.100	0.100 µg/L						
Naphthalene	< 0.200	0.200 µg/L						
Phenanthrene	< 0.100	0.100 µg/L						
Pyrene	< 0.020	0.020 µg/L						
Quinoline	< 0.050	0.050 µg/L						
Surrogate: Acridine-d9	2.80	μg/L	4.73	59	50-140			
Surrogate: Naphthalene-d8	3.86	μg/L	4.73	82	50-140			
Surrogate: Perylene-d12	3.88	μg/L	4.73	82	50-140			
LCS (B0E1949-BS1)			Prepared: 202	0-05-26, Analyze	ed: 2020-05-26			
Acenaphthene	3.95	0.050 µg/L	4.56	87	55-137			
Acenaphthylene	3.83	0.200 μg/L	4.56	84	53-140			
Acridine	2.73	0.050 µg/L	4.54	60	50-120			
Anthracene	3.77	0.010 µg/L	4.56	83	64-130			
Benz(a)anthracene	3.61	0.010 µg/L	4.56	79	57-140			
Benzo(a)pyrene	4.08	0.010 µg/L	4.56	89	63-133			
Benzo(b+j)fluoranthene	8.53	0.050 μg/L	9.12	94	60-129			

REPORTED TO PROJECT	Ecoscape Environme 19-2850 - Golden	ntal Ltd.				WORK REPOR	ORDER TED	0051 2020	806 -05-28	17:38
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Polycyclic Aromati	c Hydrocarbons (PAH), I	Batch B0E194	19, Continued							
LCS (B0E1949-BS	1), Continued			Prepared	I: 2020-05-2	26, Analyze	d: 2020-0	5-26		
Benzo(g,h,i)perylene		4.10	0.050 μg/L	4.56		90	52-139			
Benzo(k)fluoranthene		3.91	0.050 µg/L	4.56		86	50-138			
2-Chloronaphthalene		3.70	0.100 µg/L	4.60		80	50-139			
Chrysene		3.79	0.050 µg/L	4.56		83	59-140			
Dibenz(a,h)anthracer	ne	3.90	0.010 µg/L	4.56		86	53-136			
Fluoranthene		3.97	0.030 µg/L	4.56		87	67-135			
Fluorene		3.75	0.050 µg/L	4.56		82	57-134			
Indeno(1,2,3-cd)pyre	ne	4.05	0.050 µg/L	4.56		89	52-129			
1-Methylnaphthalene		3.94	0.100 µg/L	4.56		86	50-140			
2-Methylnaphthalene		3.91	0.100 µg/L	4.56		86	50-140			
Naphthalene		4.12	0.200 µg/L	4.56		90	50-140			
Phenanthrene		4.02	0.100 μg/L	4.56		88	61-134			
Pyrene		3.97	0.020 μg/L	4.56		87	66-131			
Quinoline		5.40	0.050 μg/L	4.92		110	50-131			
	10									
Surrogate: Acridine-o		2.99	μg/L	4.58		65	50-140			
Surrogate: Naphthale		4.19	μg/L	4.58		91	50-140			
Surrogate: Perylene-		3.89	μg/L	4.58		85	50-140			
LCS Dup (B0E1949	9-BSD1)				I: 2020-05-2	26, Analyze		5-27		
Acenaphthene		4.29	0.050 µg/L	4.59		94	55-137	8	18	
Acenaphthylene		4.32	0.200 µg/L	4.59		94	53-140	12	20	
Acridine		2.66	0.050 μg/L	4.56		58	50-120	3	30	
Anthracene		4.01	0.010 μg/L	4.59		88	64-130	6	15	
Benz(a)anthracene		4.00	0.010 µg/L	4.59		87	57-140	10	25	
Benzo(a)pyrene		4.33	0.010 µg/L	4.59		94	63-133	6	18	
Benzo(b+j)fluoranthe	ne	9.01	0.050 µg/L	9.17		98	60-129	5	17	
Benzo(g,h,i)perylene		4.51	0.050 µg/L	4.59		98	52-139	10	22	
Benzo(k)fluoranthene	•	4.72	0.050 µg/L	4.59		103	50-138	19	26	
2-Chloronaphthalene		4.01	0.100 µg/L	4.63		87	50-139	8	23	
Chrysene		4.13	0.050 µg/L	4.59		90	59-140	8	23	
Dibenz(a,h)anthracer	ne	4.19	0.010 µg/L	4.59		91	53-136	7	21	
Fluoranthene		4.17	0.030 µg/L	4.59		91	67-135	5	18	
Fluorene		4.13	0.050 µg/L	4.59		90	57-134	10	18	
Indeno(1,2,3-cd)pyrei	ne	4.47	0.050 µg/L	4.59		97	52-129	10	21	
1-Methylnaphthalene		4.25	0.100 µg/L	4.59		93	50-140	8	20	
2-Methylnaphthalene		4.22	0.100 µg/L	4.59		92	50-140	7	21	
Naphthalene		4.66	0.200 µg/L	4.59		102	50-140	12	22	
Phenanthrene		4.32	0.100 µg/L	4.59		94	61-134	7	17	
Pyrene		4.15	0.020 µg/L	4.59		91	66-131	4	19	
Quinoline		5.84	0.050 μg/L	4.95		118	50-140	8	14	
Surrogate: Acridine-a	19	2.46	μg/L	4.61		53	50-140			
Surrogate: Naphthale		4.44				96	50-140			
Surrogate: Perylene-		4.44	μg/L	4.61						
Surrogate. Perylene-	UIZ	4.03	μg/L	4.61		87	50-140			

Volatile Organic Compounds (VOC), Batch B0E2045

Blank (B0E2045-BLK1)		Prepared: 2020-05-27, Analyzed: 2020-05-27					
Benzene	< 0.5	0.5 µg/L					
Bromodichloromethane	< 1.0	1.0 µg/L					
Bromoform	< 1.0	1.0 µg/L					
Carbon tetrachloride	< 0.5	0.5 µg/L					
Chlorobenzene	< 1.0	1.0 µg/L					
Chloroethane	< 2.0	2.0 µg/L					
Chloroform	< 1.0	1.0 µg/L					
Dibromochloromethane	< 1.0	1.0 µg/L					

REPORTED TOEcoscape Environmental Ltd.WORK ORDER0051806PROJECT19-2850 - GoldenREPORTED2020-05-28 17:38

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Volatile Organic Compounds (VOC), B	atch B0E2045, Con	tinued							
Blank (B0E2045-BLK1), Continued			Prepared	: 2020-05-2	7, Analyze	d: 2020-0	05-27		
1.2-Dibromoethane	< 0.3	0.3 µg/L							
Dibromomethane	< 1.0	1.0 μg/L							
1,2-Dichlorobenzene	< 0.5	0.5 μg/L							
1,3-Dichlorobenzene	< 1.0	1.0 µg/L							
1,4-Dichlorobenzene	< 1.0	1.0 µg/L							
1,1-Dichloroethane	< 1.0	1.0 µg/L							
1.2-Dichloroethane	< 1.0	1.0 µg/L							
1,1-Dichloroethylene	< 1.0	1.0 µg/L							
cis-1,2-Dichloroethylene	< 1.0	1.0 µg/L							
trans-1,2-Dichloroethylene	< 1.0	1.0 µg/L							
Dichloromethane	< 3.0	3.0 µg/L							
1,2-Dichloropropane	< 1.0	1.0 µg/L							
1,3-Dichloropropene (cis + trans)	< 1.0	1.0 µg/L							
Ethylbenzene	< 1.0	1.0 µg/L							
Methyl tert-butyl ether	< 1.0	1.0 µg/L							
Styrene	< 1.0	1.0 µg/L							
1,1,2,2-Tetrachloroethane	< 0.5	0.5 µg/L							
Tetrachloroethylene	< 1.0	1.0 μg/L							
Toluene	< 1.0	1.0 µg/L							
1,1,1-Trichloroethane	< 1.0	1.0 µg/L							
1,1,2-Trichloroethane	< 1.0	1.0 µg/L							
Trichloroethylene	< 1.0	1.0 µg/L							
Trichlorofluoromethane	< 1.0	1.0 µg/L							
Vinyl chloride	< 1.0	1.0 µg/L							
Xylenes (total)	< 2.0	2.0 µg/L							
Surrogate: Toluene-d8	25.1	μg/L	26.5		95	70-130			
Surrogate: 4-Bromofluorobenzene	22.6	μg/L	24.9		91	70-130			
Surrogate: 1,4-Dichlorobenzene-d4	22.8	μg/L	25.5		90	70-130			
	22.0	μg/L		. 2020 05 2			05.07		
LCS (B0E2045-BS1)	04.4	0.5	•	: 2020-05-2			J5-2 <i>1</i>		
Benzene	21.4	0.5 µg/L	20.0		107	70-130			
Bromodichloromethane	19.4	1.0 µg/L	20.0		97	70-130			
Bromoform	19.0	1.0 µg/L	20.1		94	70-130			
Carbon tetrachloride	21.0	0.5 μg/L	20.2		104	70-130			
Chlorobenzene	20.9	1.0 µg/L	20.1		104	70-130			001/
Chloroethane	39.2	2.0 µg/L	20.0		196	60-140			SPK
Chloroform	20.5	1.0 µg/L	20.1		102	70-130			
Dibromochloromethane	19.4	1.0 µg/L	20.2		96	70-130			
1,2-Dibromoethane	19.8	0.3 µg/L	20.0		99	70-130			
Dibromomethane	19.5	1.0 µg/L	20.0		98	70-130			
1,2-Dichlorobenzene	20.4	0.5 μg/L	20.1		102	70-130			
1,3-Dichlorobenzene	20.8	1.0 µg/L	20.1		103	70-130			
1,4-Dichlorobenzene	20.6	1.0 µg/L	20.1		102	70-130			
1,1-Dichloroethane	19.7	1.0 µg/L	20.1		98	70-130			
1,2-Dichloroethane	19.5	1.0 µg/L	20.0		98	70-130			
1,1-Dichloroethylene	20.0	1.0 µg/L	20.0		100	70-130			
cis-1,2-Dichloroethylene	20.2	1.0 µg/L	20.0		101	70-130			
trans-1,2-Dichloroethylene	19.5	1.0 µg/L	20.0		97	70-130			
Dichloromethane	19.6	3.0 µg/L	20.1		98	70-130			
1,2-Dichloropropane	20.4	1.0 µg/L	20.1		101	70-130			
1,3-Dichloropropene (cis + trans)	39.4	1.0 µg/L	40.0		99	70-130			
Ethylbenzene	21.1	1.0 μg/L	20.0		105	70-130			
Methyl tert-butyl ether	18.5	1.0 μg/L	20.0		93	70-130			
Styrene	21.0	1.0 μg/L	20.0		105	70-130			
1,1,2,2-Tetrachloroethane	19.4	0.5 μg/L	20.1		96	70-130			
Tetrachloroethylene	21.9	1.0 µg/L	20.1		109	70-130			

REPORTED TO PROJECT	Ecoscape Environ 19-2850 - Golden	mental Ltd.				WORK REPOR	ORDER TED		0051806 2020-05-28 17:38		
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier	
Volatile Organic Co	ompounds (VOC), Ba	tch B0E2045, Con	tinued								
LCS (B0E2045-BS	1), Continued			Prepared	: 2020-05-2	27, Analyze	d: 2020-0)5-27			
Toluene		21.8	1.0 µg/L	20.0		109	70-130				
1,1,1-Trichloroethane		20.1	1.0 µg/L	20.0		101	70-130				
1,1,2-Trichloroethane		19.8	1.0 µg/L	20.1		98	70-130				
Trichloroethylene		21.3	1.0 µg/L	20.1		106	70-130				
Trichlorofluoromethar	ne	21.9	1.0 µg/L	20.0		109	60-140				
Vinyl chloride		22.7	1.0 µg/L	20.0		113	60-140				
Xylenes (total)		64.9	2.0 µg/L	60.0		108	70-130				
Surrogate: Toluene-d	8	26.5	μg/L	26.5		100	70-130				
Surrogate: 4-Bromofl	uorobenzene	23.1	μg/L	24.9		93	70-130				
Surrogate: 1,4-Dichlo	robenzene-d4	22.6	μg/L	25.5		89	70-130				
Duplicate (B0E204	5-DUP1)	Source	ce: 0051806-10	Prepared	: 2020-05-2	28, Analyze	d: 2020-0)5-28			
Benzene		< 0.5	0.5 µg/L	· ·	< 0.5				22		
Bromodichloromethai	 ne	< 1.0	1.0 μg/L		< 1.0				23		
Bromoform	·-	< 1.0	1.0 µg/L		< 1.0				23		
Carbon tetrachloride		< 0.5	0.5 µg/L		< 0.5				30		
Chlorobenzene		< 1.0	1.0 µg/L		< 1.0				26		
Chloroethane		< 2.0	2.0 µg/L		< 2.0				50		
Chloroform		< 1.0	1.0 µg/L		< 1.0				22		
Dibromochlorometha	ne	< 1.0	1.0 µg/L		< 1.0				28		
1,2-Dibromoethane		< 0.3	0.3 µg/L		< 0.3				30		
Dibromomethane		< 1.0	1.0 μg/L		< 1.0				30		
1,2-Dichlorobenzene		< 0.5	0.5 µg/L		< 0.5				27		
1,3-Dichlorobenzene		< 1.0	1.0 μg/L		< 1.0				30		
1,4-Dichlorobenzene		< 1.0	1.0 μg/L		< 1.0				30		
1,1-Dichloroethane		< 1.0	1.0 µg/L		< 1.0				24		
1,2-Dichloroethane		< 1.0	1.0 µg/L		< 1.0				24		
1,1-Dichloroethylene		< 1.0	1.0 µg/L		< 1.0				30		
cis-1,2-Dichloroethyle	ene	< 1.0	1.0 µg/L		< 1.0				22		
trans-1,2-Dichloroeth		< 1.0	1.0 µg/L		< 1.0				27		
Dichloromethane		< 3.0	3.0 µg/L		< 3.0				27		
1,2-Dichloropropane		< 1.0	1.0 µg/L		< 1.0				28		
1,3-Dichloropropene	(cis + trans)	< 1.0	1.0 µg/L		< 1.0				30		
Ethylbenzene	,	< 1.0	1.0 µg/L		< 1.0				30		
Methyl tert-butyl ethe	r	< 1.0	1.0 µg/L		< 1.0				20		
Styrene		< 1.0	1.0 µg/L		< 1.0				30		
1,1,2,2-Tetrachloroeth	nane	< 0.5	0.5 μg/L		< 0.5				30		
Tetrachloroethylene		< 1.0	1.0 μg/L		< 1.0				30		
Toluene		< 1.0	1.0 μg/L		< 1.0				24		
1,1,1-Trichloroethane		< 1.0	1.0 μg/L		< 1.0				30		
1,1,2-Trichloroethane		< 1.0	1.0 μg/L		< 1.0				30		
Trichloroethylene	·	< 1.0	1.0 μg/L		< 1.0				27		
Trichlorofluoromethar	ne	< 1.0	1.0 µg/L		< 1.0				50		
Vinyl chloride		< 1.0	1.0 µg/L		< 1.0				40		
Xylenes (total)		< 2.0	2.0 μg/L		< 2.0				29		
Surrogate: Toluene-d		25.7	μg/L	26.5		97	70-130				
Surrogate: 4-Bromofl		22.9	μg/L	24.9		92	70-130				
Surrogate: 1,4-Dichlo	robenzene-d4	22.3	μg/L	25.5		87	70-130				
Matrix Spike (B0E	2045-MS1)	Source	e: 0051806-10	Prepared	: 2020-05-2	27, Analyze	d: 2020-0)5-27			
Benzene		21.9	0.5 μg/L	20.0	< 0.5	110	70-130				
Bromodichloromethai	ne	20.0	1.0 μg/L	20.0	< 1.0	100	70-130				
Bromoform		19.6	1.0 μg/L	20.1	< 1.0	97	70-130				
Carbon tetrachloride		21.0	0.5 μg/L	20.2	< 0.5	104	70-130				
Chlorobenzene		21.1	1.0 μg/L	20.1	< 1.0	105	70-130				
Chloroethane		32.2	2.0 µg/L	20.0	< 2.0	161	60-140			SPK	

REPORTED TOEcoscape Environmental Ltd.WORK ORDER0051806PROJECT19-2850 - GoldenREPORTED2020-05-28 17:38

Analyte Result RL Units Spike Source % REC REC % RPD Qualifier Level Result Limit

Volatile Organic Compounds (VOC), Batch B0E2045, Continued

Matrix Spike (B0E2045-MS1), Continued	Source: 0051806-10		Prepared:	ed: 2020-05-27		
Chloroform	21.0	1.0 µg/L	20.1	< 1.0	105	70-130
Dibromochloromethane	20.1	1.0 µg/L	20.2	< 1.0	100	70-130
1,2-Dibromoethane	20.8	0.3 µg/L	20.0	< 0.3	104	70-130
Dibromomethane	20.4	1.0 µg/L	20.0	< 1.0	102	70-130
1,2-Dichlorobenzene	21.9	0.5 µg/L	20.1	< 0.5	109	70-130
1,3-Dichlorobenzene	21.5	1.0 µg/L	20.1	< 1.0	107	70-130
1,4-Dichlorobenzene	21.6	1.0 µg/L	20.1	< 1.0	107	70-130
1,1-Dichloroethane	20.2	1.0 µg/L	20.1	< 1.0	101	70-130
1,2-Dichloroethane	20.4	1.0 µg/L	20.0	< 1.0	102	70-130
1,1-Dichloroethylene	20.4	1.0 µg/L	20.0	< 1.0	102	70-130
cis-1,2-Dichloroethylene	20.7	1.0 µg/L	20.0	< 1.0	103	70-130
trans-1,2-Dichloroethylene	19.8	1.0 µg/L	20.0	< 1.0	99	70-130
Dichloromethane	19.8	3.0 µg/L	20.1	< 3.0	98	70-130
1,2-Dichloropropane	21.1	1.0 µg/L	20.1	< 1.0	105	70-130
1,3-Dichloropropene (cis + trans)	40.8	1.0 µg/L	40.0	< 1.0	102	70-130
Ethylbenzene	21.1	1.0 µg/L	20.0	< 1.0	106	70-130
Methyl tert-butyl ether	20.5	1.0 µg/L	20.0	< 1.0	102	70-130
Styrene	20.9	1.0 µg/L	20.0	< 1.0	104	70-130
1,1,2,2-Tetrachloroethane	21.1	0.5 µg/L	20.1	< 0.5	105	70-130
Tetrachloroethylene	21.6	1.0 µg/L	20.1	< 1.0	105	70-130
Toluene	22.2	1.0 µg/L	20.0	< 1.0	111	70-130
1,1,1-Trichloroethane	20.4	1.0 µg/L	20.0	< 1.0	102	70-130
1,1,2-Trichloroethane	20.9	1.0 µg/L	20.1	< 1.0	104	70-130
Trichloroethylene	21.7	1.0 µg/L	20.1	< 1.0	108	70-130
Trichlorofluoromethane	22.1	1.0 µg/L	20.0	< 1.0	110	60-140
Vinyl chloride	22.7	1.0 µg/L	20.0	< 1.0	113	60-140
Xylenes (total)	66.0	2.0 µg/L	60.0	< 2.0	110	70-130
Surrogate: Toluene-d8	26.6	μg/L	26.5		101	70-130
Surrogate: 4-Bromofluorobenzene	23.1	μg/L	24.9		93	70-130
Surrogate: 1,4-Dichlorobenzene-d4	23.3	μg/L	25.5		91	70-130

QC Qualifiers:

S02 Surrogate recovery outside of control limits. Data accepted based on acceptable recovery of other surrogates.

SPK The recovery of this analyte was outside of established control limits.

CARO,ca 1-888-211-8846

CHAIN OF CUSTODY RECORD : CC

1 85 7 6 1	4.11	DOM: 4	*
	$\mathcal{P}(0,1)$	100	K

17.6 4	#145 2807 Highway IIT	The second of th		4 121	(little)			Her	
- пооту плонтичника положер:	Titles 100 Avanor 667.		Proposition from 1445 (18)	IN INTERNAL IN IN	1,140	Ampraers	17	11/1	14.745
ALPORT TO:	DAVOIDE THE	THURST GREAT III.	R. Analysis of Sec	C.M. There's Ibset?	15 64	ar Distance (1984)	on Section 1881	35,362,37	Arreste 1
SERPANCE persone undromortal	LOWPANY EXCEPTED	Erd o merla	Die	216 PH 2 06 FEB	18.20	Orden Artist Marie Marie	en tra	BY BURE	OUT UP
Circles 29-450 Block C Kalima	#20H55		Term as feet	often Sandreger very	144 (OCC			1	
66 W 5 8 9 2	77 / SP 47 / CW 1943 A ROSS (SR	Coult	rasper shore Colden - 18-			Williams	te a de la compania del compania de la compania de la compania del compani	1000 0 100	
Catalian Balanyi Mika	DESCRIPTION OF MANY PRINCE	fight.	Sept. (10.00)	X.9.0W:		interior	200 1 1 1		
TELEPOSE POPE PERSONAL	194300		774 (5)		MEYSES	вацинатес	100		
Conserved - One of the Conference of the Confere	10'A.1 <u>eenimedy</u> 10'A.1 pr:> 10.2500 als as als	espate Hom epates yen		TOTAL TOTAL		E E E	Capting Interest of Sector	400000	E2000 00005-010
CLEMI SAMPLE ID	E Den Ter E Den Ter	γ 1 1 1 6	n R n n	AT L CONTROL OF THE PROPERTY O	の 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MAP TO KOM	Assured Capable been	Granden in a Granden et 3 Granden et 3	(III)
TKIJAK	17.2				V. C.			000	-42
(CA7.168)	The second secon			n 5=	- 1		1	10.000	
No Mr.	1 12	- Andrew Colombia	1		0.7		7.7	1. 1. 1.	
12000000	150	0.00	8 8	- 11	100	<i>9</i>),	1.11	R 10 100	
MS:SIT	35	10	2 2		11.6		20	2 3 0	
Tour Well 44	165	5 0 0	26 3		100	2 1	0.0	100	
TODAY DAWN DOWN TO THE A			W W		mele.	a 1948	200	4 40 6	
15450	(58		2 3						-
No.	1 179							200	
WAZENE .	15F			1111 8	1		0.0	1. 1. 1	
	4 4 115	A 10.0 A	<i>y y</i>		10		110	1000	
(A-5)	Property 118			9	10		100	100	
								fill fr	
arra - Lazar	SESSON PRESENT						A (1188) 888		
200 ter Manifest 71 ter re) 1 1 Nov.	ASTERNOS GTREETINS Propert Propert	WINT TICH S		suspense serve	Paul C	000 1174 000	U ILLEATOR POINT () STORE	10 10	

CERTIFICATE OF ANALYSIS

REPORTED TO Ecoscape Environmental Ltd.

#102 - 450 Neave Court Kelowna. BC V1V 2M2

ATTENTION Kelsey Tanaka

PO NUMBER 19-2850

PROJECT 19-2850 - Golden

PROJECT INFO Golden

WORK ORDER 0082459

RECEIVED / TEMP 2020-08-25 15:15 / 7°C

 REPORTED
 2020-09-01 13:36

 COC NUMBER
 No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

38

We've Got Chemistry

Ahead of the Curve

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at acrump@caro.ca

Authorized By:

DRAFT REPORT
DATA SUBJECT TO CHANGE

1-888-311-8846 | www.caro.ca

 REPORTED TO
 Ecoscape Environmental Ltd.
 WORK ORDER
 0082459

 PROJECT
 19-2850 - Golden
 REPORTED
 2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-06S (0082459-01) Matrix: W	ater Sampled: 2020-08-24 1	6:30			
Anions					
Bromide	1.10	0.10	mg/L	2020-08-26	
Chloride	379		mg/L	2020-08-26	
Fluoride	< 0.10		mg/L	2020-08-26	
Nitrate (as N)	33.9	0.010		2020-08-26	
Nitrite (as N)	< 0.010	0.010		2020-08-26	
Sulfate	637		mg/L	2020-08-26	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-08-29	
VPHw	< 100		μg/L	N/A	
Calculated Parameters					
Hardness, Total (as CaCO3)	1500	0.500	mg/L	N/A	
Dissolved Metals		7			
Lithium, dissolved	0.0405	0.00010	mg/L	2020-08-29	
Aluminum, dissolved	0.481	0.0050	mg/L	2020-08-29	
Antimony, dissolved	0.00021	0.00020		2020-08-29	
Arsenic, dissolved	0.00073	0.00050		2020-08-29	
Barium, dissolved	0.0618	0.0050		2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010		2020-08-29	
Boron, dissolved	1.87	0.0500		2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010		2020-08-29	
Calcium, dissolved	159		mg/L	2020-08-29	
Chromium, dissolved	0.00091	0.00050		2020-08-29	
Cobalt, dissolved	0.00178	0.00010		2020-08-29	
Copper, dissolved	0.00279	0.00040		2020-08-29	
Iron, dissolved	0.636	0.010		2020-08-29	
Lead, dissolved	0.00087	0.00020		2020-08-29	
Magnesium, dissolved	268	0.010		2020-08-29	
Manganese, dissolved	0.103	0.00020		2020-08-29	
Mercury, dissolved	< 0.000010	0.000010		2020-08-30	
Molybdenum, dissolved	0.00018	0.00010		2020-08-29	
Nickel, dissolved	0.0125	0.00040		2020-08-29	
Phosphorus, dissolved	< 0.050	0.050		2020-08-29	
Potassium, dissolved	161		mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050		2020-08-29	
Silicon, dissolved	12.5		mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050		2020-08-29	
Sodium, dissolved	275		mg/L	2020-08-29	
Strontium, dissolved	1.67	0.0010		2020-08-29	
Sulfur, dissolved	248		mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29	
<u> </u>					Page 2 of

REPORTED TO Ecoscape Environmen PROJECT 19-2850 - Golden	tal Ltd.		WORK ORDER REPORTED	0082459 2020-09-	01 13:36
Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-06S (0082459-01) Matrix: Water	Sampled: 2020-08-24 16:3	30, Continued			
Dissolved Metals, Continued					
Thallium, dissolved	0.000057	0.000020	mg/L	2020-08-29	
Thorium, dissolved	0.00032	0.00010	mg/L	2020-08-29	
Tin, dissolved	0.00023	0.00020	mg/L	2020-08-29	
Titanium, dissolved	0.0318	0.0050	_	2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010		2020-08-29	
Uranium, dissolved	0.00687	0.000020		2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010		2020-08-29	
Zinc, dissolved	< 0.0040	0.0040		2020-08-29	
Zirconium, dissolved	0.00051	0.00010		2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	949	10	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0		2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	949		mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	1160		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	1.71	0.050		2020-08-27	
BOD, 5-day	< 6.1		mg/L	2020-08-31	
			mg/L	2020-08-31	
Chemical Oxygen Demand Conductivity (EC)	36		μS/cm	2020-08-26	
	3940		<u>'</u>		LITO
pH Solida Tatal Discolused	7.71		pH units	2020-08-26	HT2
Solids, Total Dissolved	2730		mg/L	2020-08-27	
Solids, Total Suspended	122		mg/L	2020-08-28	
Turbidity Volatile Organic Compounds (VOC)	60.4	0.10	NTU	2020-08-26	
. , ,	-05	2.5	ua/l	2020 00 00	
Benzene	< 0.5		μg/L	2020-08-29	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-08-29	
Bromoform	< 1.0	1.0	10	2020-08-29	
Carbon tetrachloride	< 0.5		μg/L	2020-08-29	
Chlorobenzene	< 1.0	1.0	10	2020-08-29	
Chloroethane	< 2.0	2.0	μg/L	2020-08-29	
Chloroform	< 1.0	1.0	μg/L	2020-08-29	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3		μg/L	2020-08-29	
Dibromomethane	< 1.0		μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	

REPORTED TO Ecoscape Envir PROJECT 19-2850 - Golde			WORK ORDER REPORTED	0082459 2020-09-0	1 13:36
Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-06S (0082459-01) Matrix: V	Nater Sampled: 2020-08-24 16:3	0, Continued			
Volatile Organic Compounds (VOC), (Continued				
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0		2020-08-29	
Styrene	< 1.0	1.0	μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5	0.5		2020-08-29	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-08-29	
Trichloroethylene	< 1.0		μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0		μg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0		2020-08-29	
Xylenes (total)	< 2.0	2.0		2020-08-29	
Surrogate: Toluene-d8	96	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	103	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	104	70-130		2020-08-29	
Carrogate: 1, 1 Distriction (1201)	101	70 700	70	2020 00 20	
MW10-08 (0082459-02) Matrix: W	ater Sampled: 2020-08-25 08:00				
Anions					
Bromide	< 0.10	0.10	mg/L	2020-08-26	
Chloride	597	0.10	mg/L	2020-08-26	
Fluoride	0.20	0.10	mg/L	2020-08-26	
Nitrate (as N)	1.01	0.010	mg/L	2020-08-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-08-26	
Sulfate	51.4	1.0	mg/L	2020-08-26	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-08-29	
VPHw	< 100		μg/L	N/A	
Calculated Parameters					
Hardness, Total (as CaCO3)	701	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0193	0.00010	mg/L	2020-08-29	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifie
MW10-08 (0082459-02) Matrix: Water	Sampled: 2020-08-25 (08:00, Continued			
Dissolved Metals, Continued					
Barium, dissolved	0.196	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved	< 0.0500	0.0500	mg/L	2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-08-29	
Calcium, dissolved	86.2	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Copper, dissolved	0.00119	0.00040	mg/L	2020-08-29	
Iron, dissolved	< 0.010	0.010	mg/L	2020-08-29	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Magnesium, dissolved	118	0.010		2020-08-29	
Manganese, dissolved	0.00090	0.00020	mg/L	2020-08-29	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-08-30	
Molybdenum, dissolved	0.00063	0.00010		2020-08-29	
Nickel, dissolved	0.00095	0.00040	mg/L	2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Potassium, dissolved	5.67	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050		2020-08-29	
Silicon, dissolved	9.1		mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	324	0.10	mg/L	2020-08-29	
Strontium, dissolved	1.32	0.0010		2020-08-29	
Sulfur, dissolved	21.3		mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29	
Thallium, dissolved	< 0.000020	0.000020		2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	0.00021	0.00020		2020-08-29	
Titanium, dissolved	< 0.0050	0.0050		2020-08-29	
Tungsten, dissolved	0.0052	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.00206	0.000020		2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010		2020-08-29	
Zinc, dissolved	< 0.0040	0.0040		2020-08-29	
Zirconium, dissolved	< 0.00010	0.00010		2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	501	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	501		mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	611		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifier
MW10-08 (0082459-02) Matrix: Water	Sampled: 2020-08-25 08:00, C	ontinued			
General Parameters, Continued					
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	27	20	mg/L	2020-08-31	
Conductivity (EC)	2830	2.0	μS/cm	2020-08-26	
pH	8.05	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	1560		mg/L	2020-08-27	
Solids, Total Suspended	122	2.0		2020-08-28	
Turbidity	83.7	0.10	NTU	2020-08-26	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-08-29	
Bromoform	< 1.0	1.0	μg/L	2020-08-29	
Carbon tetrachloride	< 0.5	0.5		2020-08-29	
Chlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
Chloroethane	< 2.0	2.0	μg/L	2020-08-29	
Chloroform	< 1.0	1.0	μg/L	2020-08-29	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3	0.3		2020-08-29	
Dibromomethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5	0.5		2020-08-29	
1,3-Dichlorobenzene	< 1.0	1.0		2020-08-29	
1,4-Dichlorobenzene	< 1.0	1.0		2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0	1.0		2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0		μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0		2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0		2020-08-29	
Styrene	< 1.0	1.0	μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	
Toluene	< 1.0		μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-08-29	
Trichloroethylene	< 1.0		μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0		μg/L	2020-08-29	
Vinyl chloride	< 1.0		μg/L	2020-08-29	

-	e Environmental Ltd. - Golden		WORK ORDER REPORTED	0082459 2020-09-0	1 13:36
Analyte	Result	RL	Units	Analyzed	Qualifie
MW10-08 (0082459-02) Ma	trix: Water Sampled: 2020-08-25 08:00, Co	ntinued			
Volatile Organic Compounds ((VOC), Continued				
Xylenes (total)	< 2.0	20	μg/L	2020-08-29	
Surrogate: Toluene-d8	89	70-130		2020-08-29	
Surrogate: 4-Bromofluorobena		70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenze		70-130		2020-08-29	
MW18-10 (0082459-03) Ma	trix: Water Sampled: 2020-08-25 08:00				
Anions					
Bromide	0.34	0.10	mg/L	2020-08-26	
Chloride	350	0.10	mg/L	2020-08-26	
Fluoride	0.14		mg/L	2020-08-26	
Nitrate (as N)	24.4	0.010	mg/L	2020-08-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-08-26	
Sulfate	68.2	1.0	mg/L	2020-08-26	
BCMOE Aggregate Hydrocarb	ons				
VHw (6-10)	< 100	100	μg/L	2020-08-29	
VPHw	< 100	100	μg/L	N/A	
Calculated Parameters					
Hardness, Total (as CaCO3)	1070	0.500	ma/l	N/A	
Hardriess, Total (as CaCOS)	1070	0.300	mg/L	IN/A	
Dissolved Metals					
Lithium, dissolved	0.0210	0.00010	mg/L	2020-08-29	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Antimony, dissolved	0.00021	0.00020	mg/L	2020-08-29	
Arsenic, dissolved	0.00133	0.00050	mg/L	2020-08-29	
Barium, dissolved	0.311	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved	0.401	0.0500	mg/L	2020-08-29	
Cadmium, dissolved	0.000023	0.000010	mg/L	2020-08-29	
Calcium, dissolved	94.7	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Cobalt, dissolved	0.00523	0.00010	mg/L	2020-08-29	
Copper, dissolved	0.00121	0.00040	mg/L	2020-08-29	
Iron, dissolved	< 0.010	0.010	mg/L	2020-08-29	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Magnesium, dissolved	202	0.010	mg/L	2020-08-29	
Manganese, dissolved	0.167	0.00020	mg/L	2020-08-29	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-08-30	
Molybdenum, dissolved	0.00111	0.00010	mg/L	2020-08-29	
Nickel, dissolved	0.0434	0.00040	mg/L	2020-08-29	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0082459
PROJECT	19-2850 - Golden	REPORTED	2020-09-01 13:36

	Result	RL	Units	Analyzed	Qualifie
//W18-10 (0082459-03) Matrix: Water S	Sampled: 2020-08-25 08:00,	Continued			
Dissolved Metals, Continued					
Potassium, dissolved	27.7	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	9.7	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	183	0.10	mg/L	2020-08-29	
Strontium, dissolved	1.56	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	30.7	3.0	mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Thallium, dissolved	0.000103	0.000020	mg/L	2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	0.00040	0.00020	mg/L	2020-08-29	
Titanium, dissolved	< 0.0050	0.0050		2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010		2020-08-29	
Uranium, dissolved	0.00367	0.000020		2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010		2020-08-29	
Zinc, dissolved	< 0.0040	0.0040		2020-08-29	
Zirconium, dissolved	0.00022	0.00010		2020-08-29	
	713	1.0	mg/L	2020-08-26	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3)	713 < 1.0		mg/L	2020-08-26 2020-08-26	
Alkalinity, Total (as CaCO3)		1.0			
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 1.0	mg/L	2020-08-26	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3)	< 1.0 713	1.0 1.0 1.0	mg/L mg/L	2020-08-26 2020-08-26	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	< 1.0 713 < 1.0	1.0 1.0 1.0 1.0	mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	< 1.0 713 < 1.0 < 1.0	1.0 1.0 1.0 1.0	mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3)	< 1.0 713 < 1.0 < 1.0 < 1.0 870	1.0 1.0 1.0 1.0 1.2	mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3)	< 1.0 713 < 1.0 < 1.0 < 1.0 < 870 < 0.600	1.0 1.0 1.0 1.0 1.22 0.600	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH)	< 1.0 713 < 1.0 < 1.0 < 1.0 870 < 0.600 < 0.340	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N)	< 1.0 713 < 1.0 < 1.0 < 1.0 870 < 0.600 < 0.340 1.73	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day	<1.0 713 <1.0 <1.0 <1.0 870 <0.600 <0.340 1.73 <6.1	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand	< 1.0 713 < 1.0 < 1.0 < 1.0 870 < 0.600 < 0.340 1.73 < 6.1 46	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31	HT2
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC)	< 1.0 713 < 1.0 < 1.0 870 < 0.600 < 0.340 1.73 < 6.1 46 2560	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-26	HT2
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH	< 1.0 713 < 1.0 < 1.0 870 < 0.600 < 0.340 1.73 < 6.1 46 2560 7.97	1.0 1.0 1.0 1.2 0.600 0.340 0.050 2.0 20 2.0 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-26	HT2
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved	< 1.0 713 < 1.0 < 1.0 870 < 0.600 < 0.340 1.73 < 6.1 46 2560 7.97	1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-26 2020-08-26 2020-08-27	HT2
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity	<1.0 713 <1.0 <1.0 <1.0 <1.0 870 <0.600 <0.340 1.73 <6.1 46 2560 7.97 1390 110	1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-27	HT2
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended	<1.0 713 <1.0 <1.0 <1.0 <1.0 870 <0.600 <0.340 1.73 <6.1 46 2560 7.97 1390 110	1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 0.10 15 2.0 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-27	HT2
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity Volatile Organic Compounds (VOC)	< 1.0 713 < 1.0 < 1.0 < 1.0 870 < 0.600 < 0.340 1.73 < 6.1 46 2560 7.97 1390 110 114	1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10 0.50	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-28 2020-08-28	HT2
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity //olatile Organic Compounds (VOC) Benzene	<1.0 713 <1.0 <1.0 <1.0 870 <0.600 <0.340 1.73 <6.1 46 2560 7.97 1390 110 114	1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10 0.55	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-27 2020-08-28 2020-08-28	HT2
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity //olatile Organic Compounds (VOC) Benzene Bromodichloromethane	<1.0 713 <1.0 <1.0 <1.0 870 <0.600 <0.340 1.73 <6.1 46 2560 7.97 1390 110 114 <0.5 <1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10 0.50	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-28 2020-08-28 2020-08-29 2020-08-29	HT2
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity //olatile Organic Compounds (VOC) Benzene Bromodichloromethane Bromoform	<1.0 713 <1.0 <1.0 870 <1.0 870 <0.600 <0.340 1.73 <6.1 46 2560 7.97 1390 110 114 <0.5 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10 0.5 1.0 0.5	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-29 2020-08-29	HT2
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity //olatile Organic Compounds (VOC) Benzene Bromodichloromethane Bromoform Carbon tetrachloride	<1.0 713 <1.0 713 <1.0 <1.0 870 <0.600 <0.340 1.73 <6.1 46 2560 7.97 1390 110 114 <0.5 <1.0 <1.0 <0.5	1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10 0.5 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-29 2020-08-29 2020-08-29	HT2

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED 2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifier
MW18-10 (0082459-03) Matrix: Water \$	Sampled: 2020-08-25 08:00, (Continued			
Volatile Organic Compounds (VOC), Continu	ied				
Dibromochloromethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-08-29	
Dibromomethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-08-29	
Ethylbenzene	< 1.0		μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-08-29	
Styrene	< 1.0	1.0	μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-08-29	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
Trichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0	μg/L	2020-08-29	
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluene-d8	87	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	93	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	94	70-130	%	2020-08-29	

MW18-11 (0082459-04) | Matrix: Water | Sampled: 2020-08-24 15:10

Anions					
Bromide	< 0.10	0.10 r	mg/L	2020-08-26	
Chloride	71.4	0.10 r	mg/L	2020-08-26	
Fluoride	0.74	0.10 r	mg/L	2020-08-26	
Nitrate (as N)	< 0.010	0.010 r	mg/L	2020-08-26	
Nitrite (as N)	< 0.010	0.010 r	mg/L	2020-08-26	
Sulfate	88.3	1.0 r	mg/L	2020-08-26	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100 μ	ug/L	2020-08-29	
VPHw	< 100	100 μ	ug/L	N/A	

REPORTED TO Ecoscape Environmental Ltd.

19-2850 - Golden **PROJECT**

WORK ORDER

0082459

REPORTED

2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-11 (0082459-04) Matrix: Wa	ter Sampled: 2020-08-24 15:1	0, Continued			
Calculated Parameters					
Hardness, Total (as CaCO3)	624	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0234	0.00010	mg/L	2020-08-29	
Aluminum, dissolved	< 0.0050	0.0050		2020-08-29	
Antimony, dissolved	0.00139	0.00020		2020-08-29	
Arsenic, dissolved	0.0110	0.00050		2020-08-29	
Barium, dissolved	0.0082	0.0050		2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010		2020-08-29	
Boron, dissolved	0.262	0.0500		2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010		2020-08-29	
Calcium, dissolved	40.3		mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050		2020-08-29	
Cobalt, dissolved	0.00026	0.00010		2020-08-29	
Copper, dissolved	< 0.00040	0.00040		2020-08-29	
Iron, dissolved	0.151	0.010		2020-08-29	
Lead, dissolved	< 0.00020	0.00020		2020-08-29	
Magnesium, dissolved	127	0.010		2020-08-29	
Manganese, dissolved	0.0309	0.00020		2020-08-29	
Mercury, dissolved	< 0.000010	0.000010		2020-08-30	
Molybdenum, dissolved	0.00212	0.00010		2020-08-29	
Nickel, dissolved	0.00212	0.00040		2020-08-29	
Phosphorus, dissolved	< 0.050	0.050		2020-08-29	
Potassium, dissolved	6.46		mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050		2020-08-29	
Silicon, dissolved			mg/L	2020-08-29	
Silver, dissolved	3.2 < 0.000050	0.000050		2020-08-29	
Sodium, dissolved			mg/L	2020-08-29	
<u> </u>	112	0.0010			
Strontium, dissolved	0.644			2020-08-29	
Sulfur, dissolved	36.2		mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29	
Thallium, dissolved	< 0.000020	0.000020		2020-08-29	
Thorium, dissolved	< 0.00010	0.00010		2020-08-29	
Tin, dissolved	< 0.00020	0.00020		2020-08-29	
Titanium, dissolved	< 0.0050	0.0050		2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010		2020-08-29	
Uranium, dissolved	0.000055	0.000020		2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010		2020-08-29	
Zinc, dissolved	0.0064	0.0040		2020-08-29	
Zirconium, dissolved	0.00011	0.00010	mg/L	2020-08-29	

General Parameters

2020-08-26 Alkalinity, Total (as CaCO3) 648 1.0 mg/L

REPORTED TO Ecoscape Environmental Ltd. WORK ORDER

PROJECT 19-2850 - Golden **REPORTED** 2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifier
MW18-11 (0082459-04) Matrix: Water Sa	impled: 2020-08-24 15:10), Continued	_		
General Parameters, Continued					
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	648	1.0	mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0		2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Bicarbonate (HCO3)	790	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	0.447	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	20	20	mg/L	2020-08-31	
Conductivity (EC)	1460	2.0	μS/cm	2020-08-26	
рН	8.13	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	849	15	mg/L	2020-08-27	
Solids, Total Suspended	32.0	2.0	mg/L	2020-08-28	
Turbidity	45.1	0.10	NTU	2020-08-26	
/olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-08-29	
Bromoform	< 1.0	1.0	μg/L	2020-08-29	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-08-29	
Chlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
Chloroethane	< 2.0	2.0	μg/L	2020-08-29	
Chloroform	< 1.0	1.0	μg/L	2020-08-29	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-08-29	
Dibromomethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0		μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0		2020-08-29	
Dichloromethane	< 3.0	3.0		2020-08-29	
1,2-Dichloropropane	< 1.0	1.0		2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0		2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-08-29	
Styrene	< 1.0		μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	

0082459

Lead, dissolved

REPORTED TO PROJECT	Ecoscape Environmen 19-2850 - Golden	tal Ltd.		WORK ORDER REPORTED	0082459 2020-09-0	1 13:36
Analyte		Result	RL	Units	Analyzed	Qualifie
MW18-11 (00824	59-04) Matrix: Water S	ampled: 2020-08-24 15:1	0, Continued			
Volatile Organic Co	ompounds (VOC), Continu	ed				
Toluene		< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroeth	ane	< 1.0		μg/L	2020-08-29	
1,1,2-Trichloroeth	ane	< 1.0	1.0		2020-08-29	
Trichloroethylene		< 1.0	1.0	μg/L	2020-08-29	
Trichlorofluorome	thane	< 1.0	1.0	μg/L	2020-08-29	
Vinyl chloride		< 1.0	1.0	μg/L	2020-08-29	
Xylenes (total)		< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluen	e-d8	86	70-130	%	2020-08-29	
Surrogate: 4-Bron	nofluorobenzene	93	70-130	%	2020-08-29	
Surrogate: 1,4-Did	chlorobenzene-d4	94	70-130	%	2020-08-29	
Town Well #4 (00 Anions	82459-05) Matrix: Wate	er Sampled: 2020-08-24	11:30			
Bromide		< 0.10	0.10	ma/l	2020 00 26	
Chloride				mg/L mg/L	2020-08-26	
Fluoride		94.0 0.11		mg/L	2020-08-26	
Nitrate (as N)		1.46		mg/L	2020-08-26	
Nitrite (as N)		< 0.010		mg/L	2020-08-26	
Sulfate		42.1		mg/L	2020-08-26	
BCMOE Aggregate	e Hydrocarbons	12.1	1.0	9/2	2020 00 20	
	,	< 100	100	ua/l	2020-08-29	
VHw (6-10) VPHw		< 100		μg/L μg/L	N/A	
Calculated Parame	atoro	< 100	100	μ9/∟	IN/A	
Hardness, Total (a		395	0.500	mg/L	N/A	
Dissolved Metals						
Lithium, dissolved	l	0.00171	0.00010	mg/L	2020-08-29	
Aluminum, dissolv		< 0.0050	0.0050		2020-08-29	
Antimony, dissolve		< 0.00020	0.00020		2020-08-29	
Arsenic, dissolved	1	< 0.00050	0.00050		2020-08-29	
Barium, dissolved		0.217	0.0050		2020-08-29	
Beryllium, dissolve	ed	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolve	d	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved		< 0.0500	0.0500	mg/L	2020-08-29	
Cadmium, dissolv	red	< 0.000010	0.000010	mg/L	2020-08-29	
Calcium, dissolve	d	87.4	0.20	mg/L	2020-08-29	
Chromium, dissol	ved	< 0.00050	0.00050	mg/L	2020-08-29	
Cobalt, dissolved		< 0.00010	0.00010	mg/L	2020-08-29	
Copper, dissolved		0.00191	0.00040	mg/L	2020-08-29	
Iron, dissolved		< 0.010	0.010	mg/L	2020-08-29	
Lood dissalvad		< 0.00030	0.00030	ma/l	2020 00 20	

2020-08-29 Page 12 of 42

0.00020 mg/L

< 0.00020

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden **WORK ORDER**

0082459

REPORTED

2020-09-01 13:36

Dissolved Metals, Continued	alyte	Result	RL	Units	Analyzed	Qualifi
Magnesium, dissolved 42.8 0.010 mg/L 2020-08-29 Manganese, dissolved < 0.000010	Well #4 (0082459-05) Matrix: Water	Sampled: 2020-08-2	4 11:30, Continued			
Manganese, dissolved	lved Metals, Continued					
Mercury, dissolved 0.00010 0.00010 mg/L 2020-08-30 Molybdenum, dissolved 0.00018 0.00010 mg/L 2020-08-29 Molybdenum, dissolved 0.00014 mg/L 2020-08-29 Phosphorus, dissolved < 0.050 0.050 mg/L 2020-08-29 Phosphorus, dissolved 1.82 0.10 mg/L 2020-08-29 Phosphorus, dissolved 1.82 0.10 mg/L 2020-08-29 Selenium, dissolved 4.5 1.0 mg/L 2020-08-29 Silicon, dissolved 4.5 1.0 mg/L 2020-08-29 Silicon, dissolved 4.5 1.0 mg/L 2020-08-29 Silicon, dissolved 57.8 0.10 mg/L 2020-08-29 Silicon, dissolved 57.8 0.10 mg/L 2020-08-29 Silicon, dissolved 57.8 0.10 mg/L 2020-08-29 Strontium, dissolved 57.8 0.010 mg/L 2020-08-29 Strontium, dissolved 15.9 3.0 mg/L 2020-08-29 Tellurium, dissolved 4.000050 0.00050 mg/L 2020-08-29 Tellurium, dissolved < 0.00050 0.00050 mg/L 2020-08-29 Thorium, dissolved < 0.000050 0.000050 mg/L 2020-08-29 Thorium, dissolved < 0.000020 0.000020 mg/L 2020-08-29 Tino, dissolved < 0.000020 0.000020 mg/L 2020-08-29 Tino, dissolved < 0.000020 0.000020 mg/L 2020-08-29 Tino, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Tino, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Uranium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 0.00010 mg/L 2020-08-29 Uranium, dissolved < 0.00010 /L 2020-08-29 Uranium, dissolved < 0.00010 mg/L 2020-08-29 Uranium, dissolv	nesium, dissolved	42.8	0.010	mg/L	2020-08-29	
Molybdenum, dissolved 0,00018 0,00010 mg/L 2020-08-29 Nickel, dissolved < 0,00040 0,00040 mg/L 2020-08-29 Phosphorus, dissolved < 0,050 0,050 mg/L 2020-08-29 Potassium, dissolved 1,82 0,10 mg/L 2020-08-29 Selenium, dissolved 4,5 1,0 mg/L 2020-08-29 Silver, dissolved 4,5 1,0 mg/L 2020-08-29 Silver, dissolved 57.8 0,10 mg/L 2020-08-29 Scolium, dissolved 57.8 0,10 mg/L 2020-08-29 Stortuim, dissolved 15.9 3.0 mg/L 2020-08-29 Stuffur, dissolved 1,5 3.0 mg/L 2020-08-29 Tellurium, dissolved < 0,000020 0,000020 mg/L 2020-08-29 Thorium, dissolved < 0,00010 0,000020 mg/L 2020-08-29 Tin, dissolved < 0,00020 0,00020 mg/L 2020-08-29 Tin, dissolved < 0,00020 </td <td>ganese, dissolved</td> <td>< 0.00020</td> <td>0.00020</td> <td>mg/L</td> <td>2020-08-29</td> <td></td>	ganese, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Nickel, dissolved	cury, dissolved	< 0.000010	0.000010	mg/L	2020-08-30	
Phosphorus, dissolved < 0.050 0.050 mg/L 2020-08-29 Potassium, dissolved 1.82 0.10 mg/L 2020-08-29 Selenium, dissolved 4.5 1.0 mg/L 2020-08-29 Silicon, dissolved 4.5 1.0 mg/L 2020-08-29 Silver, dissolved < 0.000050 0.00050 mg/L 2020-08-29 Sodium, dissolved 67.8 0.10 mg/L 2020-08-29 Storntium, dissolved 15.9 3.0 mg/L 2020-08-29 Stuffer, dissolved 15.9 3.0 mg/L 2020-08-29 Tellurium, dissolved < 0.00050 0.00050 mg/L 2020-08-29 Thalilum, dissolved < 0.000050 0.00050 mg/L 2020-08-29 Thalilum, dissolved < 0.000010 0.00000 mg/L 2020-08-29 Thalilum, dissolved < 0.00050 0.00000 mg/L 2020-08-29 Titanium, dissolved < 0.00050 0.0000 mg/L 2020-08-29 Titanium, dissolved < 0.00050 0.0000 mg/L 2020-08-29 Tungen, dissolved < 0.0010 0.0010 mg/L 2020-08-29	/bdenum, dissolved	0.00018	0.00010	mg/L	2020-08-29	
Potassium, dissolved 1.82 0.10 mg/L 2020-08-29 Selenium, dissolved < 0.00050 0.00050 mg/L 2020-08-29 Silver, dissolved 4.5 1.0 mg/L 2020-08-29 Silver, dissolved < 0.000050 mg/L 2020-08-29 Silver, dissolved < 0.000050 mg/L 2020-08-29 Silver, dissolved < 0.000050 mg/L 2020-08-29 Silver, dissolved 57.8 0.10 mg/L 2020-08-29 Strontium, dissolved 57.8 0.10 mg/L 2020-08-29 Strontium, dissolved 15.9 3.0 mg/L 2020-08-29 Strontium, dissolved 15.9 3.0 mg/L 2020-08-29 Tellurium, dissolved < 0.00050 0.00050 mg/L 2020-08-29 Tellurium, dissolved < 0.000050 0.00050 mg/L 2020-08-29 Thorium, dissolved < 0.000020 0.000020 mg/L 2020-08-29 Thorium, dissolved < 0.000010 0.00010 mg/L 2020-08-29 Tin, dissolved < 0.000010 0.00010 mg/L 2020-08-29 Tin, dissolved < 0.00050 0.00050 mg/L 2020-08-29 Tin, dissolved < 0.00050 0.00050 mg/L 2020-08-29 Tin, dissolved < 0.00010 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.00110 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.00121 0.00002 mg/L 2020-08-29 Uranium, dissolved < 0.0014 0.00002 mg/L 2020-08-29 Uranium, dissolved < 0.0014 0.00002 mg/L 2020-08-29 Uranium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 mg/L 2020-08-29 Uranium, dissolved < 0.0010 mg/L 2020-08-29 Uraniu	el, dissolved	< 0.00040	0.00040	mg/L	2020-08-29	
Selenium, dissolved < 0.00050 0.00050 mg/L 2020-08-29 Silicon, dissolved 4.5 1.0 mg/L 2020-08-29 Silver, dissolved < 0.00055 0.00050 mg/L 2020-08-29 Sodium, dissolved 57.8 0.10 mg/L 2020-08-29 Storium, dissolved 0.473 0.0010 mg/L 2020-08-29 Sulfur, dissolved 15.9 3.0 mg/L 2020-08-29 Tellurium, dissolved < 0.00050 0.00050 mg/L 2020-08-29 Thallum, dissolved < 0.00020 0.000020 mg/L 2020-08-29 Thorium, dissolved < 0.00020 0.000020 mg/L 2020-08-29 Thorium, dissolved < 0.00020 0.00020 mg/L 2020-08-29 Tinn, dissolved < 0.00020 0.00000 mg/L 2020-08-29 Tinn, dissolved < 0.00010 0.0010 mg/L 2020-08-29 Tungsten, dissolved < 0.00121 0.00000 mg/L 2020-08-29 Vanadium, dissolved < 0.00121 0.00000 mg/L 2020-08-29 Vanadium, dissolved < 0.0012 0.00000 mg/L 2020-	sphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Silicon, dissolved 4.5 1.0 mg/L 2020-08-29 Silver, dissolved < 0.000050	assium, dissolved	1.82	0.10	mg/L	2020-08-29	
Silver, dissolved	enium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Sodium, dissolved 57.8 0.10 mg/L 2020-08-29 Strontium, dissolved 0.473 0.0010 mg/L 2020-08-29 Suffur, dissolved 15.9 3.0 mg/L 2020-08-29 Tellurium, dissolved < 0.00050	on, dissolved	4.5	1.0	mg/L	2020-08-29	
Strontium, dissolved 15.9 3.0 mg/L 2020-08-29 201ftur, dissolved 15.9 3.0 mg/L 2020-08-29 201ftur, dissolved 4.0,00050 0.00050 mg/L 2020-08-29 2020-	er, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sulfur, dissolved 15.9 3.0 mg/L 2020-08-29 Tellurium, dissolved < 0,00050	ium, dissolved	57.8	0.10	mg/L	2020-08-29	
Sulfur, dissolved 15.9 3.0 mg/L 2020-08-29 Tellurium, dissolved < 0,00050	ntium, dissolved	0.473	0.0010	mg/L	2020-08-29	
Tellurium, dissolved	ur, dissolved	15.9			2020-08-29	
Thallium, dissolved	urium, dissolved	< 0.00050			2020-08-29	
Tin, dissolved		< 0.000020	0.000020	mg/L	2020-08-29	
Titanium, dissolved < 0.0050 0.0050 mg/L 2020-08-29 Tungsten, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved 0.00121 0.000020 mg/L 2020-08-29 Vanadium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Zinc, dissolved 0.0044 0.0040 mg/L 2020-08-29 Zirconium, dissolved 0.00040 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-27 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-2	rium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Titanium, dissolved < 0.0050 0.0050 mg/L 2020-08-29 Tungsten, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Uranium, dissolved 0.00121 0.000020 mg/L 2020-08-29 Vanadium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Zinc, dissolved 0.0044 0.0040 mg/L 2020-08-29 Zirconium, dissolved 0.00040 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-27 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-26 Zirconium, dissolved 0.00010 0.00010 mg/L 2020-08-2	<u> </u>	< 0.00020	0.00020	mg/L	2020-08-29	
Tungsten, dissolved		< 0.0050			2020-08-29	
Uranium, dissolved 0.00121 0.000020 mg/L 2020-08-29 Vanadium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Zinc, dissolved 0.0044 0.0040 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.0001 0.00010 mg/L 2020-08-26 Alkalinity, dissolved < 1.0 mg/L 2020-08-26 2020-08-26 Alkalinity, Phenolphthalein (as CaCO3) < 1.0 mg/L 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-27 2020-08-27 2020-08-27		< 0.0010				
Vanadium, dissolved < 0.0010 0.0010 mg/L 2020-08-29 Zinc, dissolved 0.0044 0.0040 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Zirconium, dissolved < 0.10 mg/L 2020-08-26 Alkalinity, Total (as CaCO3) 356 1.0 mg/L 2020-08-26 Alkalinity, Phenolphthalein (as CaCO3) \$ 1.0 1.0 mg/L 2020-08-26 Alkalinity, Phenolphthalein (as CaCO3) \$ 1.0 1.0 mg/L 2020-08-26 Alkalinity, Phenolphthalein (as CaCO3) \$ 1.0 1.0 mg/L 2020-08-26 Alkalinity, Phenolphthalein (as CaCO3) \$ 1.0 1.0 mg/L 2020-08-26 Alkalinity, Phenolphthalein (as CaCO3) \$ 41.0 1.0 mg/L 2020-08-26 Alkalinity, Phenolphthale		0.00121			2020-08-29	
Zinc, dissolved 0.0044 0.0040 mg/L 2020-08-29 Zirconium, dissolved < 0.00010 0.00010 mg/L 2020-08-29 Seneral Parameters 356 1.0 mg/L 2020-08-26 Alkalinity, Total (as CaCO3) 356 1.0 mg/L 2020-08-26 Alkalinity, Bicarbonate (as CaCO3) 356 1.0 mg/L 2020-08-26 Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L 2020-08-26 Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L 2020-08-26 Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L 2020-08-26 Bicarbonate (HCO3) 434 1.22 mg/L N/A Carbonate (CO3) < 0.600 0.600 mg/L N/A Hydroxide (OH) < 0.340 0.340 mg/L N/A Ammonia, Total (as N) < 0.050 0.050 mg/L 2020-08-27 BOD, 5-day < 6.1 2.0 mg/L 2020-08-31 Chemical Oxygen Demand < 20 20 mg/L 2020-08-31 Conductivity (EC) 1040 2.0 µS/cm 2020-08-26						
Zirconium, dissolved < 0.00010 mg/L 2020-08-29						
Alkalinity, Total (as CaCO3) 356 1.0 mg/L 2020-08-26 Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L 2020-08-26 Alkalinity, Bicarbonate (as CaCO3) 356 1.0 mg/L 2020-08-26 Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L 2020-08-26 Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L 2020-08-26 Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L 2020-08-26 Bicarbonate (HCO3) 434 1.22 mg/L N/A Carbonate (CO3) < 0.600 0.600 mg/L N/A Hydroxide (OH) < 0.340 0.340 mg/L N/A Ammonia, Total (as N) < 0.050 0.050 mg/L 2020-08-27 BOD, 5-day < 6.1 2.0 mg/L 2020-08-31 Chemical Oxygen Demand < 20 20 mg/L 2020-08-31 Conductivity (EC) 1040 2.0 μS/cm 2020-08-26 pH 7.98 0.10 pH units 2020-08-26 Solids, Total Dissolved 579 15 mg/L 2020-08-27 Solids, Total Suspended < 2.0 0.10 NTU 20						
Alkalinity, Phenolphthalein (as CaCO3) < 1.0	ral Parameters					
Alkalinity, Phenolphthalein (as CaCO3) < 1.0	linity Total (as CaCO3)	356	1.0	ma/l	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3) 356 1.0 mg/L 2020-08-26 Alkalinity, Carbonate (as CaCO3) < 1.0	· · · · · · · · · · · · · · · · · · ·					
Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L 2020-08-26 Alkalinity, Hydroxide (as CaCO3) < 1.0						
Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L 2020-08-26 Bicarbonate (HCO3) 434 1.22 mg/L N/A Carbonate (CO3) < 0.600						
Bicarbonate (HCO3) 434 1.22 mg/L N/A Carbonate (CO3) < 0.600						
Carbonate (CO3) < 0.600 0.600 mg/L N/A Hydroxide (OH) < 0.340	· · · · · · · · · · · · · · · · · · ·					
Hydroxide (OH) < 0.340 0.340 mg/L N/A Ammonia, Total (as N) < 0.050						
Ammonia, Total (as N) < 0.050 0.050 mg/L 2020-08-27 BOD, 5-day < 6.1						
BOD, 5-day < 6.1						
Chemical Oxygen Demand < 20 20 mg/L 2020-08-31 Conductivity (EC) 1040 2.0 μS/cm 2020-08-26 pH 7.98 0.10 pH units 2020-08-26 Solids, Total Dissolved 579 15 mg/L 2020-08-27 Solids, Total Suspended < 2.0						
Conductivity (EC) 1040 2.0 µS/cm 2020-08-26 pH 7.98 0.10 pH units 2020-08-26 Solids, Total Dissolved 579 15 mg/L 2020-08-27 Solids, Total Suspended < 2.0	•					
pH 7.98 0.10 pH units 2020-08-26 Solids, Total Dissolved 579 15 mg/L 2020-08-27 Solids, Total Suspended < 2.0						
Solids, Total Dissolved 579 15 mg/L 2020-08-27 Solids, Total Suspended < 2.0	audiivity (EC)					LITO
Solids, Total Suspended < 2.0 2.0 mg/L 2020-08-28 Turbidity < 0.10	de Tatal Diseabled			-		HT2
Turbidity < 0.10 0.10 NTU 2020-08-26	•					
•	-					
olatile Organic Compounds (VOC)	•	< 0.10	0.10	NIU	2020-08-26	
Benzene < 0.5 0.5 μg/L 2020-08-29	, , ,					

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

2020-09-01 13:36

Analyte	Result	RL Uni	s Analyzed	Qualifie
Гоwn Well #4 (0082459-05) Matrix: Wat	er Sampled: 2020-08-24 11:3), Continued		
Volatile Organic Compounds (VOC), Continu	ued			
Bromodichloromethane	< 1.0	1.0 µg/L	2020-08-29	
Bromoform	< 1.0	1.0 µg/L		
Carbon tetrachloride	< 0.5	0.5 µg/L		
Chlorobenzene	< 1.0	1.0 µg/L		
Chloroethane	< 2.0	2.0 µg/L	2020-08-29	
Chloroform	< 1.0	1.0 µg/L		
Dibromochloromethane	< 1.0	1.0 µg/L		
1,2-Dibromoethane	< 0.3	0.3 µg/L	2020-08-29	
Dibromomethane	< 1.0	1.0 µg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5	0.5 µg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0	1.0 µg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0	1.0 µg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0 µg/L		
1,2-Dichloroethane	< 1.0	1.0 µg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0 µg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0 µg/L		
trans-1,2-Dichloroethylene	< 1.0	1.0 µg/L	2020-08-29	
Dichloromethane	< 3.0	3.0 µg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0 µg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0 µg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0 µg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0 µg/L	2020-08-29	
Styrene	< 1.0	1.0 µg/L		
1,1,2,2-Tetrachloroethane	< 0.5	0.5 µg/L	2020-08-29	
Tetrachloroethylene	< 1.0	1.0 µg/L	2020-08-29	
Toluene	< 1.0	1.0 µg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0 µg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0	1.0 µg/L	2020-08-29	
Trichloroethylene	< 1.0	1.0 µg/L	2020-08-29	
Trichlorofluoromethane	< 1.0	1.0 µg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0 µg/L	2020-08-29	
Xylenes (total)	< 2.0	2.0 µg/L		
Surrogate: Toluene-d8	88	70-130 %	2020-08-29	
Surrogate: 4-Bromofluorobenzene	93	70-130 %	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	94	70-130 %	2020-08-29	

Town Well #6 (0082459-06) | Matrix: Water | Sampled: 2020-08-24 11:20

Anions			
Bromide	< 0.10	0.10 mg/L	2020-08-26
Chloride	60.4	0.10 mg/L	2020-08-26
Fluoride	< 0.10	0.10 mg/L	2020-08-26
Nitrate (as N)	1.26	0.010 mg/L	2020-08-26

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifie
Town Well #6 (0082459-06) Matrix: W	/ater Sampled: 2020-08	8-24 11:20, Continued			
Anions, Continued					
Nitrite (as N)	< 0.010	0.010	mg/L	2020-08-26	
Sulfate	34.2		mg/L	2020-08-26	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-08-29	
VPHw	< 100		μg/L	N/A	
Calculated Parameters			<u> </u>		
Hardness, Total (as CaCO3)	392	0.500	ma/l	N/A	
,	392	0.300	mg/L	IV/A	
Dissolved Metals				_	
Lithium, dissolved	0.00133	0.00010		2020-08-29	
Aluminum, dissolved	< 0.0050	0.0050		2020-08-29	
Antimony, dissolved	< 0.00020	0.00020		2020-08-29	
Arsenic, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Barium, dissolved	0.191	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved	< 0.0500	0.0500	mg/L	2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-08-29	
Calcium, dissolved	98.4	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Cobalt, dissolved	0.00021	0.00010	mg/L	2020-08-29	
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-08-29	
Iron, dissolved	0.137	0.010	mg/L	2020-08-29	
Lead, dissolved	< 0.00020	0.00020		2020-08-29	
Magnesium, dissolved	35.5	0.010		2020-08-29	
Manganese, dissolved	0.0287	0.00020		2020-08-29	
Mercury, dissolved	< 0.000010	0.000010		2020-08-30	
Molybdenum, dissolved	0.00102	0.00010		2020-08-29	
Nickel, dissolved	0.00080	0.00040		2020-08-29	
Phosphorus, dissolved	< 0.050	0.050		2020-08-29	
Potassium, dissolved	1.18		mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050		2020-08-29	
Silicon, dissolved	4.6		mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050		2020-08-29	
Sodium, dissolved	33.5		mg/L	2020-08-29	
Strontium, dissolved	0.368	0.0010		2020-08-29	
Sulfur, dissolved	12.3		mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29	
Thallium, dissolved	< 0.00030	0.00030		2020-08-29	
Thorium, dissolved	< 0.00010	0.00020		2020-08-29	
<u> </u>					
Tin, dissolved	< 0.00020	0.00020		2020-08-29	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0082459
PROJECT	19-2850 - Golden	REPORTED	2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifie
Гоwn Well #6 (0082459-06) Matrix: Wate	r Sampled: 2020-08-24 1	1:20, Continued			
Dissolved Metals, Continued					
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.00141	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
General Parameters			*		
Alkalinity, Total (as CaCO3)	358	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	358	1.0	mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	437		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1		mg/L	2020-08-31	
Chemical Oxygen Demand	< 20		mg/L	2020-08-31	
Conductivity (EC)	917		μS/cm	2020-08-26	
рН	7.94		pH units	2020-08-26	HT2
Solids, Total Dissolved	520	15	mg/L	2020-08-27	
Solids, Total Suspended	35.2	2.0	mg/L	2020-08-28	
Turbidity	23.6	0.10	NTU	2020-08-26	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-08-29	
Bromoform	< 1.0		μg/L	2020-08-29	
Carbon tetrachloride	< 0.5		μg/L	2020-08-29	
Chlorobenzene	< 1.0		μg/L	2020-08-29	
Chloroethane	< 2.0		μg/L	2020-08-29	
Chloroform	< 1.0	1.0	μg/L	2020-08-29	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-08-29	
Dibromomethane	< 1.0		μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0		μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
Dichloromethane	< 3.0		μg/L	2020-08-29	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0082459
PROJECT	19-2850 - Golden	REPORTED	2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed Qualifi
Гоwn Well #6 (0082459-06) Matrix: Wat	er Sampled: 2020-08-24 11	:20, Continued		
Volatile Organic Compounds (VOC), Continu	ued			
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-08-29
Ethylbenzene	< 1.0	1.0		2020-08-29
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-08-29
Styrene	< 1.0	1.0	μg/L	2020-08-29
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-08-29
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-08-29
Toluene	< 1.0	1.0	μg/L	2020-08-29
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29
Trichloroethylene	< 1.0	1.0	μg/L	2020-08-29
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-08-29
Vinyl chloride	< 1.0	1.0	μg/L	2020-08-29
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29
Surrogate: Toluene-d8	97	70-130	%	2020-08-29
Surrogate: 4-Bromofluorobenzene	103	70-130	%	2020-08-29
			0/	2020 08 20
	104 Sampled: 2020-08-25 08:30	70-130	%	2020-08-29
Surrogate: 1,4-Dichlorobenzene-d4 DMW-1b (0082459-07) Matrix: Water S Anions		70-130	%	2020-06-29
DMW-1b (0082459-07) Matrix: Water S			mg/L	2020-08-29
DMW-1b (0082459-07) Matrix: Water S Anions	Sampled: 2020-08-25 08:30	0.10 0.10	mg/L mg/L	
DMW-1b (0082459-07) Matrix: Water S Anions Bromide	Sampled: 2020-08-25 08:30 < 0.10	0.10 0.10 0.10	mg/L mg/L mg/L	2020-08-26
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride	Sampled: 2020-08-25 08:30 < 0.10 9.13	0.10 0.10 0.10 0.010	mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride	Sampled: 2020-08-25 08:30 < 0.10 9.13 0.91	0.10 0.10 0.10	mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N)	Sampled: 2020-08-25 08:30 < 0.10 9.13 0.91 0.112	0.10 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	<pre>< 0.10 9.13 0.91 0.112 < 0.010</pre>	0.10 0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	<pre>< 0.10 9.13 0.91 0.112 < 0.010</pre>	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons	 < 0.10 9.13 0.91 0.112 < 0.010 251 	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10)	<pre>< 0.10</pre>	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw	<pre>< 0.10</pre>	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw Calculated Parameters Hardness, Total (as CaCO3)	<pre>< 0.10</pre>	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-29 N/A
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw Calculated Parameters Hardness, Total (as CaCO3)	<pre>< 0.10</pre>	0.10 0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-29 N/A
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals	 < 0.10 9.13 0.91 0.112 < 0.010 251 < 100 < 100 < 586 	0.10 0.10 0.010 0.010 1.0 100 100	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-29 N/A
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved	 < 0.10 9.13 0.91 0.112 < 0.010 251 < 100 < 100 < 586 0.0529 	0.10 0.10 0.010 0.010 1.0 100 100	mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-29 N/A N/A
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved	<pre>< 0.10</pre>	0.10 0.10 0.010 0.010 1.0 100 100	mg/L mg/L mg/L mg/L mg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-29 N/A N/A 2020-08-29 2020-08-29
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved	<pre>campled: 2020-08-25 08:30 < 0.10</pre>	0.10 0.10 0.010 0.010 1.0 100 100	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-29 N/A N/A 2020-08-29 2020-08-29 2020-08-29 2020-08-29
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	 < 0.10 9.13 0.91 0.112 < 0.010 251 < 100 < 100 < 586 0.0529 < 0.0050 < 0.00020 0.00129 	0.10 0.10 0.010 0.010 1.0 100 100	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-29 N/A N/A 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29
DMW-1b (0082459-07) Matrix: Water S Anions Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate BCMOE Aggregate Hydrocarbons VHw (6-10) VPHw Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved Aluminum, dissolved Antimony, dissolved Barium, dissolved	 < 0.10 9.13 0.91 0.112 < 0.010 251 < 100 < 100 < 100 < 0.0529 < 0.0050 < 0.00020 0.00129 0.0158 	0.10 0.10 0.010 0.010 1.0 100 100	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L mg/L 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-29 N/A N/A 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED 2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifier
DMW-1b (0082459-07) Matrix: Water S	ampled: 2020-08-25 (08:30, Continued			
Dissolved Metals, Continued					
Cadmium, dissolved	0.000016	0.000010	mg/L	2020-08-29	
Calcium, dissolved	69.2	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Cobalt, dissolved	0.00068	0.00010	mg/L	2020-08-29	
Copper, dissolved	0.00484	0.00040	mg/L	2020-08-29	
Iron, dissolved	0.014	0.010	mg/L	2020-08-29	
Lead, dissolved	0.00047	0.00020	mg/L	2020-08-29	
Magnesium, dissolved	100	0.010	mg/L	2020-08-29	
Manganese, dissolved	0.00352	0.00020	mg/L	2020-08-29	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-08-30	
Molybdenum, dissolved	0.00053	0.00010	mg/L	2020-08-29	
Nickel, dissolved	0.00124	0.00040	mg/L	2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Potassium, dissolved	8.94	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	6.5	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	50.1	0.10	mg/L	2020-08-29	
Strontium, dissolved	5.33	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	93.6	3.0	mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.000947	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	0.0410	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	0.00064	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	449	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	449	1.0	mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Bicarbonate (HCO3)	548	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	0.861	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	< 20	20	mg/L	2020-08-31	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER 0082459 **REPORTED** 2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW-1b (0082459-07) Matrix: Water S	ampled: 2020-08-25 08:30, Cont	inued			
General Parameters, Continued					
Conductivity (EC)	1230	2.0	μS/cm	2020-08-26	
pH	7.95	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	804	15	mg/L	2020-08-27	
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-08-28	
Turbidity	0.16	0.10	NTU	2020-08-26	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-08-29	
Bromoform	< 1.0	1.0	μg/L	2020-08-29	
Carbon tetrachloride	< 0.5	0.5		2020-08-29	
Chlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
Chloroethane	< 2.0	2.0		2020-08-29	
Chloroform	< 1.0	1.0	μg/L	2020-08-29	
Dibromochloromethane	< 1.0	1.0		2020-08-29	
1.2-Dibromoethane	< 0.3	0.3	μg/L	2020-08-29	
Dibromomethane	< 1.0	1.0		2020-08-29	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0		2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0		2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0		2020-08-29	
Dichloromethane	< 3.0	3.0		2020-08-29	
1,2-Dichloropropane	< 1.0	1.0		2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0		2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-08-29	
Styrene	< 1.0		μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	
Toluene	< 1.0		μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-08-29	
Trichloroethylene	< 1.0		μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0		μg/L	2020-08-29	
Vinyl chloride	< 1.0		μg/L	2020-08-29	
Xylenes (total)	< 2.0		μg/L	2020-08-29	
Surrogate: Toluene-d8	95	70-130		2020-08-29	
Surrogate: 4-Bromofluorobenzene	101	70-130		2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	103	70-130		2020-08-29	

REPORTED TO Ecoscape Environmental Ltd. WORK ORDER

PROJECT 19-2850 - Golden **REPORTED** 2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifier
DMW-4 (0082459-08) Matrix: Water	Sampled: 2020-08-25 08:47				
Anions					
Bromide	< 0.10	0.10	mg/L	2020-08-26	
Chloride	42.2		mg/L	2020-08-26	
Fluoride	1.35		mg/L	2020-08-26	
Nitrate (as N)	< 0.010	0.010		2020-08-26	
Nitrite (as N)	< 0.010	0.010		2020-08-26	
Sulfate	128		mg/L	2020-08-26	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-08-29	
VPHw	< 100		μg/L	N/A	
Calculated Parameters					
Hardness, Total (as CaCO3)	634	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0245	0.00010	ma/L	2020-08-29	
Aluminum, dissolved	< 0.0050	0.0050		2020-08-29	
Antimony, dissolved	< 0.00020	0.00020		2020-08-29	
Arsenic, dissolved	0.0525	0.00050		2020-08-29	
Barium, dissolved	0.0240	0.0050		2020-08-29	
Beryllium, dissolved	0.00012	0.00010		2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010		2020-08-29	
Boron, dissolved	0.145	0.0500		2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010		2020-08-29	
Calcium, dissolved	66.7	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050		2020-08-29	
Cobalt, dissolved	< 0.00010	0.00010		2020-08-29	
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-08-29	
Iron, dissolved	0.776	0.010		2020-08-29	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Magnesium, dissolved	114	0.010	mg/L	2020-08-29	
Manganese, dissolved	0.00574	0.00020	mg/L	2020-08-29	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-08-30	
Molybdenum, dissolved	0.00025	0.00010		2020-08-29	
Nickel, dissolved	0.00181	0.00040	mg/L	2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Potassium, dissolved	4.71	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	7.5	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	27.4	0.10	mg/L	2020-08-29	
Strontium, dissolved	1.82	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	51.3	3.0	mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	

0082459

Chloroform

Dibromochloromethane

1,2-Dibromoethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

Dibromomethane

REPORTED TO Ecoscape Environmer PROJECT 19-2850 - Golden	ntal Ltd.		WORK ORDER REPORTED	0082459 2020-09-0	1 13:36
Analyte	Result	RL	Units	Analyzed	Qualifie
DMW-4 (0082459-08) Matrix: Water Sa	mpled: 2020-08-25 08:47, C	Continued			
Dissolved Metals, Continued					
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	< 0.00020	0.00020		2020-08-29	
Titanium, dissolved	< 0.0050	0.0050		2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.000101	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	0.00143	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	465	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	465	1.0	mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Bicarbonate (HCO3)	567	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	0.223	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	< 20	20	mg/L	2020-08-31	
Conductivity (EC)	1220	2.0	μS/cm	2020-08-26	
рН	7.98	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	739	15	mg/L	2020-08-27	
Solids, Total Suspended	2.4	2.0	mg/L	2020-08-28	
Turbidity	8.59	0.10	NTU	2020-08-26	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-08-29	
Bromoform	< 1.0	1.0	μg/L	2020-08-29	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-08-29	
Chlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
Chloroethane	< 2.0	2.0	μg/L	2020-08-29	

Page 21 of 42

2020-08-29

2020-08-29

2020-08-29

2020-08-29

2020-08-29

2020-08-29

2020-08-29

2020-08-29 2020-08-29

1.0 µg/L

1.0 µg/L

0.3 µg/L

1.0 µg/L

 $0.5 \mu g/L$

1.0 µg/L

1.0 µg/L

1.0 µg/L

1.0 µg/L

< 1.0

< 1.0

< 0.3

< 1.0

< 0.5

< 1.0

< 1.0

< 1.0

< 1.0

Arsenic, dissolved

REPORTED TO Ecoscape Environn PROJECT 19-2850 - Golden	nental Ltd.		WORK ORDER REPORTED	0082459 2020-09-0	1 13:36
Analyte	Result	RL	Units	Analyzed	Qualifie
DMW-4 (0082459-08) Matrix: Water	Sampled: 2020-08-25 08:47, C	ontinued			
Volatile Organic Compounds (VOC), Com	tinued				
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0		2020-08-29	
Ethylbenzene	< 1.0	1.0		2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0		2020-08-29	
Styrene	< 1.0	1.0	μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	
Toluene	< 1.0		μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0		2020-08-29	
1,1,2-Trichloroethane	<1.0	1.0		2020-08-29	
Trichloroethylene	< 1.0		μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0		μg/L	2020-08-29	
Vinyl chloride	< 1.0		μg/L	2020-08-29	
Xylenes (total)	< 2.0		μg/L	2020-08-29	
Surrogate: Toluene-d8	88	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	94	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	94	70-130		2020-08-29	
MW09-06D (0082459-09) Matrix: Wat	er Sampled: 2020-08-24 18:0	5			
Anions		0.40	4	0000 00 00	
Bromide	1.15		mg/L	2020-08-26	
Chloride	377		mg/L	2020-08-26	
Fluoride	< 0.10		mg/L	2020-08-26	
Nitrate (as N)	35.6		mg/L	2020-08-26	
Nitrite (as N)	< 0.010		mg/L	2020-08-26	
Sulfate	634	1.0	mg/L	2020-08-26	
BCMOE Aggregate Hydrocarbons	400	400			
VHw (6-10)	< 100		μg/L	2020-08-29	
VPHw	< 100	100	μg/L	N/A	
Calculated Parameters					
Hardness, Total (as CaCO3)	1500	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0416	0.00010	mg/L	2020-08-29	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Antimony, dissolved	0.00034	0.00020	mg/L	2020-08-29	
Arsonia dissolved	< 0.00050	0.00050		2020 08 20	

2020-08-29 Page 22 of 42

0.00050 mg/L

< 0.00050

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED 20

2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-06D (0082459-09) Matrix: Water	Sampled: 2020-08-	-24 18:05, Continued			
Dissolved Metals, Continued					
Barium, dissolved	0.0490	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved	1.97	0.0500	mg/L	2020-08-29	
Cadmium, dissolved	0.000012	0.000010	mg/L	2020-08-29	
Calcium, dissolved	154	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Cobalt, dissolved	0.00189	0.00010	mg/L	2020-08-29	
Copper, dissolved	0.00240	0.00040	mg/L	2020-08-29	
Iron, dissolved	< 0.010	0.010	mg/L	2020-08-29	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Magnesium, dissolved	271	0.010	mg/L	2020-08-29	
Manganese, dissolved	0.109	0.00020	mg/L	2020-08-29	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-08-30	
Molybdenum, dissolved	0.00032	0.00010	mg/L	2020-08-29	
Nickel, dissolved	0.0131	0.00040	mg/L	2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Potassium, dissolved	169	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	12.0	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	294	0.10	mg/L	2020-08-29	
Strontium, dissolved	1.68	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	253	3.0	mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Thallium, dissolved	0.000063	0.000020	mg/L	2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	0.00095	0.00020	mg/L	2020-08-29	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.00723	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	0.0049	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	0.00021	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	947	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	947		mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	1160		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	

REPORTED TO Ecoscape Environmental Ltd. WORK ORDER

PROJECT 19-2850 - Golden **REPORTED** 2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-06D (0082459-09) Matrix: Wate	er Sampled: 2020-08-24 18:05,	Continued			
General Parameters, Continued					
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	1.85	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	42	20	mg/L	2020-08-31	
Conductivity (EC)	4050	2.0	μS/cm	2020-08-26	
рН	7.77	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	2720	15	mg/L	2020-08-27	
Solids, Total Suspended	14.0	2.0	mg/L	2020-08-28	
Turbidity	5.82	0.10	NTU	2020-08-26	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-08-29	
Bromoform	< 1.0	1.0	μg/L	2020-08-29	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-08-29	
Chlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
Chloroethane	< 2.0	2.0	μg/L	2020-08-29	
Chloroform	< 1.0	1.0	μg/L	2020-08-29	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-08-29	
Dibromomethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0		μg/L	2020-08-29	
Styrene	< 1.0		μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	
Toluene	< 1.0		μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-08-29	
Trichloroethylene	< 1.0		μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0		μg/L	2020-08-29	
Vinyl chloride	< 1.0		μg/L	2020-08-29	

0082459

	coscape Environmental Ltd. 9-2850 - Golden		WORK ORDER REPORTED	0082459 2020-09-0	1 13:36
Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-06D (0082459-	-09) Matrix: Water Sampled: 2020-08-24 18:05, 0	Continued			
Volatile Organic Comp	ounds (VOC), Continued				
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluene-d8	88	70-130		2020-08-29	
Surrogate: 4-Bromoflu		70-130	%	2020-08-29	
Surrogate: 1,4-Dichlor		70-130	%	2020-08-29	
DUP A (0082459-10)	Matrix: Water Sampled: 2020-08-24 16:30				
Anions					
Bromide	1.14	0.10	mg/L	2020-08-26	
Chloride	377	0.10	mg/L	2020-08-26	
Fluoride	< 0.10	0.10	mg/L	2020-08-26	
Nitrate (as N)	35.0	0.010	mg/L	2020-08-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-08-26	
Sulfate	633	1.0	mg/L	2020-08-26	
BCMOE Aggregate Hyd	drocarbons				
VHw (6-10)	< 100	100	μg/L	2020-08-29	
VPHw	< 100	100	μg/L	N/A	
Calculated Parameters Hardness, Total (as Ca Dissolved Metals		0.500	mg/L	N/A	
		0.00040	,,		
Lithium, dissolved	0.0415	0.00010		2020-08-29	
Aluminum, dissolved	0.500	0.0050		2020-08-29	
Antimony, dissolved	< 0.00020	0.00020		2020-08-29	
Arsenic, dissolved	0.00073	0.00050		2020-08-29	
Barium, dissolved	0.0617	0.0050		2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010		2020-08-29	
Boron, dissolved	1.97	0.0500		2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010		2020-08-29	
Calcium, dissolved	164		mg/L	2020-08-29	
Chromium, dissolved	0.00094	0.00050		2020-08-29	
Cobalt, dissolved	0.00190	0.00010		2020-08-29	
Copper, dissolved	0.00272	0.00040		2020-08-29	
Iron, dissolved	0.767	0.010		2020-08-29	
Lead, dissolved	0.00086	0.00020		2020-08-29	
Magnesium, dissolved		0.010		2020-08-29	
Manganese, dissolved		0.00020		2020-08-29	
Mercury, dissolved	< 0.000010	0.000010		2020-08-30	
Molybdenum, dissolve		0.00010		2020-08-29	
Nickel, dissolved	0.0129	0.00040		2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	age 25 of
	Caring About Results	s, Obviously.		'	age 25 of

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0082459
PROJECT	19-2850 - Golden	REPORTED	2020-09-01 13:36

	Result	RL	Units	Analyzed	Qualifie
OUP A (0082459-10) Matrix: Water San	npled: 2020-08-24 16:30, Co	ontinued			
issolved Metals, Continued					
Potassium, dissolved	165	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	13.2	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	282	0.10	mg/L	2020-08-29	
Strontium, dissolved	1.73	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	256		mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29	
Thallium, dissolved	0.000060	0.000020		2020-08-29	
Thorium, dissolved	0.00035	0.00010		2020-08-29	
Tin, dissolved	0.00021	0.00020		2020-08-29	
Titanium, dissolved	0.0304	0.0050		2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010		2020-08-29	
Uranium, dissolved	0.00698	0.000020		2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010		2020-08-29	
Zinc, dissolved	< 0.0040	0.0040		2020-08-29	
Zirconium, dissolved	0.00052	0.00010		2020-08-29	
Alkalinity, Total (as CaCO3)	948	1.0	mg/L	2020-08-26	
	948 < 1.0			2020-08-26 2020-08-26	
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3)		1.0	mg/L mg/L		
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3)	< 1.0 948	1.0 1.0 1.0	mg/L mg/L	2020-08-26 2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	< 1.0 948 < 1.0	1.0 1.0 1.0 1.0	mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3)	< 1.0 948 < 1.0 < 1.0	1.0 1.0 1.0 1.0	mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3)	< 1.0 948 < 1.0 < 1.0 1160	1.0 1.0 1.0 1.0 1.22	mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A	
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	< 1.0 948 < 1.0 < 1.0 < 1.0 < 1.0 1160 < 0.600	1.0 1.0 1.0 1.0 1.22 0.600	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A	
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N)	< 1.0 948 < 1.0 < 1.0 < 1.0 1160 < 0.600 < 0.340	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A	
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N)	< 1.0 948 < 1.0 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27	
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day	< 1.0 948 < 1.0 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31	
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand	< 1.0 948 < 1.0 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31	HT2
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC)	< 1.0 948 < 1.0 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47 4010	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-26	HT2
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH	< 1.0 948 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47 4010 7.79	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-26	HT2
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved	< 1.0 948 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47 4010 7.79 2630	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-26	HT2
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended	< 1.0 948 < 1.0 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47 4010 7.79 2630 101	1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-27	HT2
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity	< 1.0 948 < 1.0 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47 4010 7.79 2630 101	1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-27 2020-08-27 2020-08-27	HT2
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity Tolatile Organic Compounds (VOC)	< 1.0 948 < 1.0 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47 4010 7.79 2630 101 51.3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10 0.50	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-28 2020-08-28	HT2
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity Colatile Organic Compounds (VOC) Benzene	< 1.0 948 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47 4010 7.79 2630 101 51.3	1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10 0.50	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A 2020-08-27 2020-08-31 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-27 2020-08-28 2020-08-28	HT2
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity Yolatile Organic Compounds (VOC) Benzene Bromodichloromethane	< 1.0 948 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47 4010 7.79 2630 101 51.3 < 0.5 < 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10 0.50	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-28 2020-08-28 2020-08-29 2020-08-29	HT2
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity Colatile Organic Compounds (VOC) Benzene Bromodichloromethane Bromoform	< 1.0 948 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47 4010 7.79 2630 101 51.3 < 0.5 < 1.0 < 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10 0.5 1.0 0.5	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-29 2020-08-29	HT2
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3) Bicarbonate (HCO3) Carbonate (CO3) Hydroxide (OH) Ammonia, Total (as N) BOD, 5-day Chemical Oxygen Demand Conductivity (EC) pH Solids, Total Dissolved Solids, Total Suspended Turbidity Colatile Organic Compounds (VOC) Benzene Bromodichloromethane Bromoform Carbon tetrachloride	< 1.0 948 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.77 < 6.1 47 4010 7.79 2630 101 51.3 < 0.5 < 1.0 < 1.0 < 0.5	1.0 1.0 1.0 1.0 1.0 1.0 1.22 0.600 0.340 0.050 2.0 20 2.0 0.10 15 2.0 0.10 0.5 1.0 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A N/A N/A 2020-08-27 2020-08-31 2020-08-26 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29	HT2

REPORTED TO Ecoscape Environmental Ltd.

WORK ORDER 0082459 **PROJECT** 19-2850 - Golden REPORTED 2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifie
OUP A (0082459-10) Matrix: Water Sar	npled: 2020-08-24 16:30, Continued	<u> </u>			
/olatile Organic Compounds (VOC), Continu	ued				
Dibromochloromethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-08-29	
Dibromomethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-08-29	
Styrene	< 1.0	1.0	μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-08-29	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
Trichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0	μg/L	2020-08-29	
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluene-d8	88	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	94	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	95	70-130	%	2020-08-29	

DMW20-01 (0082459-11) | Matrix: Water | Sampled: 2020-08-24 11:55

Anions			
Bromide	< 0.10	0.10 mg	ı/L 2020-08-26
Chloride	38.8	0.10 mg	/L 2020-08-26
Fluoride	0.12	0.10 mg	/L 2020-08-26
Nitrate (as N)	0.429	0.010 mg	/L 2020-08-26
Nitrite (as N)	< 0.010	0.010 mg	/L 2020-08-26
Sulfate	25.1	1.0 mg	/L 2020-08-26
BCMOE Aggregate Hydrocarbons			
VHw (6-10)	< 100	100 µg/	/L 2020-08-29
VPHw	< 100	100 µg/	/L N/A

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden **WORK ORDER**

0082459

REPORTED

2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifie		
DMW20-01 (0082459-11) Matrix: Water Sampled: 2020-08-24 11:55, Continued							
Calculated Parameters							
Hardness, Total (as CaCO3)	246	0.500	mg/L	N/A			
Dissolved Metals							
Lithium, dissolved	0.00123	0.00010	mg/L	2020-08-29			
Aluminum, dissolved	< 0.0050	0.0050		2020-08-29			
Antimony, dissolved	< 0.00020	0.00020		2020-08-29			
Arsenic, dissolved	< 0.00050	0.00050		2020-08-29			
Barium, dissolved	0.110	0.0050	mg/L	2020-08-29			
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29			
Bismuth, dissolved	< 0.00010	0.00010		2020-08-29			
Boron, dissolved	0.0505	0.0500	mg/L	2020-08-29			
Cadmium, dissolved	< 0.000010	0.000010		2020-08-29			
Calcium, dissolved	48.3		mg/L	2020-08-29			
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29			
Cobalt, dissolved	0.00011	0.00010		2020-08-29			
Copper, dissolved	0.00189	0.00040		2020-08-29			
Iron, dissolved	< 0.010	0.010		2020-08-29			
Lead, dissolved	< 0.00020	0.00020		2020-08-29			
Magnesium, dissolved	30.3	0.010		2020-08-29			
Manganese, dissolved	0.00870	0.00020		2020-08-29			
Mercury, dissolved	< 0.000010	0.000010		2020-08-30			
Molybdenum, dissolved	0.00077	0.00010		2020-08-29			
Nickel, dissolved	0.00052	0.00040		2020-08-29			
Phosphorus, dissolved	< 0.050	0.050		2020-08-29			
Potassium, dissolved	1.09		mg/L	2020-08-29			
Selenium, dissolved	< 0.00050	0.00050		2020-08-29			
Silicon, dissolved	3.1		mg/L	2020-08-29			
Silver, dissolved	< 0.000050	0.000050		2020-08-29			
Sodium, dissolved	20.9		mg/L	2020-08-29			
Strontium, dissolved	0.343	0.0010		2020-08-29			
Sulfur, dissolved	10.5		mg/L	2020-08-29			
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29			
Thallium, dissolved	< 0.000020	0.000020		2020-08-29			
Thorium, dissolved	< 0.00010	0.00010		2020-08-29			
Tin, dissolved	< 0.00020	0.00020		2020-08-29			
Titanium, dissolved	< 0.0050	0.0050		2020-08-29			
Tungsten, dissolved	< 0.0010	0.0010		2020-08-29			
Uranium, dissolved	0.000669	0.000020		2020-08-29			
Vanadium, dissolved	< 0.0010	0.0010		2020-08-29			
Zinc, dissolved	0.0102	0.0040		2020-08-29			
Zirconium, dissolved	< 0.00010	0.00010		2020-08-29			

2020-08-26 Alkalinity, Total (as CaCO3) 220 1.0 mg/L

REPORTED TO Ecoscape Environmental Ltd. WORK ORDER

PROJECT 19-2850 - Golden **REPORTED** 2020-09-01 13:36

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW20-01 (0082459-11) Matrix: Water S	Sampled: 2020-08-24 11:5	5, Continued			
General Parameters, Continued					
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	220	1.0	mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Bicarbonate (HCO3)	269	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	< 20	20	mg/L	2020-08-31	
Conductivity (EC)	576	2.0	μS/cm	2020-08-26	
рН	8.22	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	308	15	mg/L	2020-08-27	
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-08-28	
Turbidity	0.74	0.10	NTU	2020-08-26	
/olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-08-29	
Bromoform	< 1.0	1.0	μg/L	2020-08-29	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-08-29	
Chlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
Chloroethane	< 2.0	2.0	μg/L	2020-08-29	
Chloroform	< 1.0	1.0	μg/L	2020-08-29	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-08-29	
Dibromomethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0		μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
Dichloromethane	< 3.0		μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0		μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-08-29	
Ethylbenzene	< 1.0		μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0		μg/L	2020-08-29	
Styrene	< 1.0		μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	

0082459

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

2020-09-01 13:36

Analyte	Result	RL Units	Analyzed Qualifie
DMW20-01 (0082459-11) Matrix: Water	Sampled: 2020-08-24 11:55, (Continued	
Volatile Organic Compounds (VOC), Continu	red		
Toluene	< 1.0	1.0 μg/L	2020-08-29
1,1,1-Trichloroethane	< 1.0	1.0 µg/L	2020-08-29
1,1,2-Trichloroethane	< 1.0	1.0 µg/L	2020-08-29
Trichloroethylene	< 1.0	1.0 µg/L	2020-08-29
Trichlorofluoromethane	< 1.0	1.0 µg/L	2020-08-29
Vinyl chloride	< 1.0	1.0 µg/L	2020-08-29
Xylenes (total)	< 2.0	2.0 µg/L	2020-08-29
Surrogate: Toluene-d8	86	70-130 %	2020-08-29
Surrogate: 4-Bromofluorobenzene	92	70-130 %	2020-08-29
Surrogate: 1,4-Dichlorobenzene-d4	93	70-130 %	2020-08-29

Sample Qualifiers:

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED 2020-09-01 13:36

Analysis Description	Method Ref.	Technique	Accredited	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	✓	Kelowna
Ammonia, Total in Water	SM 4500-NH3 G* (2017)	Automated Colorimetry (Phenate)	✓	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	✓	Kelowna
Biochemical Oxygen Demand in Water	SM 5210 B (2017)	Dissolved Oxygen Meter	✓	Kelowna
Chemical Oxygen Demand in Water	SM 5220 D* (2017)	Closed Reflux, Colorimetry	✓	Kelowna
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	✓	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond
Hardness in Water	SM 2340 B (2017)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	✓	N/A
Mercury, dissolved in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
pH in Water	SM 4500-H+ B (2017)	Electrometry	✓	Kelowna
Solids, Total Dissolved in Water	SM 2540 C* (2017)	Gravimetry (Dried at 103-105C)	✓	Kelowna
Solids, Total Suspended in Water	SM 2540 D* (2017)	Gravimetry (Dried at 103-105C)	✓	Kelowna
Turbidity in Water	SM 2130 B (2017)	Nephelometry	✓	Kelowna
VH in Water	EPA 5030B / BCMOE VHw	Purge&Trap / Gas Chromatography (GC-FID)	✓	Richmond
Volatile Organic Compounds in Water	EPA 5030B / EPA 8260D	Purge&Trap / GC-MSD (SIM)	✓	Richmond
VPHw in Water	BCMOE VPH	Calculation: VH - (Benzene + Toluene + Ethylbenzene + Xylenes + Styrene)	+	N/A

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units pH units pH < 7 = acidic, ph > 7 = basic

μg/L Micrograms per litre

μS/cm Microsiemens per centimetre

BCMOE British Columbia Environmental Laboratory Manual, British Columbia Ministry of Environment

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO

Ecoscape Environmental Ltd.

PROJECT

19-2850 - Golden

WORK ORDER

0082459

REPORTED

2020-09-01 13:36

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline (s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

2020-09-01 13:36

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk)**: A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through
 the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B0H2225									
Blank (B0H2225-BLK1)			Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B0H2225-BS1)			Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
Bromide	4.01	0.10 mg/L	4.00		100	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Fluoride	4.00	0.10 mg/L	4.00		100	88-108			
Nitrate (as N)	4.02	0.010 mg/L	4.00		101	90-110			
Nitrite (as N)	2.03	0.010 mg/L	2.00		101	85-115			
Sulfate	16.0	1.0 mg/L	16.0		100	90-110			
Duplicate (B0H2225-DUP1)	Sou	rce: 0082459-11	Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
Bromide	< 0.10	0.10 mg/L		< 0.10				10	
Chloride	38.8	0.10 mg/L		38.8			< 1	10	
Fluoride	0.12	0.10 mg/L		0.12				10	
Nitrate (as N)	0.430	0.010 mg/L		0.429			< 1	10	
Nitrite (as N)	< 0.010	0.010 mg/L		< 0.010				15	
Sulfate	25.1	1.0 mg/L		25.1			< 1	10	
Matrix Spike (B0H2225-MS1)	Sou	rce: 0082459-11	Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
Bromide	4.02	0.10 mg/L	4.00	< 0.10	100	80-120			
Chloride	55.3	0.10 mg/L	16.0	38.8	103	75-125			
Fluoride	4.01	0.10 mg/L	4.00	0.12	97	75-125			
Nitrate (as N)	4.20	0.010 mg/L	4.00	0.429	94	75-125			
Nitrite (as N)	1.98	0.010 mg/L	2.00	< 0.010	99	80-120			
Sulfate	41.1	1.0 mg/L	16.0	25.1	100	75-125			

BCMOE Aggregate Hydrocarbons, Batch B0H2533

Blank (B0H2533-BLK1)			Prepared: 2020-08-31, Analyzed: 2020-08-31
VHw (6-10)	< 100	100 μg/L	

APPENDIX 2: QUALITY CONTROL RESULTS

Love Rosult Limi											
		-								1 13:36	
Color Colo	Analyte	Result	RL Units	•		% REC		% RPD		Qualifie	
White (6-10) 2390 100 µgt. 2690 89 70-130	BCMOE Aggregate	Hydrocarbons, Batch B0H2533, C	ontinued								
Dissolved Metals, Batch B0H2471 Blank (B0H2471-BLK1)	LCS (B0H2533-BS2	!)		Prepared	: 2020-08-2	9, Analyze	ed: 2020-0	8-29			
District District	VHw (6-10)	2390	100 μg/L	2690		89	70-130				
Lithium, dissolved	Dissolved Metals, E	3atch B0H2471									
Lithium, dissolved	Blank (B0H2471-BL	_K1)		Prepared	: 2020-08-2	9, Analyze	ed: 2020-0	8-29			
Aluminum, dissolved	Lithium, dissolved	< 0.00010	0.00010 mg/L								
Antimony, dissolved	Aluminum, dissolved										
Barlum, dissolved	Antimony, dissolved	< 0.00020									
Beryllini, dissolved	Arsenic, dissolved	< 0.00050	0.00050 mg/L								
Bismuth, dissolved											
Boron, dissolved											
Cadmin, dissolved < 0.000	Bismuth, dissolved	< 0.00010	0.00010 mg/L								
Calcium, dissolved											
Chromium, dissolved											
Cobalt, dissolved											
Copper, dissolved < 0,00040 mg/L Iron, dissolved < 0,00020 0,00020 mg/L											
Iron, dissolved	· · · · · · · · · · · · · · · · · · ·										
Lead, dissolved < 0,00020											
Magnase, dissolved											
Manganese, dissolved											
Molydenum, dissolved											
Nicket, dissolved											
Phosphorus, dissolved											
Potassium, dissolved											
Selenium, dissolved			-								
Silicon, dissolved < 1.0 1.0 mg/L Silver, dissolved < 0.00050											
Silver, dissolved											
Sodium, dissolved < 0.10											
Strontium, dissolved											
Sulfur, dissolved < 3.0 3.0 mg/L Tellurium, dissolved < 0.00050											
Tellurium, dissolved < 0.00050											
Thorium, dissolved < 0.00010 0.00010 mg/L Tin, dissolved < 0.00020	Tellurium, dissolved	< 0.00050	-								
Tin, dissolved <0.00020 0.00020 mg/L Titanium, dissolved <0.0050 0.0050 mg/L Tungsten, dissolved <0.0010 0.0010 mg/L Uranium, dissolved <0.000020 0.000020 mg/L Vanadium, dissolved <0.00010 0.0010 mg/L Zinc, dissolved <0.0040 0.0040 mg/L Zinc, dissolved <0.00010 0.00010 mg/L Zinc, dissolved <0.00010 0.00010 mg/L Zirconium, dissolved <0.00010 0.00010 mg/L LCS (B0H2471-BS1) Prepared: 2020-08-29, Analyzed: 2020-08-29 Lithium, dissolved 0.0191 0.00010 mg/L 0.0200 96 80-120 Aluminum, dissolved 0.0216 0.0050 mg/L 0.0199 109 80-120 Antimony, dissolved 0.0181 0.00020 mg/L 0.0200 90 80-120 Arsenic, dissolved 0.0181 0.00020 mg/L 0.0200 95 80-120 Barium, dissolved 0.0188 0.0050 mg/L 0.0198 96 80-120 Beryllium, dissolved 0.0188 0.0050 mg/L 0.0198 96 80-120 Bismuth, dissolved 0.0204 0.0010 mg/L 0.0198 103 80-120 Bismuth, dissolved 0.0205 0.00010 mg/L 0.0198 103 80-120 Bismuth, dissolved 0.0205 0.00010 mg/L 0.0198 103 80-120 Boron, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Boron, dissolved 0.0192 0.000010 mg/L 0.0200 101 80-120 Cadmium, dissolved 0.0192 0.000010 mg/L 0.0199 97 80-120 Chromium, dissolved 0.0188 0.00050 mg/L 0.0199 97 80-120 Chromium, dissolved 0.0188 0.00050 mg/L 0.0198 95 80-120	Thallium, dissolved	< 0.000020	0.000020 mg/L								
Titanium, dissolved < 0.0050 0.0050 mg/L Tungsten, dissolved < 0.0010	Thorium, dissolved	< 0.00010	0.00010 mg/L								
Tungsten, dissolved < 0.0010 0.0010 mg/L Uranium, dissolved < 0.000020	Tin, dissolved	< 0.00020	0.00020 mg/L								
Uranium, dissolved < 0.000020 0.000020 mg/L Vanadium, dissolved < 0.0010	Titanium, dissolved	< 0.0050	0.0050 mg/L								
Vanadium, dissolved < 0.0010 0.0010 mg/L Zinc, dissolved < 0.0040											
Zinc, dissolved < 0.0040 0.0040 mg/L Zirconium, dissolved < 0.00010 0.00010 mg/L Prepared: 2020-08-29, Analyzed: 2020-08-29 Lithium, dissolved 0.0191 0.00010 mg/L 0.0200 96 80-120 Aluminum, dissolved 0.0216 0.0050 mg/L 0.0199 109 80-120 Antimony, dissolved 0.0181 0.00020 mg/L 0.0200 90 80-120 Arsenic, dissolved 0.0190 0.00050 mg/L 0.0200 95 80-120 Arsenic, dissolved 0.0189 0.0050 mg/L 0.0200 95 80-120 Barium, dissolved 0.0189 0.0050 mg/L 0.0198 96 80-120 Bismuth, dissolved 0.0204 0.00010 mg/L 0.0198 103 80-120 Boron, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Cadmium, dissolved 0.0192 0.000010 mg/L 0.0199 97 80-120 Calcium, dissolved 1.98 0.20 mg/L 2.02 98			-								
LCS (B0H2471-BS1) Prepared: 2020-08-29, Analyzed: 2020-08-29 Lithium, dissolved 0.0191 0.00010 mg/L 0.0200 96 80-120 Aluminum, dissolved 0.0216 0.0050 mg/L 0.0199 109 80-120 Antimony, dissolved 0.0181 0.00020 mg/L 0.0200 90 80-120 Arsenic, dissolved 0.0190 0.00050 mg/L 0.0200 95 80-120 Barium, dissolved 0.0189 0.0050 mg/L 0.0198 96 80-120 Beryllium, dissolved 0.0204 0.0010 mg/L 0.0198 96 80-120 Bismuth, dissolved 0.0205 0.00010 mg/L 0.0198 103 80-120 Boron, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Cadmium, dissolved 0.0192 0.00010 mg/L 0.0199 97 80-120 Chromium, dissolved 1.98 0.20 mg/L 2.02 98 80-120 Chromium, dissolved 0.0188 0.00050 mg/L 0.0198 95 80-120 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
LCS (B0H2471-BS1) Prepared: 2020-08-29, Analyzed: 2020-08-29 Lithium, dissolved 0.0191 0.00010 mg/L 0.0200 96 80-120 Aluminum, dissolved 0.0216 0.0050 mg/L 0.0199 109 80-120 Antimony, dissolved 0.0181 0.00020 mg/L 0.0200 90 80-120 Arsenic, dissolved 0.0190 0.00050 mg/L 0.0200 95 80-120 Barium, dissolved 0.0189 0.0050 mg/L 0.0198 96 80-120 Beryllium, dissolved 0.0204 0.00010 mg/L 0.0198 103 80-120 Bismuth, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Boron, dissolved 0.0500 0.0500 mg/L 0.0200 101 80-120 Cadmium, dissolved 0.0192 0.000010 mg/L 0.0199 97 80-120 Chromium, dissolved 1.98 0.20 mg/L 2.02 98 80-120 Chromium, dissolved 0.0188 0.00050 mg/L 0.0198 95 80-120<											
Lithium, dissolved 0.0191 0.00010 mg/L 0.0200 96 80-120 Aluminum, dissolved 0.0216 0.0050 mg/L 0.0199 109 80-120 Antimony, dissolved 0.0181 0.00020 mg/L 0.0200 90 80-120 Arsenic, dissolved 0.0190 0.00050 mg/L 0.0200 95 80-120 Barium, dissolved 0.0189 0.0050 mg/L 0.0198 96 80-120 Beryllium, dissolved 0.0204 0.00010 mg/L 0.0198 103 80-120 Bismuth, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Boron, dissolved <0.0500			0.00010 mg/L	D	. 0000 00 0	10. AI	1,0000,0	0.00			
Aluminum, dissolved 0.0216 0.0050 mg/L 0.0199 109 80-120 Antimony, dissolved 0.0181 0.00020 mg/L 0.0200 90 80-120 Arsenic, dissolved 0.0190 0.00050 mg/L 0.0200 95 80-120 Barium, dissolved 0.0189 0.0050 mg/L 0.0198 96 80-120 Beryllium, dissolved 0.0204 0.00010 mg/L 0.0198 103 80-120 Bismuth, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Boron, dissolved <0.0500		•	0.00040		. 2020-08-2			0-29			
Antimony, dissolved 0.0181 0.00020 mg/L 0.0200 90 80-120 Arsenic, dissolved 0.0190 0.00050 mg/L 0.0200 95 80-120 Barium, dissolved 0.0189 0.0050 mg/L 0.0198 96 80-120 Beryllium, dissolved 0.0204 0.00010 mg/L 0.0198 103 80-120 Bismuth, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Boron, dissolved < 0.0500											
Arsenic, dissolved 0.0190 0.0050 mg/L 0.0200 95 80-120 Barium, dissolved 0.0189 0.0050 mg/L 0.0198 96 80-120 Beryllium, dissolved 0.0204 0.00010 mg/L 0.0198 103 80-120 Bismuth, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Boron, dissolved < 0.0500											
Barium, dissolved 0.0189 0.0050 mg/L 0.0198 96 80-120 Beryllium, dissolved 0.0204 0.00010 mg/L 0.0198 103 80-120 Bismuth, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Boron, dissolved < 0.0500											
Beryllium, dissolved 0.0204 0.00010 mg/L 0.0198 103 80-120 Bismuth, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Boron, dissolved < 0.0500											
Bismuth, dissolved 0.0205 0.00010 mg/L 0.0200 102 80-120 Boron, dissolved < 0.0500											
Boron, dissolved < 0.0500 0.0500 mg/L 0.0200 101 80-120 Cadmium, dissolved 0.0192 0.000010 mg/L 0.0199 97 80-120 Calcium, dissolved 1.98 0.20 mg/L 2.02 98 80-120 Chromium, dissolved 0.0188 0.00050 mg/L 0.0198 95 80-120											
Cadmium, dissolved 0.0192 0.000010 mg/L 0.0199 97 80-120 Calcium, dissolved 1.98 0.20 mg/L 2.02 98 80-120 Chromium, dissolved 0.0188 0.00050 mg/L 0.0198 95 80-120											
Calcium, dissolved 1.98 0.20 mg/L 2.02 98 80-120 Chromium, dissolved 0.0188 0.00050 mg/L 0.0198 95 80-120											
Chromium, dissolved 0.0188 0.00050 mg/L 0.0198 95 80-120	· · · · · · · · · · · · · · · · · · ·										
<u> </u>											
	Cobalt, dissolved	0.0183	0.00030 Hig/L 0.00010 mg/L	0.0198		97	80-120				

REPORTED TO Ecoscape Environment		nental Ltd.					WORK ORDER REPORTED			459 -09-01	13:36
Analyte		Result	RL	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, E	Batch B0H2471, Contil	nued					_				
LCS (B0H2471-BS1), Continued				Prepared	: 2020-08-2	9, Analyze	ed: 2020-0	08-29		
Copper, dissolved		0.0194	0.00040	ma/L	0.0200		97	80-120			
Iron, dissolved		1.95		mg/L	2.02		96	80-120			
Lead, dissolved		0.0197	0.00020		0.0199		99	80-120			
Magnesium, dissolved		2.00	0.010	mg/L	2.02		99	80-120			
Manganese, dissolved		0.0190	0.00020	mg/L	0.0199		95	80-120			
Molybdenum, dissolve	d	0.0190	0.00010	mg/L	0.0200		95	80-120			
Nickel, dissolved		0.0199	0.00040	mg/L	0.0200		99	80-120			
Phosphorus, dissolved		2.01	0.050	mg/L	2.00		101	80-120			
Potassium, dissolved		1.92	0.10	mg/L	2.02		95	80-120			
Selenium, dissolved		0.0190	0.00050	mg/L	0.0200		95	80-120			
Silicon, dissolved		1.7		mg/L	2.00		87	80-120			
Silver, dissolved		0.0192	0.000050	mg/L	0.0200		96	80-120			
Sodium, dissolved		1.90		mg/L	2.02		94	80-120			
Strontium, dissolved		0.0189	0.0010		0.0200		95	80-120			
Sulfur, dissolved		4.8	3.0	mg/L	5.00		96	80-120			
Tellurium, dissolved		0.0199	0.00050	mg/L	0.0200		99	80-120			
Thallium, dissolved		0.0199	0.000020	mg/L	0.0199		100	80-120			
Thorium, dissolved		0.0196	0.00010		0.0200		98	80-120			
Tin, dissolved		0.0197	0.00020		0.0200		98	80-120			
Titanium, dissolved		0.0198	0.0050	mg/L	0.0200		99	80-120			
Tungsten, dissolved		0.0202	0.0010		0.0200		101	80-120			
Uranium, dissolved		0.0201	0.000020		0.0200		101	80-120			
Vanadium, dissolved		0.0204	0.0010		0.0200		102	80-120			
Zinc, dissolved		0.0199	0.0040		0.0200		99	80-120			
Zirconium, dissolved		0.0192	0.00010	mg/L	0.0200		96	80-120			
Duplicate (B0H247	I-DUP1)	$\overline{}$	ource: 0082		Prepared	: 2020-08-2	9, Analyze	ed: 2020-0			
Lithium, dissolved		0.0199	0.00010			0.0193			3	20	
Aluminum, dissolved		< 0.0050	0.0050			< 0.0050				20	
Antimony, dissolved		< 0.00020	0.00020			< 0.00020				20	
Arsenic, dissolved		0.00506	0.00050			0.00518			2	20	
Barium, dissolved		0.196	0.0050 0.00010			0.196			< 1	20	
Beryllium, dissolved		< 0.00010				< 0.00010				20	
Bismuth, dissolved Boron, dissolved		< 0.00010 < 0.0500	0.00010			< 0.00010 < 0.0500				20	
Cadmium, dissolved		< 0.000010	0.0500			0.000010				20	
Calcium, dissolved		89.1		mg/L		86.2			3	20	
Chromium, dissolved		0.00050	0.00050			< 0.00050			<u> </u>	20	
Cobalt, dissolved		< 0.00030	0.00030			< 0.00030				20	
Copper, dissolved		0.00119	0.00040			0.00119				20	
Iron, dissolved		< 0.010		mg/L		< 0.010				20	
Lead, dissolved		< 0.00020	0.00020			< 0.00020				20	
Magnesium, dissolved		117		mg/L		118			< 1	20	
Manganese, dissolved		0.00091	0.00020			0.00090				20	
Molybdenum, dissolve		0.00064	0.00020			0.00063			2	20	
Nickel, dissolved		0.00096	0.00040			0.00095				20	
Phosphorus, dissolved	l	< 0.050		mg/L		< 0.050				20	
Potassium, dissolved		5.65		mg/L		5.67			< 1	20	
Selenium, dissolved		< 0.00050	0.00050			< 0.00050				20	
Silicon, dissolved		9.1		mg/L		9.1			< 1	20	
Silver, dissolved		< 0.000050	0.000050			< 0.000050				20	
Sodium, dissolved		323		mg/L		324			< 1	20	
Strontium, dissolved		1.34	0.0010			1.32			1	20	
Sulfur, dissolved		19.7		mg/L		21.3			8	20	
Tellurium, dissolved		< 0.00050	0.00050			< 0.00050				20	
Thallium, dissolved		< 0.000020	0.000020			< 0.000020				20	

REPORTED TO Ecoscape Environ PROJECT 19-2850 - Golden		ental Ltd.				WORK ORDER REPORTED		0082459 2020-09-01		13:36
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Bate	ch B0H2471, Continu	ued								
Duplicate (B0H2471-D	UP1), Continued	Sc	ource: 0082459-02	Prepared	: 2020-08-29), Analyze	ed: 2020-0	8-29		
Thorium, dissolved	,,	< 0.00010	0.00010 mg/L		< 0.00010				20	
Tin, dissolved		0.00022	0.00020 mg/L		0.00021				20	
Titanium, dissolved		< 0.0050	0.0050 mg/L		< 0.0050				20	
Tungsten, dissolved		0.0052	0.0010 mg/L		0.0052			< 1	20	
Uranium, dissolved		0.00216	0.000020 mg/L		0.00206			5	20	
Vanadium, dissolved		< 0.0010	0.0010 mg/L		< 0.0010				20	
Zinc, dissolved		< 0.0040	0.0040 mg/L		< 0.0040				20	
Zirconium, dissolved		< 0.00010	0.00010 mg/L		< 0.00010				20	
Reference (B0H2471-S	SRM1)			Prepared	: 2020-08-29), Analyze	ed: 2020-0	8-29		
Lithium, dissolved	·	0.105	0.00010 mg/L	0.100		105	70-130			
Aluminum, dissolved		0.240	0.0050 mg/L	0.235		102	70-130			
Antimony, dissolved		0.0477	0.00020 mg/L	0.0431		111	70-130			
Arsenic, dissolved		0.456	0.00050 mg/L	0.423		108	70-130			
Barium, dissolved		3.37	0.0050 mg/L	3.30		102	70-130			
Beryllium, dissolved		0.232	0.00010 mg/L	0.209		111	70-130			
Boron, dissolved		1.83	0.0500 mg/L	1.65		111	70-130			
Cadmium, dissolved		0.233	0.000010 mg/L	0.221		106	70-130			
Calcium, dissolved		7.10	0.20 mg/L	7.72		92	70-130			
Chromium, dissolved		0.444	0.00050 mg/L	0.434		102	70-130			
Cobalt, dissolved		0.132	0.00010 mg/L	0.124		106	70-130			
Copper, dissolved		0.881	0.00040 mg/L	0.815		108	70-130			
Iron, dissolved		1.33	0.010 mg/L	1.27		105	70-130			
Lead, dissolved		0.116	0.00020 mg/L	0.110		106	70-130			
Magnesium, dissolved		6.88	0.010 mg/L	6.59		104	70-130			
Manganese, dissolved		0.344	0.00020 mg/L	0.342		100	70-130			
Molybdenum, dissolved		0.424	0.00010 mg/L	0.404		105	70-130			
Nickel, dissolved		0.903	0.00040 mg/L	0.835		108	70-130			
Phosphorus, dissolved Potassium, dissolved		0.505 2.94	0.050 mg/L 0.10 mg/L	0.499 2.88		101	70-130 70-130			
Selenium, dissolved		0.0352	0.00050 mg/L	0.0324		102	70-130			
Sodium, dissolved		18.7	0.10 mg/L	18.0		104	70-130			
Strontium, dissolved		0.943	0.0010 mg/L	0.935		101	70-130			
Thallium, dissolved		0.0414	0.000020 mg/L	0.0385		107	70-130			
Uranium, dissolved		0.256	0.000020 mg/L	0.258		99	70-130			
Vanadium, dissolved		0.893	0.0010 mg/L	0.873		102	70-130			
Zinc, dissolved		0.912	0.0040 mg/L	0.848		108	70-130			
Dissolved Metals, Bato Blank (B0H2636-BLK1				Prepared	: 2020-08-30), Analyze	ed: 2020-0	08-30		
Mercury, dissolved		< 0.000010	0.000010 mg/L							
Blank (B0H2636-BLK2)			Prepared	: 2020-08-30), Analyze	ed: 2020-0	8-30		
Mercury, dissolved	-	< 0.000010	0.000010 mg/L	•		-				
Duplicate (B0H2636-D	UP2)	Sc	ource: 0082459-05	Prepared	: 2020-08-30). Analvze	ed: 2020-0	8-30		
Mercury, dissolved	J. 2)	< 0.000010	0.000010 mg/L		< 0.000010	,,, <u>, _</u>			20	
Matrix Spike (B0H2636	: Mea\			Droparod	: 2020-08-30) Apolyzo	.d. 2020 t	10 21		
Mercury, dissolved	D-IVI 32)	0.000260	0.000010 mg/L	· ·	< 0.000010	104	70-130	70 - 3 1		
•	PDM4\	0.000200	3.000010 Hig/L					10 30		
Reference (B0H2636-S	orivi1)	0.00575	0.000010 ~~"		: 2020-08-30	• •		10-30		
Mercury, dissolved		0.00575	0.000010 mg/L	0.00581	000000	99	70-130			
Reference (B0H2636-S	SRM2)	0.00=:=	0.000045 "		: 2020-08-30	•		08-30		
Mercury, dissolved		0.00547	0.000010 mg/L	0.00581		94	70-130		Da	ge 36 of

REPORTED TO Ecoscape Environ PROJECT 19-2850 - Golden	mental Ltd.				WORK REPOR	ORDER RTED		2459)-09-01	13:36
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Dissolved Metals, Batch B0H2636, Cont	inued								
General Parameters, Batch B0H2187									
Blank (B0H2187-BLK1)			Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L 1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3) Conductivity (EC)	< 1.0 < 2.0	2.0 µS/cm							
· · ·	12.0	2.0 μο/οπ							
Blank (B0H2187-BLK2)			Prepared	l: 2020-08-2	6, Analyze	ed: 2020-0	J8-26		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3) Alkalinity, Bicarbonate (as CaCO3)	< 1.0 < 1.0	1.0 mg/L 1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L							
Conductivity (EC)	< 2.0	2.0 µS/cm							
Blank (B0H2187-BLK3)			Prepared	l: 2020-08-2	6 Analyze	ed: 2020-0	08-26		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L	1 Toparou	2020 00 2	.0,7	, a. 2020 \	30 20		
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L							
Conductivity (EC)	< 2.0	2.0 μS/cm							
LCS (B0H2187-BS1)			Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
Alkalinity, Total (as CaCO3)	106	1.0 mg/L	100		106	80-120			
LCS (B0H2187-BS2)		·	Prenared	l: 2020-08-2	26 Analyze	74· 3030-0	18-26		
Alkalinity, Total (as CaCO3)	103	1.0 mg/L	100	1. 2020-00-2	103	80-120	30-20		
Alkallility, Total (as CaCOS)	103	1.0 IIIg/L							
LCS (B0H2187-BS3)			Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
Alkalinity, Total (as CaCO3)	108	1.0 mg/L	100		108	80-120			
LCS (B0H2187-BS4)			Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
Conductivity (EC)	1460	2.0 µS/cm	1410		104	95-104			
LCS (B0H2187-BS5)			Dranarad	l: 2020-08-2	26 Analyze	74· 3U3U-(า ย -ว6		
	1440	2.0 μS/cm	<u> </u>	1. 2020-00-2	•		J0-20		
Conductivity (EC)	1440	2.0 μ5/cm	1410		102	95-104			
LCS (B0H2187-BS6)			Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
Conductivity (EC)	1470	2.0 µS/cm	1410		104	95-104			
Reference (B0H2187-SRM1)			Prepared	l: 2020-08-2	26, Analvze	ed: 2020-0	08-26		
pH	7.00	0.10 pH units	7.01		100	98-102			
	7.00	oo pri unito		. 0000 00 7			20.00		
Reference (B0H2187-SRM2)			•	l: 2020-08-2	•		J8-26		
рН	6.99	0.10 pH units	7.01		100	98-102			
Reference (B0H2187-SRM3)			Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
pH	7.00	0.10 pH units	7.01		100	98-102			
General Parameters, Batch B0H2194									
Blank (B0H2194-BLK1)			Prepared	l: 2020-08-2	26, Analyze	ed: 2020-0	08-26		
Turbidity	< 0.10	0.10 NTU	<u> </u>						

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO PROJECT	Ecoscape Environmen 19-2850 - Golden	ital Ltd.				WORK O			2459)-09-01	13:36
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameter	s, Batch B0H2194, Contin	nued								
Blank (B0H2194-B	LK2)			Prepared:	2020-08-26	6, Analyzec	l: 2020-0	08-26		
Turbidity	•	< 0.10	0.10 NTU							
LCS (B0H2194-BS	1)			Prepared:	2020-08-26	6, Analyzed	l: 2020-0	08-26		
Turbidity		38.8	0.10 NTU	40.0		97	90-110			
LCS (B0H2194-BS	2)			Prepared:	2020-08-26	6, Analyzed	l: 2020-0	08-26		
Turbidity		40.1	0.10 NTU	40.0		100	90-110			
Duplicate (B0H219	94-DUP2)	S	ource: 0082459-04	Prepared:	2020-08-26	6, Analyzed	l: 2020-0	08-26		
Turbidity	·	45.1	0.10 NTU		45.1	-		< 1	15	
General Parameter	s, Batch B0H2256									
Blank (B0H2256-B	LK1)			Prepared:	2020-08-26	6, Analyzed	l: 2020-0	08-31		
BOD, 5-day	•	< 2.0	2.0 mg/L							
LCS (B0H2256-BS	1)			Prepared:	2020-08-26	6, Analyzed	l: 2020-0	08-31		
BOD, 5-day		186	2.0 mg/L	180		103	85-115			
Blank (B0H2312-B Solids, Total Suspend	LK1)	< 2.0	2.0 mg/L	Prepared:	: 2020-08-28	3, Analyzed	l: 2020-0)8-28		
		2.0	2.5 mg/L	Propared:	: 2020-08-28	2 Analyzon	I. 2020 (18 28		
Blank (B0H2312-B Solids, Total Suspend	<u> </u>	< 2.0	2.0 mg/L	гтератец.	. 2020-00-20	o, Allalyzec	1. 2020-0	00-20		
LCS (B0H2312-BS				Prenared:	: 2020-08-28	R Analyzed	I. 2020-0	18-28		
Solids, Total Suspend		87.0	10.0 mg/L	100	. 2020-00-20	87	85-115	70-20		
LCS (B0H2312-BS			g.		: 2020-08-28			18_28		
Solids, Total Suspend		98.0	10.0 mg/L	100	. 2020-00-20	98	85-115	70-20		
General Parameter										
Blank (B0H2315-B	LK1)			Prepared:	2020-08-27	, Analyzed	l: 2020-0	08-27		
Solids, Total Dissolve		< 15	15 mg/L			-				
Duplicate (B0H231	15-DUP1)	S	ource: 0082459-09	Prepared:	2020-08-27	, Analyzed	l: 2020-0	08-27		
Solids, Total Dissolve	d	2700	15 mg/L		2720	-		< 1	15	
Reference (B0H23	15-SRM1)			Prepared:	2020-08-27	, Analyzed	l: 2020-0	08-27		
Solids, Total Dissolve	•	245	15 mg/L	240		102	0-200			
General Parameter										
Blank (B0H2339-B Ammonia, Total (as N	•	< 0.050	0.050 mg/L	Prepared:	: 2020-08-27	, Analyzed	1. 2020-(JO-21		
		· 0.000	0.000 Hig/L	Dronono	. 2020 00 0	7 Angles-	1. 2020 1	00.07		
Ammonia Total (as N		< 0.050	0.050 mg/l	Prepared:	: 2020-08-27	, Analyzed	1: 2020-(JO-21		
Ammonia, Total (as N		~ 0.050	0.050 mg/L	Draware	. 2020 02 07	7 Amalu —	1. 2000 1	00.07		
Ammonia Total (as N	·	< 0.050	0.050 ma/l	Prepared:	: 2020-08-27	, Analyzed	1: 2020-(JØ-21		
Ammonia, Total (as N	1)	< 0.050	0.050 mg/L							

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO Ecoscape Environme PROJECT 19-2850 - Golden	ntal Ltd.				WORK (_		2459 0-09-01	13:36
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B0H2339, Cont	inued								
LCS (B0H2339-BS1)			Prepared	: 2020-08-27	7, Analyze	d: 2020-0	08-27		
Ammonia, Total (as N)	0.987	0.050 mg/L	1.00		99	90-115			
LCS (B0H2339-BS2)			Prepared	: 2020-08-27	7. Analyze	4· 2020-0	18-27		
Ammonia, Total (as N)	0.978	0.050 mg/L	1.00	. 2020 00 21	98	90-115	, , , , , , , , , , , , , , , , , , ,		
				. 2020 00 2			00.07		
LCS (B0H2339-BS3) Ammonia, Total (as N)	0.991	0.050 mg/L	1.00	: 2020-08-27	99	90-115	J0-2 <i>1</i>		
Duplicate (B0H2339-DUP1)		rce: 0082459-04	Prepared	: 2020-08-27	7, Analyze	d: 2020-0			
Ammonia, Total (as N)	0.415	0.050 mg/L		0.447			7	15	
Matrix Spike (B0H2339-MS1)	Sou	rce: 0082459-04	Prepared	: 2020-08-27	7, Analyze	d: 2020-0	08-27		
Ammonia, Total (as N)	0.668	0.050 mg/L	0.250	0.447	88	75-125			
General Parameters, Batch B0H2680 Blank (B0H2680-BLK1)			Prepared	: 2020-08-3	1, Analyze	d: 2020-()8-31		
Chemical Oxygen Demand	< 20	20 mg/L							
LCS (B0H2680-BS1)			Prepared	: 2020-08-3	1, Analyze	d: 2020-0	08-31		
Chemical Oxygen Demand	501	20 mg/L	500		100	89-115			
Blank (B0H2533-BLK1) Benzene	< 0.5	0.5 μg/L	Prepared	: 2020-08-31	i, Analyze	u. 2020-t	Jo-3 I		
Bromodichloromethane	< 1.0	1.0 µg/L							
Bromoform Carbon tetrachloride	< 1.0 < 0.5	1.0 μg/L 0.5 μg/L							
Chlorobenzene	< 1.0	1.0 μg/L							
Chloroethane	< 2.0	2.0 μg/L							
Chloroform	< 1.0	1.0 µg/L							
Dibromochloromethane 1,2-Dibromoethane	< 1.0 < 0.3	1.0 μg/L 0.3 μg/L							
Dibromomethane	< 1.0	1.0 µg/L							
1,2-Dichlorobenzene	< 0.5	0.5 µg/L							
1,3-Dichlorobenzene 1.4-Dichlorobenzene	< 1.0 < 1.0	1.0 μg/L 1.0 μg/L							
1,1-Dichloroethane	< 1.0	1.0 μg/L 1.0 μg/L							
1,2-Dichloroethane	< 1.0	1.0 µg/L							
1,1-Dichloroethylene	< 1.0	1.0 μg/L							
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	< 1.0 < 1.0	1.0 μg/L 1.0 μg/L							
Dichloromethane	< 3.0	3.0 µg/L							
1,2-Dichloropropane	< 1.0	1.0 μg/L							
1,3-Dichloropropene (cis + trans)	< 1.0	1.0 µg/L							
Ethylbenzene Methyl tert-butyl ether	< 1.0 < 1.0	1.0 μg/L 1.0 μg/L							
Styrene	< 1.0	1.0 µg/L							
1,1,2,2-Tetrachloroethane	< 0.5	0.5 μg/L							
Tetrachloroethylene	< 1.0	1.0 µg/L							
Toluene 1,1,1-Trichloroethane	< 1.0 < 1.0	1.0 μg/L 1.0 μg/L							
1,1,2-Trichloroethane	< 1.0	1.0 µg/L							
Trichloroethylene	< 1.0	1.0 μg/L							
Trichlorofluoromethane	< 1.0	1.0 µg/L							

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO Ecoscape Environmental Ltd. **WORK ORDER** 0082459 19-2850 - Golden 2020-09-01 13:36 **PROJECT** REPORTED Spike Source **REC** RPD Qualifier **RL Units** % REC % RPD Analyte Result Level Result Limit Limit Volatile Organic Compounds (VOC), Batch B0H2533, Continued Prepared: 2020-08-31, Analyzed: 2020-08-31 Blank (B0H2533-BLK1), Continued Vinyl chloride < 1.0 1.0 µg/L Xylenes (total) < 2.0 2.0 µg/L Surrogate: Toluene-d8 70-130 24.5 μg/L 92 26.5 Surrogate: 4-Bromofluorobenzene 25.2 24.9 101 70-130 μg/L Surrogate: 1,4-Dichlorobenzene-d4 26.5 μg/L 25.5 104 70-130 LCS (B0H2533-BS1) Prepared: 2020-08-31, Analyzed: 2020-08-31 0.5 µg/L 20.0 81 70-130 Benzene 16.2 Bromodichloromethane 20.0 14.2 1.0 µg/L 71 70-130 Bromoform 15.0 1.0 µg/L 20.1 75 70-130 Carbon tetrachloride 13.8 0.5 µg/L 20.2 68 70-130 SPK1 20.1 17.0 1.0 µg/L 85 70-130 Chlorobenzene Chloroethane 11.1 2.0 µg/L 20.0 56 60-140 SPK Chloroform 15.0 1.0 µg/L 20.1 74 70-130 69 70-130 SPK1 Dibromochloromethane 13.9 1.0 µg/L 20.2 0.3 µg/L 73 70-130 1,2-Dibromoethane 14.6 20.0 SPK1 Dibromomethane 13.7 1.0 µg/L 20.0 68 70-130 0.5 µg/L 1 2-Dichlorobenzene 173 20.1 86 70-130 1,3-Dichlorobenzene 17.0 1.0 µg/L 20.1 85 70-130 1,4-Dichlorobenzene 15.4 1.0 µg/L 20.1 77 70-130 14 5 1.0 µg/L 20 1 72 1 1-Dichloroethane 70-130 1.0 µg/L 1,2-Dichloroethane 14.6 20.1 73 70-130 1,1-Dichloroethylene 14.3 1.0 µg/L 20.1 71 70-130 14.6 1.0 µg/L 73 70-130 cis-1,2-Dichloroethylene 20.0 trans-1,2-Dichloroethylene 13.7 1.0 µg/L 20.0 68 70-130 SPK1 Dichloromethane 15.1 3.0 µg/L 20.1 75 70-130 15.3 1.0 µg/L 20.1 76 70-130 1,2-Dichloropropane 1,3-Dichloropropene (cis + trans) 28.0 1.0 µg/L 40.0 70 70-130 18.3 1.0 µg/L 20.0 92 70-130 Ethylbenzene Methyl tert-butyl ether 16.9 1.0 µg/L 20.0 85 70-130 Styrene 18.0 1.0 µg/L 20.0 90 70-130 1,1,2,2-Tetrachloroethane 18.1 0.5 µg/L 20.1 90 70-130 14 8 20.1 74 Tetrachloroethylene 1.0 µg/L 70-130 Toluene 15.8 1.0 µg/L 20.0 79 70-130 1,1,1-Trichloroethane 13.6 1.0 µg/L 20.0 68 70-130 SPK1 1.0 µg/L 74 1.1.2-Trichloroethane 14.8 20.1 70-130 Trichloroethylene 14.7 1.0 µg/L 20.1 73 70-130 Trichlorofluoromethane 15.2 1.0 µg/L 20.0 76 60-140 Vinyl chloride 16.9 1.0 µg/L 20.0 85 60-140 Xylenes (total) 53.8 2.0 µg/L 60.0 90 70-130

QC Qualifiers:

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,4-Dichlorobenzene-d4

S02 Surrogate recovery outside of control limits. Data accepted based on acceptable recovery of other surrogates.

μg/L

μg/L

μg/L

26.5

24.9

25.5

97

103

106

70-130

70-130

70-130

SPK The recovery of this analyte was outside of established control limits.

25.6

25.7

27.0

SPK1 The recovery of this analyte was outside of established control limits. The data was accepted based on

performance of other batch QC.

CARO.ca

1	10-0033	District We	Belgman	ac memo
	15-5417	Highway 9	The bishows a	6.145.9/10(883)
1	The Time	Landard P.A.	. Winnerson	ATT 1732 1145

CHARMON CUSTODY RECORD 1112 THE RESERVE ASSET 经为在方面的 BM:

REPORT TO CONTROL BING PROPERTY AND ADDRESS OF \$500-500 Blooms Of Belowing	INVOICE TO PROPERTY OF STATES OF STA	Compact of the engine of the	ESCHARLENT AT AT COLUMN	ELECTION STATE OF THE STATE OF STATE OF
200 SC = Scient Mile	rimit (ar in Massy Service)	Front College History College CA (MCC)	Without byeath of a silvery the chair of by a si	TENNESTE AT THE PERSON NAMED IN
TELESAR SCHOOL (1997) CHARACTERIOR (1997) IN MALE AND FOR FOR THE SOURCE STATE OF THE	ESTRUT TECHNIQUESTANT OF STRUCTURE TO STRUCT	1 144	VESS REQUESTED:	Section Control of the Control of th
19670 08 4	SHAME THE STATE OF			000
Trace this bits				
DV#+ n	2000 (1 ²⁰ 2000 50 500 50			100
ENGLISH TOWNS TO THE TOWNS TO THE TOWNS TO THE TOWNS TO THE TOWNS TO THE TOWNS TO THE TOWNS TO THE TOWNS TO THE TOWNS TO THE TOWNS TO THE TOWNS TO THE TOWN TO THE	218000 1300 · ·			
OREFRESION ARCHIOSO CRESCO SERVE			SAVER PROPERTY OF	

AND HISTORY

Assatz White Other Continues and a later

2nd of stacked

Dy admiratification so rates in the first of the state of the world reference that also related to the first of the first

TOWNS POT TO A SA , LET TO H.L

CA	R()
Featre show	Brands (Browns)

CHAIN O	$F \in USTO_1$	DAMECOMD	1.00(#1

LOSSO A	DATE:		
	1776	n off	

CAIL	313 I-80 Wang Was Africannia M. 987	A STREET PROPERTY OF THE STREET OF THE STREE	QC 10000000	
Codes dook franks (firstend)	#160-TKT Pigliyag-976, features-9€ 94 17331-139-8-mail ##, hiteution-98-79	The state of the s		/w.
REPORT TO:	NUOJERTIE ENGINEEN PROMODEL	- I transfeller E C	Construir (MACONICA) and Albania (Albania (Albania) Distribution (Albania)	Francisco I Francisco Francisco Contrato de Afrado
#####################################	An On we	Propresentative Confirm Foreign Will Short 142	LOSCATION AND THE CLER COM. Soft	##
30, VIV 202	80-00 SMOWA	7-90 first 6, enc 18-5 Cest (en 19-08-90	information to the second	
CONTACT: Second Miles TRUPAS: INVESTIGATE	Contract a <u>Minay Contractor</u> TELENCE	MALTE	LIA) Menta SINEQUISTED:	Lugardinage (
Contract Color of Sec. (2) Color of the co	UR ATRAMET W.S. (MARIL S. Maril 19) ETML <u>September Syconomic Common Co</u>	F 12000	E 5 5	Semono de la tra
SAVIDASCISM IST	A 1. SAMPHACE COMMON	200 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4 L 42 L X 4 L 42 L X 4 L 42 L X 4 L	Dedutor sees Coursellater
VMTSHEET	7 2400 E 4K			C R X
Yes in	125940 800 XX			, , ,
166 MI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 3	
tone See #	1 1 2 88		7.3	200
Tree 2nd 21	21/9-00 (3" XK		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.53 L
CMD45	1 25Auts 8 30 8 8			NY Y
U1967-4	25mg 5 11 7 8k			8 W W
78785-253	DIANG MAG			
1965 1964	1 1 163 XX			
DC#334)	4 510m 112 784 -			0.809
anjet di Vasiledia — di Francia. Na lata di I	CONTRACTOR CONTRACTORS STATE	Share L. Eregoured	Contract Con	

CERTIFICATE OF ANALYSIS

REPORTED TO Ecoscape Environmental Ltd.

#102 - 450 Neave Court Kelowna, BC V1V 2M2

ATTENTION Kelsey Tanaka

PO NUMBER 19-2850

PROJECT 19-2850 - Golden

PROJECT INFO Golden

WORK ORDER 0082459

RECEIVED / TEMP 2020-08-25 15:15 / 7°C

REPORTED 2020-10-21 11:00

COC NUMBER No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

Ahead of the Curve

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at acrump@caro.ca

Authorized By:

Alana Crump Team Lead, Client Service MEGT

1-888-311-8846 | www.caro.ca

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
MW09-06S (0082459-01) Matrix: Wa	ater Sampled: 2020-08-24 16:30				
Anions					
Bromide	1.10	0.10	mg/L	2020-08-26	
Chloride	379	0.10	mg/L	2020-08-26	
Fluoride	< 0.10	0.10	mg/L	2020-08-26	
Nitrate (as N)	33.9	0.010	mg/L	2020-08-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-08-26	
Sulfate	637	1.0	mg/L	2020-08-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	1500	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0405	0.00010	mg/L	2020-08-29	
Aluminum, dissolved	0.481	0.0050		2020-08-29	
Antimony, dissolved	0.00021	0.00020	mg/L	2020-08-29	
Arsenic, dissolved	0.00073	0.00050	mg/L	2020-08-29	
Barium, dissolved	0.0618	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010		2020-08-29	
Boron, dissolved	1.87	0.0500		2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010		2020-08-29	
Calcium, dissolved	159		mg/L	2020-08-29	
Chromium, dissolved	0.00091	0.00050		2020-08-29	
Cobalt, dissolved	0.00178	0.00010		2020-08-29	
Copper, dissolved	0.00279	0.00040		2020-08-29	
Iron, dissolved	0.636	0.010		2020-08-29	
Lead, dissolved	0.00087	0.00020		2020-08-29	
Magnesium, dissolved	268	0.010		2020-08-29	
Manganese, dissolved	0.103	0.00020		2020-08-29	
Mercury, dissolved	< 0.000010	0.000010		2020-08-30	
Molybdenum, dissolved	0.00018	0.00010		2020-08-29	
Nickel, dissolved	0.0125	0.00040		2020-08-29	
Phosphorus, dissolved	< 0.050	0.050		2020-08-29	
Potassium, dissolved	161		mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050		2020-08-29	
Silicon, dissolved	12.5		mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050		2020-08-29	
Sodium, dissolved	275		mg/L	2020-08-29	
Strontium, dissolved	1.67	0.0010		2020-08-29	
Sulfur, dissolved	248		mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29	
Thallium, dissolved		0.00030		2020-08-29	
Thorium, dissolved	0.000057 0.00032	0.00020		2020-08-29	
Tin, dissolved	0.00032	0.00010		2020-08-29	
		U.UUUZU	11107/1		

 REPORTED TO
 Ecoscape Environmental Ltd.
 WORK ORDER
 0082459

 PROJECT
 19-2850 - Golden
 REPORTED
 2020-10-21 11:00

Sampled: 2020-08-24 16: < 0.0010	30, Continued			
< 0.0010				
< 0.0010				
0.00.0	0.0010	mg/L	2020-08-29	
0.00687	0.000020	mg/L	2020-08-29	
< 0.0010	0.0010	mg/L	2020-08-29	
< 0.0040	0.0040	mg/L	2020-08-29	
0.00051	0.00010	mg/L	2020-08-29	
949	1.0	mg/L	2020-08-26	
< 1.0			2020-08-26	
949			2020-08-26	
< 1.0			2020-08-26	
< 1.0			2020-08-26	
1160			N/A	
< 0.600			N/A	
< 0.340			N/A	
1.71	0.050	mg/L	2020-08-27	
< 6.1			2020-08-31	
36			2020-08-31	
3940			2020-08-26	
7.71	0.10	pH units	2020-08-26	HT2
2730	15	mg/L	2020-08-27	
122	2.0	mg/L	2020-08-28	
60.4	0.10	NTU	2020-08-26	
5 6 4			0000 40 40	
		-	2020-10-19	
• •				
•		per mil	2020-10-19	
-150.1		per mil	2020-10-19	
٠,٥.٢	0.5	/1	2020 00 20	
		· -		
		· -		
	< 0.0040 0.00051 949 < 1.0 949 < 1.0 < 1.0 1160 < 0.600 < 0.340 1.71 < 6.1 36 3940 7.71 2730 122 60.4 Refer to Appendix for Full Report -19.04	< 0.0040	\$\begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<0.0040

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
//////////////////////////////////////	r Sampled: 2020-08-24 16:30	, Continued			
/olatile Organic Compounds (VOC), Conti	nued				
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-08-29	
Styrene	< 1.0	1.0	μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-08-29	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
Trichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0	μg/L	2020-08-29	
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluene-d8	96	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	103	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	104	70-130	%	2020-08-29	
IW10-08 (0082459-02) Matrix: Water nions Bromide	Sampled: 2020-08-25 08:00 < 0.10	0.10	mg/L	2020-08-26	
Chloride	597		mg/L	2020-08-26	
	597 0.20	0.10		2020-08-26 2020-08-26	
Chloride		0.10	mg/L		
Chloride Fluoride	0.20	0.10 0.10	mg/L mg/L	2020-08-26	
Chloride Fluoride Nitrate (as N)	0.20 1.01	0.10 0.10 0.010 0.010	mg/L mg/L	2020-08-26 2020-08-26	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	0.20 1.01 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	0.20 1.01 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	0.20 1.01 < 0.010 51.4	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	0.20 1.01 < 0.010 51.4	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals	0.20 1.01 < 0.010 51.4	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A	
Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved	0.20 1.01 < 0.010 51.4 701	0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
IW10-08 (0082459-02) Matrix: Water	Sampled: 2020-08-25 08:00	, Continued			
issolved Metals, Continued					
Barium, dissolved	0.196	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved	< 0.0500	0.0500	mg/L	2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-08-29	
Calcium, dissolved	86.2	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Copper, dissolved	0.00119	0.00040	mg/L	2020-08-29	
Iron, dissolved	< 0.010	0.010	mg/L	2020-08-29	
Lead, dissolved	< 0.00020	0.00020		2020-08-29	
Magnesium, dissolved	118	0.010		2020-08-29	
Manganese, dissolved	0.00090	0.00020		2020-08-29	
Mercury, dissolved	< 0.000010	0.000010		2020-08-30	
Molybdenum, dissolved	0.00063	0.00010		2020-08-29	
Nickel, dissolved	0.00095	0.00040		2020-08-29	
Phosphorus, dissolved	< 0.050	0.050		2020-08-29	
Potassium, dissolved	5.67		mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050		2020-08-29	
Silicon, dissolved	9.1		mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050		2020-08-29	
Sodium, dissolved	324		mg/L	2020-08-29	
Strontium, dissolved	1,32	0.0010		2020-08-29	
Sulfur, dissolved	21.3		mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29	
Thallium, dissolved	< 0.000020	0.000020		2020-08-29	
Thorium, dissolved	< 0.00010	0.00010		2020-08-29	
Tin, dissolved	0.00021	0.00020		2020-08-29	
Titanium, dissolved	< 0.0050	0.0050		2020-08-29	
Tungsten, dissolved	0.0052	0.0010		2020-08-29	
Uranium, dissolved	0.00206	0.000020		2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010		2020-08-29	
Zinc, dissolved	< 0.0040	0.0040		2020-08-29	
Zirconium, dissolved	< 0.0010	0.00010		2020-08-29	
General Parameters		0.00010	9, _	2020 00 20	
Alkalinity, Total (as CaCO3)	501	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	501		mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	611		mg/L	N/A	
	311	1.22		1 N/ / \	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER 0082459 **REPORTED** 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifie
MW10-08 (0082459-02) Matrix: Wa	ter Sampled: 2020-08-25 08:00, 0	Continued			
General Parameters, Continued					
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	27	20	mg/L	2020-08-31	
Conductivity (EC)	2830	2.0	μS/cm	2020-08-26	
pH	8.05	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	1560	15	mg/L	2020-08-27	
Solids, Total Suspended	122		mg/L	2020-08-28	
Turbidity	83.7		NTU	2020-08-26	
Miscellaneous Subcontracted Paramet	ters				
Refer to Appendix	Refer to		_	2020-10-19	
Note: to Appendix	Appendix for		-	2020-10-19	
	Full Report				
delta-18-O	-19.23		per mil	2020-10-19	
delta-2-H	-148.6		per mil	2020-10-19	
/olatile Organic Compounds (VOC)			•		
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0		μg/L	2020-08-29	
Bromoform	< 1.0		μg/L	2020-08-29	
Carbon tetrachloride	< 0.5		μg/L	2020-08-29	
Chlorobenzene	< 1.0		μg/L	2020-08-29	
Chloroethane	< 2.0		μg/L	2020-08-29	
Chloroform	< 1.0		μg/L	2020-08-29	
Dibromochloromethane	< 1.0		μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3		μg/L	2020-08-29	
Dibromomethane	< 1.0		μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5		µg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1.4-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0		μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
Dichloromethane	< 3.0		μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0		μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-08-29	
Ethylbenzene	< 1.0		μg/L μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0		μg/L μg/L	2020-08-29	
	< 1.0		μg/L μg/L		
Styrene 1,1,2,2-Tetrachloroethane	< 0.5			2020-08-29	
1, 1,∠,∠-Tetracriloroetriane	< 0.0	1.0	μg/L	2020-00-29	

REPORTED TO	Ecoscape Environmental Ltd.
-------------	-----------------------------

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0082459

RTED 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifie
MW10-08 (0082459-02) Matrix: Water	Sampled: 2020-08-25 08:00	, Continued			
Volatile Organic Compounds (VOC), Contin	nued				
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0		2020-08-29	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
Trichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0	μg/L	2020-08-29	
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluene-d8	89	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	96	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	97	70-130	%	2020-08-29	
Anions					
Bromide	0.34	0.10	mg/L	2020-08-26	
Chloride	350	0.10	mg/L	2020-08-26	
Fluoride	0.14	0.10	mg/L	2020-08-26	
Nitrate (as N)	24.4	0.010	mg/L	2020-08-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-08-26	
Sulfate	68.2	1.0	mg/L	2020-08-26	
Calculated Parameters Hardness, Total (as CaCO3)	1070	0.500	ma/l	N/A	
Dissolved Metals	1070	0.000	mg/L	14/73	
	0.0040	0.00040	/I	2020 00 20	
Lithium, dissolved	0.0210	0.00010		2020-08-29	
Antimony dissolved	< 0.0050	0.0050			
Antimony, dissolved Arsenic, dissolved	0.00021	0.00020 0.00050		2020-08-29	
Barium, dissolved	0.00133			2020-08-29	
<u>'</u>	0.311	0.0050			
Beryllium, dissolved	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolved Boron, dissolved	< 0.00010	0.00010 0.0500		2020-08-29	
Cadmium, dissolved	0.401	0.000010			
<u> </u>	0.000023		mg/L mg/L	2020-08-29	
Calcium, dissolved	94.7			2020-08-29	
Chromium, dissolved	< 0.00050	0.00050 0.00010		2020-08-29	
Copper dissolved	0.00523			2020-08-29	
Copper, dissolved	0.00121	0.00040		2020-08-29	
Iron, dissolved	< 0.010	0.010		2020-08-29	
Lead, dissolved	< 0.00020	0.00020		2020-08-29	
Magnesium, dissolved	202	0.010		2020-08-29	
Manganese, dissolved Mercury, dissolved	0.167 < 0.000010	0.00020 0.000010		2020-08-29 2020-08-30	
	< (1 (11 11 11 11 11 11 11 11 11 11 11 11	(1 (1(1(1(1/1))	rm(I/I	201201 US 3()	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED 20

Analyte	Result	RL	Units	Analyzed	Quali
IW18-10 (0082459-03) Matrix: Water	Sampled: 2020-08-25 08:00	, Continued			
Dissolved Metals, Continued					
Molybdenum, dissolved	0.00111	0.00010	mg/L	2020-08-29	
Nickel, dissolved	0.0434	0.00040	mg/L	2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Potassium, dissolved	27.7	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	9.7	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	183	0.10	mg/L	2020-08-29	
Strontium, dissolved	1.56	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	30.7	3.0	mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Thallium, dissolved	0.000103	0.000020	mg/L	2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	0.00040	0.00020	mg/L	2020-08-29	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.00367	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	0.00022	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	713	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	713	1.0	mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	870		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	1.73	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	46	20	mg/L	2020-08-31	
Conductivity (EC)	2560	2.0	μS/cm	2020-08-26	
рН	7.97	0.10	pH units	2020-08-26	НТ
Solids, Total Dissolved	1390	15	mg/L	2020-08-27	
Solids, Total Suspended	110	2.0	mg/L	2020-08-28	
Turbidity	114	0.10	NTU	2020-08-26	
discellaneous Subcontracted Parameters					
Refer to Appendix	Refer to		-	2020-10-19	
	Appendix for				
	Full Report				
delta-18-O	-19.22		per mil	2020-10-19	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifier
MW18-10 (0082459-03) Matrix: Water	Sampled: 2020-08-25 08:00, C	Continued			
Miscellaneous Subcontracted Parameters,	Continued				
delta-2-H	-148.3		per mil	2020-10-19	
Volatile Organic Compounds (VOC)					
	.0.5	0.5	//	0000 00 00	
Benzene Brans a diable some others	< 0.5		μg/L	2020-08-29	
Bromodichloromethane	< 1.0		µg/L	2020-08-29	
Bromoform	< 1.0			2020-08-29	
Carbon tetrachloride	< 0.5		μg/L	2020-08-29	
Chlorobenzene	< 1.0		μg/L	2020-08-29	
Chloroethane	< 2.0		μg/L	2020-08-29	
Chloroform	< 1.0		μg/L	2020-08-29	
Dibromochloromethane	< 1.0		μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3		μg/L	2020-08-29	
Dibromomethane	< 1.0		μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0		μg/L	2020-08-29	
Styrene	< 1.0		μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	
Toluene	< 1.0		μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-08-29	
Trichloroethylene	< 1.0		μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0		μg/L	2020-08-29	
Vinyl chloride	< 1.0			2020-08-29	
Xylenes (total)	< 2.0		μg/L	2020-08-29	
Surrogate: Toluene-d8	87	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	93			2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	94	70-130		2020-08-29	

MW18-11 (0082459-04) | Matrix: Water | Sampled: 2020-08-24 15:10

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

				2020 10 21 11.00	
Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-11 (0082459-04) Matrix: Wat	er Sampled: 2020-08-24 15:10	, Continued			
Anions, Continued					
Bromide	< 0.10	0.10	mg/L	2020-08-26	
Chloride	71.4	0.10	mg/L	2020-08-26	
Fluoride	0.74	0.10	mg/L	2020-08-26	
Nitrate (as N)	< 0.010	0.010	mg/L	2020-08-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-08-26	
Sulfate	88.3	1.0	mg/L	2020-08-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	624	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0234	0.00010	mg/L	2020-08-29	
Aluminum, dissolved	< 0.0050	0.0050		2020-08-29	
Antimony, dissolved	0.00139	0.00020		2020-08-29	
Arsenic, dissolved	0.0110	0.00050		2020-08-29	
Barium, dissolved	0.0082	0.0050		2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010		2020-08-29	
Boron, dissolved	0.262	0.0500		2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010		2020-08-29	
Calcium, dissolved	40.3		mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050		2020-08-29	
Cobalt, dissolved	0.00026	0.00010		2020-08-29	
Copper, dissolved	< 0.00040	0.00040		2020-08-29	
Iron, dissolved	0.151	0.010		2020-08-29	
Lead, dissolved	< 0.00020	0.00020		2020-08-29	
Magnesium, dissolved	127	0.010		2020-08-29	
Manganese, dissolved	0.0309	0.00020		2020-08-29	
Mercury, dissolved	< 0.000010	0.000010		2020-08-30	
Molybdenum, dissolved	0.00212	0.00010		2020-08-29	
Nickel, dissolved	0.00680	0.00040		2020-08-29	
Phosphorus, dissolved	< 0.050	0.050		2020-08-29	
Potassium, dissolved	6.46		mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050		2020-08-29	
Silicon, dissolved	3.2		mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050		2020-08-29	
Sodium, dissolved	112		mg/L	2020-08-29	
Strontium, dissolved	0.644	0.0010		2020-08-29	
Sulfur, dissolved	36.2		mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29	
Thallium, dissolved	< 0.000020	0.000020		2020-08-29	
Thorium, dissolved	< 0.00010	0.00010		2020-08-29	
Tin, dissolved	< 0.00010	0.00020		2020-08-29	
Titanium, dissolved	< 0.0050	0.0050		2020-08-29	

 REPORTED TO
 Ecoscape Environmental Ltd.
 WORK ORDER
 0082459

 PROJECT
 19-2850 - Golden
 REPORTED
 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifier
MW18-11 (0082459-04) Matrix: Water	Sampled: 2020-08-24 15:10	, Continued			
Dissolved Metals, Continued					
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.000055	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	0.0064	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	0.00011	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	648	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	648		mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	790		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	0.447	0.050		2020-08-27	
BOD, 5-day	< 6.1		mg/L	2020-08-31	
Chemical Oxygen Demand	20		mg/L	2020-08-31	
Conductivity (EC)	1460	2.0	μS/cm	2020-08-26	
pH	8.13	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	849		mg/L	2020-08-27	
Solids, Total Suspended	32.0		mg/L	2020-08-28	
Turbidity	45.1		NTU	2020-08-26	
Miscellaneous Subcontracted Parameters					
	Defende			2020 10 10	
Refer to Appendix	Refer to Appendix for		-	2020-10-19	
	Full Report				
delta-18-O	-20.72		per mil	2020-10-19	
delta-2-H	-160.9		per mil	2020-10-19	
/olatile Organic Compounds (VOC)			-		
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0		μg/L	2020-08-29	
Bromoform	< 1.0		μg/L	2020-08-29	
Carbon tetrachloride	< 0.5		μg/L	2020-08-29	
Chlorobenzene	< 1.0		μg/L	2020-08-29	
Chloroethane	< 2.0		μg/L	2020-08-29	
Chloroform	< 1.0		μg/L	2020-08-29	
Dibromochloromethane	< 1.0		μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3		μg/L	2020-08-29	
Dibromomethane	< 1.0		μg/L	2020-08-29	
	< 0.5		μg/L	2020-08-29	
1,2-Dichlorobenzene	< U.5	U.S.	ua/L	ZUZU-U0-79	

 $\begin{tabular}{ll} \textbf{REPORTED TO} & Ecoscape Environmental Ltd. \\ \end{tabular}$

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifie
MW18-11 (0082459-04) Matrix: Water	Sampled: 2020-08-24 15:10,	Continued			
Volatile Organic Compounds (VOC), Conti	nued				
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0		2020-08-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-08-29	
Styrene	< 1.0	1.0	μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-08-29	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
Trichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0	μg/L	2020-08-29	
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluene-d8	86	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	93	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	94	70-130	%	2020-08-29	
own Well #4 (0082459-05) Matrix: Wa			ma/I	2020 00 26	
Bromide	< 0.10		mg/L	2020-08-26	
Chloride Fluoride	94.0		mg/L	2020-08-26	
Nitrate (as N)	0.11	0.10	mg/L	2020-08-26	
INITIALE (45 IN)	1.46			2020-08-26	
Nitrite (as N)	< n n1n	0.010	mg/∟		
Nitrite (as N)	< 0.010	0.010			
Nitrite (as N) Sulfate	< 0.010 42.1		mg/L	2020-08-26	
Sulfate Calculated Parameters	42.1	1.0	mg/L	2020-08-26	
Sulfate			mg/L		
Sulfate Calculated Parameters Hardness, Total (as CaCO3)	42.1	1.0	mg/L	2020-08-26	
Sulfate Calculated Parameters Hardness, Total (as CaCO3)	42.1	1.0	mg/L	2020-08-26	
Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals	42.1 395	0.500	mg/L mg/L	2020-08-26 N/A	
Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved	42.1 395 0.00171	0.500 0.00010	mg/L mg/L mg/L mg/L	2020-08-26 N/A 2020-08-29	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
Town Well #4 (0082459-05) Matrix: Wat	er Sampled: 2020-08-24 1	1:30, Continued			
Dissolved Metals, Continued					
Barium, dissolved	0.217	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved	< 0.0500	0.0500	mg/L	2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-08-29	
Calcium, dissolved	87.4	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Copper, dissolved	0.00191	0.00040	mg/L	2020-08-29	
Iron, dissolved	< 0.010	0.010	mg/L	2020-08-29	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Magnesium, dissolved	42.8	0.010	mg/L	2020-08-29	
Manganese, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-08-30	
Molybdenum, dissolved	0.00018	0.00010	mg/L	2020-08-29	
Nickel, dissolved	< 0.00040	0.00040	mg/L	2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Potassium, dissolved	1.82	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	4.5	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	57.8	0.10	mg/L	2020-08-29	
Strontium, dissolved	0.473	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	15.9	3.0	mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.00121	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	0.0044	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	356	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	356		mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	434		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0082459
PROJECT	19-2850 - Golden	REPORTED	2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifie
Town Well #4 (0082459-05) Matrix	c: Water Sampled: 2020-08-24 11:	30, Continued			
General Parameters, Continued					
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	< 20	20	mg/L	2020-08-31	
Conductivity (EC)	1040	2.0	μS/cm	2020-08-26	
рН	7.98	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	579	15	mg/L	2020-08-27	
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-08-28	
Turbidity	< 0.10	0.10	NTU	2020-08-26	
Miscellaneous Subcontracted Parame	eters				
Refer to Appendix	Refer to Appendix for Full Report		-	2020-10-19	
delta-18-O	-19.92		per mil	2020-10-19	
delta-2-H	-152.5		per mil	2020-10-19	
Volatile Organic Compounds (VOC)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> </u>		
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0		μg/L	2020-08-29	
Bromoform	< 1.0		μg/L	2020-08-29	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-08-29	
Chlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
Chloroethane	< 2.0	2.0	μg/L	2020-08-29	
Chloroform	< 1.0	1.0	μg/L	2020-08-29	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3		μg/L	2020-08-29	
Dibromomethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0		μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
Dichloromethane	< 3.0		μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-08-29	
Ethylbenzene	< 1.0		μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0		μg/L	2020-08-29	
Styrene	< 1.0		μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

			0111.	2020 10 21 11.00	
Analyte	Result	RL	Units	Analyzed	Qualifie
Town Well #4 (0082459-05) Matrix: Wa	ter Sampled: 2020-08-24 1	1:30, Continued			
Volatile Organic Compounds (VOC), Contin	nued				
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
Trichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0	μg/L	2020-08-29	
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluene-d8	88	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	93	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	94	70-130	%	2020-08-29	
Town Well #6 (0082459-06) Matrix: Wa	ter Sampled: 2020-08-24 1	1:20			
Anions					
Bromide	< 0.10	0.10	mg/L	2020-08-26	
Chloride	60.4		mg/L	2020-08-26	
Fluoride	< 0.10		mg/L	2020-08-26	
Nitrate (as N)	1.26	0.010		2020-08-26	
Nitrite (as N)	< 0.010	0.010		2020-08-26	
Sulfate	34.2		mg/L	2020-08-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	392	0.500	ma/l	N/A	
Dissolved Metals		0.000	9/ =		
Lithium, dissolved	0.00133	0.00010	ma/l	2020-08-29	
Aluminum, dissolved	< 0.0050	0.0050		2020-08-29	
Antimony, dissolved	< 0.0030	0.00020		2020-08-29	
Arsenic, dissolved	< 0.00020	0.00020		2020-08-29	
Barium, dissolved	0.191	0.0050		2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010		2020-08-29	
Boron, dissolved	< 0.0500	0.0500		2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010		2020-08-29	
Calcium, dissolved	98.4		mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050		2020-08-29	
Cobalt, dissolved	0.00021	0.00010		2020-08-29	
Copper, dissolved	< 0.00040	0.00040		2020-08-29	
Iron, dissolved	0.137	0.010		2020-08-29	
Lead, dissolved	< 0.00020	0.00020		2020-08-29	
Magnesium, dissolved	35.5		mg/L	2020-08-29	
Manganese, dissolved	0.0287	0.00020		2020-08-29	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-08-30	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifi
own Well #6 (0082459-06) Matrix: Wat	er Sampled: 2020-08-24 11	:20, Continued			
Dissolved Metals, Continued					
Molybdenum, dissolved	0.00102	0.00010	mg/L	2020-08-29	
Nickel, dissolved	0.00080	0.00040	mg/L	2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Potassium, dissolved	1.18	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	4.6	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	33.5	0.10	mg/L	2020-08-29	
Strontium, dissolved	0.368	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	12.3	3.0	mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.00141	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	358	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	358	1.0	mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Bicarbonate (HCO3)	437	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	< 20	20	mg/L	2020-08-31	
Conductivity (EC)	917	2.0	μS/cm	2020-08-26	
рН	7.94	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	520	15	mg/L	2020-08-27	
Solids, Total Suspended	35.2	2.0	mg/L	2020-08-28	
Turbidity	23.6	0.10	NTU	2020-08-26	
liscellaneous Subcontracted Parameters					
Refer to Appendix	Refer to		-	2020-10-19	
• •	Appendix for				
	Full Report				

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0082459

ORTED 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifier
Town Well #6 (0082459-06) Matrix: Wat	er Sampled: 2020-08-24 11:	20, Continued			
Miscellaneous Subcontracted Parameters, (Continued				
delta-2-H	-152		per mil	2020-10-19	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0		μg/L	2020-08-29	
Bromoform	< 1.0		μg/L	2020-08-29	
Carbon tetrachloride	< 0.5		μg/L	2020-08-29	
Chlorobenzene	< 1.0		μg/L	2020-08-29	
Chloroethane	< 2.0		μg/L	2020-08-29	
Chloroform	< 1.0		μg/L	2020-08-29	
Dibromochloromethane	< 1.0		μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3		μg/L	2020-08-29	
Dibromomethane	< 1.0		μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1.1-Dichloroethane	< 1.0		μg/L	2020-08-29	
1.2-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0		μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
Dichloromethane	< 3.0		μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0		μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-08-29	
Ethylbenzene	< 1.0		μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0		μg/L	2020-08-29	
Styrene	< 1.0		μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	
Toluene	< 1.0		μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-08-29	
Trichloroethylene	< 1.0		μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0		μg/L	2020-08-29	
Vinyl chloride	< 1.0		μg/L	2020-08-29	
Xylenes (total)	< 2.0		μg/L	2020-08-29	
Surrogate: Toluene-d8	97		%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	103		%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	104	70-130		2020-08-29	
	1 🗸 1	70 700		2020 00 20	

DMW-1b (0082459-07) | Matrix: Water | Sampled: 2020-08-25 08:30

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW-1b (0082459-07) Matrix: Wate	er Sampled: 2020-08-25 08:30,	Continued			
Anions, Continued					
Bromide	< 0.10	0.10	mg/L	2020-08-26	
Chloride	9.13	0.10	mg/L	2020-08-26	
Fluoride	0.91	0.10	mg/L	2020-08-26	
Nitrate (as N)	0.112	0.010	mg/L	2020-08-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-08-26	
Sulfate	251	1.0	mg/L	2020-08-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	586	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0529	0.00010	mg/L	2020-08-29	
Aluminum, dissolved	< 0.0050	0.0050		2020-08-29	
Antimony, dissolved	< 0.00020	0.00020		2020-08-29	
Arsenic, dissolved	0.00129	0.00050		2020-08-29	
Barium, dissolved	0.0158	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved	0.448	0.0500	mg/L	2020-08-29	
Cadmium, dissolved	0.000016	0.000010	mg/L	2020-08-29	
Calcium, dissolved	69.2		mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050		2020-08-29	
Cobalt, dissolved	0.00068	0.00010		2020-08-29	
Copper, dissolved	0.00484	0.00040		2020-08-29	
Iron, dissolved	0.014	0.010		2020-08-29	
Lead, dissolved	0.00047	0.00020		2020-08-29	
Magnesium, dissolved	100	0.010		2020-08-29	
Manganese, dissolved	0.00352	0.00020		2020-08-29	
Mercury, dissolved	< 0.000010	0.000010		2020-08-30	
Molybdenum, dissolved	0.00053	0.00010		2020-08-29	
Nickel, dissolved	0.00124	0.00040		2020-08-29	
Phosphorus, dissolved	< 0.050	0.050		2020-08-29	
Potassium, dissolved	8.94		mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050		2020-08-29	
Silicon, dissolved	6.5		mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050		2020-08-29	
Sodium, dissolved	50.1		mg/L	2020-08-29	
Strontium, dissolved	5.33	0.0010		2020-08-29	
Sulfur, dissolved	93.6		mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29	
Thallium, dissolved	< 0.000020	0.000020		2020-08-29	
Thorium, dissolved	< 0.00010	0.00010		2020-08-29	
Tin, dissolved	< 0.00020	0.00020		2020-08-29	
Titanium, dissolved	< 0.0050	0.0050		2020-08-29	

 REPORTED TO
 Ecoscape Environmental Ltd.
 WORK ORDER
 0082459

 PROJECT
 19-2850 - Golden
 REPORTED
 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifi
DMW-1b (0082459-07) Matrix: Water	Sampled: 2020-08-25 08:30,	Continued			
Dissolved Metals, Continued					
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.000947	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	0.0410	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	0.00064	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	449	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	449		mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	548		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	0.861	0.050		2020-08-27	
BOD, 5-day	< 6.1		mg/L	2020-08-31	
Chemical Oxygen Demand	< 20		mg/L	2020-08-31	
Conductivity (EC)	1230		μS/cm	2020-08-26	
pH	7.95		pH units	2020-08-26	HT2
Solids, Total Dissolved	804	15	mg/L	2020-08-27	
Solids, Total Suspended	< 2.0		mg/L	2020-08-28	
Turbidity	0.16		NTU	2020-08-26	
Miscellaneous Subcontracted Parameters					
Refer to Appendix	Refer to		-	2020-10-19	
	Appendix for				
delta-18-O	Full Report -19.88		per mil	2020-10-19	
delta-2-H	-154.7		per mil	2020-10-19	
	-104.7		permi	2020-10-13	
olatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0	1.0	μg/L	2020-08-29	
Bromoform	< 1.0	1.0	μg/L	2020-08-29	
Carbon tetrachloride	< 0.5	0.5	μg/L	2020-08-29	
Chlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
Chloroethane	< 2.0	2.0	μg/L	2020-08-29	
Chloroform	< 1.0	1.0	μg/L	2020-08-29	
Dibromochloromethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-08-29	
Dibromomethane	< 1.0	1.0	μg/L	2020-08-29	
				2000 00 00	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-08-29	

 REPORTED TO
 Ecoscape Environmental Ltd.
 WORK ORDER
 0082459

 PROJECT
 19-2850 - Golden
 REPORTED
 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualific
0MW-1b (0082459-07) Matrix: Water \$	Sampled: 2020-08-25 08:30, C	ontinued			
olatile Organic Compounds (VOC), Contin	nued				
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-08-29	
Styrene	< 1.0	1.0	μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-08-29	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
Trichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0	μg/L	2020-08-29	
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluene-d8	95	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	101	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	103	70-130	%	2020-08-29	
nions		0.10	ma/l	2020-08-26	
I <i>nions</i> Bromide	< 0.10	0.10		2020-08-26 2020-08-26	
Inions Bromide Chloride	< 0.10 42.2	0.10	mg/L	2020-08-26	
Chloride Fluoride	< 0.10 42.2 1.35	0.10 0.10	mg/L mg/L	2020-08-26 2020-08-26	
Anions Bromide Chloride Fluoride Nitrate (as N)	< 0.10 42.2 1.35 < 0.010	0.10 0.10 0.010	mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N)	< 0.10 42.2 1.35 < 0.010 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate	< 0.10 42.2 1.35 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters	< 0.10 42.2 1.35 < 0.010 < 0.010 128	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	< 0.10 42.2 1.35 < 0.010 < 0.010	0.10 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	< 0.10 42.2 1.35 < 0.010 < 0.010 128	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Lithium, dissolved	< 0.10 42.2 1.35 < 0.010 < 0.010 128 634	0.10 0.10 0.010 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A	
Bromide Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	< 0.10 42.2 1.35 < 0.010 < 0.010 128	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2020-08-26 2020-08-26 2020-08-26 2020-08-26 2020-08-26 N/A	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW-4 (0082459-08) Matrix: Water Sa	mpled: 2020-08-25 08:47,	Continued			
Dissolved Metals, Continued					
Barium, dissolved	0.0240	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	0.00012	0.00010	mg/L	2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved	0.145	0.0500	mg/L	2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-08-29	
Calcium, dissolved	66.7	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-08-29	
Iron, dissolved	0.776	0.010	mg/L	2020-08-29	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Magnesium, dissolved	114	0.010	mg/L	2020-08-29	
Manganese, dissolved	0.00574	0.00020	mg/L	2020-08-29	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-08-30	
Molybdenum, dissolved	0.00025	0.00010	mg/L	2020-08-29	
Nickel, dissolved	0.00181	0.00040	mg/L	2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Potassium, dissolved	4.71	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	7.5	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	27.4	0.10	mg/L	2020-08-29	
Strontium, dissolved	1.82	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	51.3	3.0	mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.000101	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	0.00143	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	465	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	465		mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	567	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	

REPORTED TOEcoscape Environmental Ltd.WORK ORDER0082459PROJECT19-2850 - GoldenREPORTED2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW-4 (0082459-08) Matrix: Wat	er Sampled: 2020-08-25 08:47, Co	ntinued			
General Parameters, Continued					
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	0.223	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	< 20	20	mg/L	2020-08-31	
Conductivity (EC)	1220	2.0	μS/cm	2020-08-26	
pH	7.98	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	739	15	mg/L	2020-08-27	
Solids, Total Suspended	2.4	2.0	mg/L	2020-08-28	
Turbidity	8.59	0.10	NTU	2020-08-26	
Miscellaneous Subcontracted Param	eters				
Refer to Appendix	Refer to Appendix for Full Report		-	2020-10-19	
delta-18-O	-20.15		per mil	2020-10-19	
delta-2-H	-156.6		per mil	2020-10-19	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0		μg/L	2020-08-29	
Bromoform	< 1.0		μg/L	2020-08-29	
Carbon tetrachloride	< 0.5		μg/L	2020-08-29	
Chlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
Chloroethane	< 2.0		μg/L	2020-08-29	
Chloroform	< 1.0		μg/L	2020-08-29	
Dibromochloromethane	< 1.0		μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3		μg/L	2020-08-29	
Dibromomethane	< 1.0		μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0		μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
Dichloromethane	< 3.0		μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0		μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-08-29	
Ethylbenzene	< 1.0		μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0		μg/L	2020-08-29	
Styrene	< 1.0		µg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5		µg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	

REPORTED TO	Ecoscape Environmental Ltd.	WORK ORDER	0082459
PROJECT	19-2850 - Golden	REPORTED	2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifier
DMW-4 (0082459-08) Matrix: Water Sa	ampled: 2020-08-25 08:47,	Continued			
Volatile Organic Compounds (VOC), Contin	ued				
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
Trichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0	μg/L	2020-08-29	
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluene-d8	88	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	94	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	94	70-130	%	2020-08-29	
MW09-06D (0082459-09) Matrix: Water Anions	Sampled: 2020-08-24 18	05			
Bromide	1.15	0.10	mg/L	2020-08-26	
Chloride	377		mg/L	2020-08-26	
Fluoride	< 0.10		mg/L	2020-08-26	
Nitrate (as N)	35.6	0.010		2020-08-26	
Nitrite (as N)	< 0.010	0.010		2020-08-26	
Sulfate	634		mg/L	2020-08-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	1500	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0416	0.00010	mg/L	2020-08-29	
Aluminum, dissolved	< 0.0050	0.0050		2020-08-29	
Antimony, dissolved	0.00034	0.00020		2020-08-29	
Arsenic, dissolved	< 0.00050	0.00050		2020-08-29	
Barium, dissolved	0.0490	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved	1.97	0.0500	mg/L	2020-08-29	
Cadmium, dissolved	0.000012	0.000010	mg/L	2020-08-29	
Calcium, dissolved	154	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050		2020-08-29	
	0.00400	0.00010		2020-08-29	
Cobalt, dissolved	0.00189			2020 00 20	
Cobalt, dissolved Copper, dissolved	0.00189	0.00040	mg/L	2020-08-29	
<u> </u>				2020-08-29	
Copper, dissolved	0.00240	0.010	mg/L		
Copper, dissolved Iron, dissolved	0.00240 < 0.010	0.010 0.00020	mg/L mg/L	2020-08-29	
Copper, dissolved Iron, dissolved Lead, dissolved	0.00240 < 0.010 < 0.00020	0.010	mg/L mg/L mg/L	2020-08-29 2020-08-29	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifi
MW09-06D (0082459-09) Matrix: Water	Sampled: 2020-08-24 18:	05, Continued			
Dissolved Metals, Continued					
Molybdenum, dissolved	0.00032	0.00010	mg/L	2020-08-29	
Nickel, dissolved	0.0131	0.00040	mg/L	2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Potassium, dissolved	169	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	12.0	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	294	0.10	mg/L	2020-08-29	
Strontium, dissolved	1.68	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	253	3.0	mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Thallium, dissolved	0.000063	0.000020	mg/L	2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	0.00095	0.00020	mg/L	2020-08-29	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.00723	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	0.0049	0.0040		2020-08-29	
Zirconium, dissolved	0.00021	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	947	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	947	1.0	mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-08-26	
Bicarbonate (HCO3)	1160	1.22	mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600	mg/L	N/A	
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	1.85	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	42		mg/L	2020-08-31	
Conductivity (EC)	4050		μS/cm	2020-08-26	
pH	7.77		pH units	2020-08-26	HT2
Solids, Total Dissolved	2720		mg/L	2020-08-27	
Solids, Total Suspended	14.0		mg/L	2020-08-28	
Turbidity	5.82		NTU	2020-08-26	
liscellaneous Subcontracted Parameters					
Refer to Appendix	Refer to Appendix for		-	2020-10-19	
dolta 18 O	Full Report		nor mil	2020 10 10	
delta-18-O	-18.94		per mil	2020-10-19	ane 24

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER
REPORTED

0082459

RTED 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifier
MW09-06D (0082459-09) Matrix: Water	Sampled: 2020-08-24 18:05,	Continued			
Miscellaneous Subcontracted Parameters, C	Continued				
delta-2-H	-150.1		per mil	2020-10-19	
Volatile Organic Compounds (VOC)					
	.0.5	0.5		0000 00 00	
Benzene	< 0.5		μg/L	2020-08-29	
Bromodichloromethane	< 1.0	1.0	10	2020-08-29	
Bromoform	< 1.0	1.0		2020-08-29	
Carbon tetrachloride	< 0.5		μg/L	2020-08-29	
Chlorobenzene	< 1.0		μg/L	2020-08-29	
Chloroethane	< 2.0		μg/L	2020-08-29	
Chloroform	< 1.0		μg/L	2020-08-29	
Dibromochloromethane	< 1.0		μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3	0.3	μg/L	2020-08-29	
Dibromomethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5	0.5	μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-08-29	
Styrene	< 1.0		μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5			2020-08-29	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0		μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0		μg/L	2020-08-29	
Trichloroethylene	< 1.0		μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0		µg/L	2020-08-29	
Vinyl chloride	< 1.0			2020-08-29	
Xylenes (total)	< 2.0		μg/L	2020-08-29	
Surrogate: Toluene-d8	88	70-130		2020-08-29	
Surrogate: 4-Bromofluorobenzene	93	70-130		2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	94	70-130		2020-08-29	

DUP A (0082459-10) | Matrix: Water | Sampled: 2020-08-24 16:30

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
DUP A (0082459-10) Matrix: Water	Sampled: 2020-08-24 16:30, C	ontinued			
Anions, Continued					
Bromide	1.14	0.10	mg/L	2020-08-26	
Chloride	377	0.10	mg/L	2020-08-26	
Fluoride	< 0.10	0.10	mg/L	2020-08-26	
Nitrate (as N)	35.0	0.010	mg/L	2020-08-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-08-26	
Sulfate	633	1.0	mg/L	2020-08-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	1540	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.0415	0.00010	mg/L	2020-08-29	
Aluminum, dissolved	0.500	0.0050		2020-08-29	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Arsenic, dissolved	0.00073	0.00050	mg/L	2020-08-29	
Barium, dissolved	0.0617	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010		2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010		2020-08-29	
Boron, dissolved	1.97	0.0500		2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010		2020-08-29	
Calcium, dissolved	164		mg/L	2020-08-29	
Chromium, dissolved	0.00094	0.00050		2020-08-29	
Cobalt, dissolved	0.00190	0.00010		2020-08-29	
Copper, dissolved	0.00272	0.00040		2020-08-29	
Iron, dissolved	0.767	0.010		2020-08-29	
Lead, dissolved	0.00086	0.00020		2020-08-29	
Magnesium, dissolved	274	0.010		2020-08-29	
Manganese, dissolved	0.110	0.00020		2020-08-29	
Mercury, dissolved	< 0.000010	0.000010		2020-08-30	
Molybdenum, dissolved	0.00023	0.00010		2020-08-29	
Nickel, dissolved	0.0129	0.00040		2020-08-29	
Phosphorus, dissolved	< 0.050	0.050		2020-08-29	
Potassium, dissolved	165		mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050		2020-08-29	
Silicon, dissolved	13.2		mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050		2020-08-29	
Sodium, dissolved	282		mg/L	2020-08-29	
Strontium, dissolved	1.73	0.0010		2020-08-29	
Sulfur, dissolved	256		mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050		2020-08-29	
Thallium, dissolved		0.00030		2020-08-29	
Thorium, dissolved	0.000060 0.00035	0.00010		2020-08-29	
Tin, dissolved		0.00010		2020-08-29	
Titanium, dissolved	0.00021 0.0304	0.0020		2020-08-29	

 REPORTED TO
 Ecoscape Environmental Ltd.
 WORK ORDER
 0082459

 PROJECT
 19-2850 - Golden
 REPORTED
 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifi
OUP A (0082459-10) Matrix: Water Sa	ampled: 2020-08-24 16:30, Co	ontinued			
Dissolved Metals, Continued					
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.00698	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	0.00052	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	948	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	948		mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	1160		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	
Hydroxide (OH)	< 0.340	0.340		N/A	
Ammonia, Total (as N)	1.77	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1		mg/L	2020-08-31	
Chemical Oxygen Demand	47		mg/L	2020-08-31	
Conductivity (EC)	4010		μS/cm	2020-08-26	
pH	7.79	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	2630	15	mg/L	2020-08-27	
Solids, Total Suspended	101	2.0	mg/L	2020-08-28	
Turbidity	51.3	0.10	NTU	2020-08-26	
Miscellaneous Subcontracted Parameters					
	.			0000 40 40	
Refer to Appendix	Refer to Appendix for		-	2020-10-19	
	Full Report				
delta-18-O	-18.95		per mil	2020-10-19	
delta-2-H	-150.4		per mil	2020-10-19	
Volatile Organic Compounds (VOC)					
/olatile Organic Compounds (VOC)	< 0.5	0.5	ug/l	2020 08 20	
Benzene	< 0.5		μg/L	2020-08-29	
Benzene Bromodichloromethane	< 1.0	1.0	μg/L	2020-08-29	
Benzene Bromodichloromethane Bromoform	< 1.0 < 1.0	1.0 1.0	μg/L μg/L	2020-08-29 2020-08-29	
Benzene Bromodichloromethane Bromoform Carbon tetrachloride	< 1.0 < 1.0 < 0.5	1.0 1.0 0.5	μg/L μg/L μg/L	2020-08-29 2020-08-29 2020-08-29	
Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene	< 1.0 < 1.0 < 0.5 < 1.0	1.0 1.0 0.5 1.0	μg/L μg/L μg/L μg/L	2020-08-29 2020-08-29 2020-08-29 2020-08-29	
Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane	< 1.0 < 1.0 < 0.5 < 1.0 < 2.0	1.0 1.0 0.5 1.0 2.0	μg/L μg/L μg/L μg/L μg/L	2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29	
Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	< 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0	1.0 1.0 0.5 1.0 2.0	μg/L μg/L μg/L μg/L μg/L	2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29	
Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane	< 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0	1.0 1.0 0.5 1.0 2.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L	2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29	
Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane 1,2-Dibromoethane	< 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 1.0 0.5 1.0 2.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29	
Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane	< 1.0 < 1.0 < 0.5 < 1.0 < 2.0 < 1.0 < 1.0	1.0 1.0 0.5 1.0 2.0 1.0 1.0 0.3	μg/L μg/L μg/L μg/L μg/L μg/L	2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29 2020-08-29	

REPORTED TOEcoscape Environmental Ltd.WORK ORDER0082459PROJECT19-2850 - GoldenREPORTED2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifie
DUP A (0082459-10) Matrix: Water Sa	ımpled: 2020-08-24 16:30, Co	ontinued			
Volatile Organic Compounds (VOC), Contir	nued				
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
trans-1,2-Dichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Dichloromethane	< 3.0	3.0	μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0	1.0	μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0	1.0	μg/L	2020-08-29	
Ethylbenzene	< 1.0	1.0	μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0	1.0	μg/L	2020-08-29	
Styrene	< 1.0	1.0	μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5	0.5	μg/L	2020-08-29	
Tetrachloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Toluene	< 1.0	1.0	μg/L	2020-08-29	
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	2020-08-29	
Trichloroethylene	< 1.0	1.0	μg/L	2020-08-29	
Trichlorofluoromethane	< 1.0	1.0	μg/L	2020-08-29	
Vinyl chloride	< 1.0	1.0	μg/L	2020-08-29	
Xylenes (total)	< 2.0	2.0	μg/L	2020-08-29	
Surrogate: Toluene-d8	88	70-130	%	2020-08-29	
Surrogate: 4-Bromofluorobenzene	94	70-130	%	2020-08-29	
Surrogate: 1,4-Dichlorobenzene-d4	95	70-130	%	2020-08-29	
DMW20-01 (0082459-11) Matrix: Water	Sampled: 2020-08-24 11:5	5			
Bromide	< 0.10	0.10	mg/L	2020-08-26	
Chloride	38.8		mg/L	2020-08-26	
Fluoride	0.12	0.10	mg/L	2020-08-26	
Nitrate (as N)	0.429	0.010		2020-08-26	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-08-26	
Sulfate	25.1	1.0	mg/L	2020-08-26	
Calculated Parameters					
Hardness, Total (as CaCO3)	246	0.500	mg/L	N/A	
Dissolved Metals					
Lithium diagolyad	0.00123	0.00010	mg/L	2020-08-29	
Lithium, dissolved			-		
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
<u> </u>	< 0.0050 < 0.00020	0.0050 0.00020		2020-08-29 2020-08-29	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW20-01 (0082459-11) Matrix: Water	Sampled: 2020-08-24 1	1:55, Continued			
Dissolved Metals, Continued					
Barium, dissolved	0.110	0.0050	mg/L	2020-08-29	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Boron, dissolved	0.0505	0.0500	mg/L	2020-08-29	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-08-29	
Calcium, dissolved	48.3	0.20	mg/L	2020-08-29	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Cobalt, dissolved	0.00011	0.00010	mg/L	2020-08-29	
Copper, dissolved	0.00189	0.00040	mg/L	2020-08-29	
Iron, dissolved	< 0.010	0.010	mg/L	2020-08-29	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Magnesium, dissolved	30.3	0.010	mg/L	2020-08-29	
Manganese, dissolved	0.00870	0.00020	mg/L	2020-08-29	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2020-08-30	
Molybdenum, dissolved	0.00077	0.00010	mg/L	2020-08-29	
Nickel, dissolved	0.00052	0.00040	mg/L	2020-08-29	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-08-29	
Potassium, dissolved	1.09	0.10	mg/L	2020-08-29	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Silicon, dissolved	3.1	1.0	mg/L	2020-08-29	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-08-29	
Sodium, dissolved	20.9	0.10	mg/L	2020-08-29	
Strontium, dissolved	0.343	0.0010	mg/L	2020-08-29	
Sulfur, dissolved	10.5	3.0	mg/L	2020-08-29	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-08-29	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-08-29	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-08-29	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-08-29	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Uranium, dissolved	0.000669	0.000020	mg/L	2020-08-29	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-08-29	
Zinc, dissolved	0.0102	0.0040	mg/L	2020-08-29	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-08-29	
General Parameters					
Alkalinity, Total (as CaCO3)	220	1.0	mg/L	2020-08-26	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Bicarbonate (as CaCO3)	220		mg/L	2020-08-26	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-08-26	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-08-26	
Bicarbonate (HCO3)	269		mg/L	N/A	
Carbonate (CO3)	< 0.600	0.600		N/A	

 REPORTED TO
 Ecoscape Environmental Ltd.
 WORK ORDER
 0082459

 PROJECT
 19-2850 - Golden
 REPORTED
 2020-10-21 11:00

Analyte	Result	RL	Units	Analyzed	Qualifie
DMW20-01 (0082459-11) Matrix: V	/ater Sampled: 2020-08-24 11:55	Continued			
General Parameters, Continued					
Hydroxide (OH)	< 0.340	0.340	mg/L	N/A	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2020-08-27	
BOD, 5-day	< 6.1	2.0	mg/L	2020-08-31	
Chemical Oxygen Demand	< 20	20	mg/L	2020-08-31	
Conductivity (EC)	576	2.0	μS/cm	2020-08-26	
рН	8.22	0.10	pH units	2020-08-26	HT2
Solids, Total Dissolved	308	15	mg/L	2020-08-27	
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-08-28	
Turbidity	0.74	0.10	NTU	2020-08-26	
Miscellaneous Subcontracted Parame	ters				
Refer to Appendix	Refer to Appendix for Full Report		-	2020-10-19	
delta-18-O	-19.85		per mil	2020-10-19	
delta-2-H	-150.4		per mil	2020-10-19	
Volatile Organic Compounds (VOC)					
Benzene	< 0.5	0.5	μg/L	2020-08-29	
Bromodichloromethane	< 1.0		μg/L	2020-08-29	
Bromoform	< 1.0		μg/L	2020-08-29	
Carbon tetrachloride	< 0.5		μg/L	2020-08-29	
Chlorobenzene	< 1.0	1.0	µg/L	2020-08-29	
Chloroethane	< 2.0	2.0	μg/L	2020-08-29	
Chloroform	< 1.0		μg/L	2020-08-29	
Dibromochloromethane	< 1.0		μg/L	2020-08-29	
1,2-Dibromoethane	< 0.3		μg/L	2020-08-29	
Dibromomethane	< 1.0		μg/L	2020-08-29	
1,2-Dichlorobenzene	< 0.5		μg/L	2020-08-29	
1,3-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,4-Dichlorobenzene	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,2-Dichloroethane	< 1.0		μg/L	2020-08-29	
1,1-Dichloroethylene	< 1.0		μg/L	2020-08-29	
cis-1,2-Dichloroethylene	< 1.0	1.0		2020-08-29	
trans-1,2-Dichloroethylene	< 1.0		μg/L	2020-08-29	
Dichloromethane	< 3.0		μg/L	2020-08-29	
1,2-Dichloropropane	< 1.0		μg/L	2020-08-29	
1,3-Dichloropropene (cis + trans)	< 1.0		μg/L	2020-08-29	
Ethylbenzene	< 1.0		μg/L	2020-08-29	
Methyl tert-butyl ether	< 1.0		μg/L	2020-08-29	
Styrene	< 1.0		μg/L	2020-08-29	
1,1,2,2-Tetrachloroethane	< 0.5		μg/L	2020-08-29	
Tetrachloroethylene	< 1.0		μg/L	2020-08-29	

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED 2020-10-21 11:00

Analyte	Result	RL Units	Analyzed Qualifie
DMW20-01 (0082459-11) Matrix: Water	Sampled: 2020-08-24 11:55,	Continued	
Volatile Organic Compounds (VOC), Continu	ıed		
Toluene	< 1.0	1.0 μg/L	2020-08-29
1,1,1-Trichloroethane	< 1.0	1.0 µg/L	2020-08-29
1,1,2-Trichloroethane	< 1.0	1.0 µg/L	2020-08-29
Trichloroethylene	< 1.0	1.0 µg/L	2020-08-29
Trichlorofluoromethane	< 1.0	1.0 µg/L	2020-08-29
Vinyl chloride	< 1.0	1.0 µg/L	2020-08-29
Xylenes (total)	< 2.0	2.0 µg/L	2020-08-29
Surrogate: Toluene-d8	86	70-130 %	2020-08-29
Surrogate: 4-Bromofluorobenzene	92	70-130 %	2020-08-29
Surrogate: 1,4-Dichlorobenzene-d4	93	70-130 %	2020-08-29

Sample Qualifiers:

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Ecoscape Environmental Ltd.

PROJECT 19-2850 - Golden

WORK ORDER

0082459

REPORTED

2020-10-21 11:00

Analysis Description	Method Ref.	Technique	Accredited	Location
2H and 18O Isotope Ratios in Water	Stable Isotopes	CRDS		Sublet
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	✓	Kelowna
Ammonia, Total in Water	SM 4500-NH3 G* (2017)	Automated Colorimetry (Phenate)	✓	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	✓	Kelowna
Biochemical Oxygen Demand in Water	SM 5210 B (2017)	Dissolved Oxygen Meter	✓	Kelowna
Chemical Oxygen Demand in Water	SM 5220 D* (2017)	Closed Reflux, Colorimetry	✓	Kelowna
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	✓	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 μm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond
Hardness in Water	SM 2340 B (2017)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	✓	N/A
Mercury, dissolved in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
pH in Water	SM 4500-H+ B (2017)	Electrometry	✓	Kelowna
Solids, Total Dissolved in Water	SM 2540 C* (2017)	Gravimetry (Dried at 103-105C)	✓	Kelowna
Solids, Total Suspended in Water	SM 2540 D* (2017)	Gravimetry (Dried at 103-105C)	✓	Kelowna
Turbidity in Water	SM 2130 B (2017)	Nephelometry	✓	Kelowna
Volatile Organic Compounds in Water	EPA 5030B / EPA 8260D	Purge&Trap / GC-MSD (SIM)	✓	Richmond
VPHw in Water	BCMOE VPH	Calculation: VH - (Benzene + Toluene + Ethylbenzene + Xylenes + Styrene)		N/A

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units

per mil Parts per thousand

pH units pH < 7 = acidic, ph > 7 = basic

μg/L Micrograms per litre

 μ S/cm Microsiemens per centimetre

BCMOE British Columbia Environmental Laboratory Manual, British Columbia Ministry of Environment

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO

Ecoscape Environmental Ltd.

PROJECT

19-2850 - Golden

WORK ORDER

0082459

REPORTED

2020-10-21 11:00

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline (s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

REPORTED TO

Ecoscape Environmental Ltd.

PROJECT

19-2850 - Golden

WORK ORDER

0082459

REPORTED

2020-10-21 11:00

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through
 the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B0H2225									
Blank (B0H2225-BLK1)			Prepared	I: 2020-08-2	26, Analyze	d: 2020-0	08-26		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B0H2225-BS1)			Prepared	I: 2020-08-2	26, Analyze	d: 2020-0	08-26		
Bromide	4.01	0.10 mg/L	4.00		100	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Fluoride	4.00	0.10 mg/L	4.00		100	88-108			
Nitrate (as N)	4.02	0.010 mg/L	4.00		101	90-110			
Nitrite (as N)	2.03	0.010 mg/L	2.00		101	85-115			
Sulfate	16.0	1.0 mg/L	16.0		100	90-110			
Duplicate (B0H2225-DUP1)	So	urce: 0082459-11	Prepared	I: 2020-08-2	26, Analyze	d: 2020-0	08-26		
Bromide	< 0.10	0.10 mg/L		< 0.10				10	
Chloride	38.8	0.10 mg/L		38.8			< 1	10	
Fluoride	0.12	0.10 mg/L		0.12				10	
Nitrate (as N)	0.430	0.010 mg/L		0.429			< 1	10	
Nitrite (as N)	< 0.010	0.010 mg/L		< 0.010				15	
Sulfate	25.1	1.0 mg/L		25.1			< 1	10	
Matrix Spike (B0H2225-MS1)	So	urce: 0082459-11	Prepared	I: 2020-08-2	26, Analyze	d: 2020-0	08-26		
Bromide	4.02	0.10 mg/L	4.00	< 0.10	100	80-120			
Chloride	55.3	0.10 mg/L	16.0	38.8	103	75-125			
Fluoride	4.01	0.10 mg/L	4.00	0.12	97	75-125			
Nitrate (as N)	4.20	0.010 mg/L	4.00	0.429	94	75-125			
Nitrite (as N)	1.98	0.010 mg/L	2.00	< 0.010	99	80-120			
Sulfate	41.1	1.0 mg/L	16.0	25.1	100	75-125			

BCMOE Aggregate Hydrocarbons, Batch B0H2533

Blank (B0H2533-BLK1)			Prepared: 2020-08-31, Analyzed: 2020-08-31
VHw (6-10)	< 100	100 μg/L	

Cobalt, dissolved

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO PROJECT	Ecoscape Environmental Ltd. 19-2850 - Golden					WORK REPOR	ORDER TED	0082 2020	2459)-10-21	11:00
Analyte	Result	RL	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
BCMOE Aggregate I	Hydrocarbons, Batch B0H2533, Co	ontinued								
LCS (B0H2533-BS2)			Prepared	l: 2020-08-2	29, Analyze	d: 2020-0	8-29		
VHw (6-10)	2390	100	μg/L	2690		89	70-130			
Dissolved Metals, E	atch B0H2471									
Blank (B0H2471-BL	K1)			Prepared	l: 2020-08-2	29, Analyze	d: 2020-0	8-29		
Lithium, dissolved	< 0.00010	0.00010								
Aluminum, dissolved	< 0.0050	0.0050								
Antimony, dissolved	< 0.00020	0.00020								
Arsenic, dissolved	< 0.00050	0.00050								
Barium, dissolved	< 0.0050	0.0050								
Beryllium, dissolved	< 0.00010	0.00010 0.00010								
Bismuth, dissolved Boron, dissolved	< 0.00010 < 0.0500	0.0500								
Cadmium, dissolved	< 0.000010	0.000010								
Calcium, dissolved	< 0.20		mg/L							
Chromium, dissolved	< 0.00050	0.00050								
Cobalt, dissolved	< 0.00010	0.00010								
Copper, dissolved	< 0.00040	0.00040								
Iron, dissolved	< 0.010	0.010								
Lead, dissolved	< 0.00020	0.00020	mg/L							
Magnesium, dissolved	< 0.010	0.010								
Manganese, dissolved	< 0.00020	0.00020	mg/L							
Molybdenum, dissolve	d < 0.00010	0.00010								
Nickel, dissolved	< 0.00040	0.00040								
Phosphorus, dissolved		0.050								
Potassium, dissolved	< 0.10		mg/L							
Selenium, dissolved	< 0.00050	0.00050								
Silicon, dissolved Silver, dissolved	< 1.0 < 0.000050	0.000050	mg/L							
Sodium, dissolved	< 0.10		mg/L							
Strontium, dissolved	< 0.0010	0.0010								
Sulfur, dissolved	< 3.0		mg/L							
Tellurium, dissolved	< 0.00050	0.00050								
Thallium, dissolved	< 0.000020	0.000020								
Thorium, dissolved	< 0.00010	0.00010								
Tin, dissolved	< 0.00020	0.00020	mg/L							
Titanium, dissolved	< 0.0050	0.0050	mg/L							
Tungsten, dissolved	< 0.0010	0.0010								
Uranium, dissolved	< 0.000020	0.000020								
Vanadium, dissolved	< 0.0010	0.0010								
Zinc, dissolved	< 0.0040	0.0040								
Zirconium, dissolved	< 0.00010	0.00010	mg/L							
LCS (B0H2471-BS1)			Prepared	l: 2020-08-2	29, Analyze	d: 2020-0	8-29		
Lithium, dissolved	0.0191	0.00010		0.0200		96	80-120			
Aluminum, dissolved	0.0216	0.0050		0.0199		109	80-120			
Antimony, dissolved	0.0181	0.00020		0.0200		90	80-120			
Arsenic, dissolved	0.0190	0.00050		0.0200		95	80-120			
Barium, dissolved	0.0189	0.0050		0.0198		96	80-120			
Beryllium, dissolved	0.0204	0.00010		0.0198		103	80-120			
Bismuth, dissolved	0.0205	0.00010		0.0200		102	80-120			
Boron, dissolved	< 0.0500	0.0500		0.0200		101	80-120			
Calcium, dissolved	0.0192	0.000010	mg/L mg/L	0.0199 2.02		97 98	80-120 80-120			
Calcium, dissolved Chromium, dissolved	0.0188	0.00050		0.0198		95	80-120			
Cohalt dissolved	0.0188	0.00050		0.0196		95	80-120			

80-120

0.0199

0.00010 mg/L

0.0193

REPORTED TO Ecoscape Environme PROJECT 19-2850 - Golden	ental Ltd.				WORK REPOR	ORDER RTED	0082 2020	459 -10-21	11:00
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B0H2471, Continu	ıed								
LCS (B0H2471-BS1), Continued			Prepared	: 2020-08-2	9, Analyze	ed: 2020-0	8-29		
Copper, dissolved	0.0194	0.00040 mg/L	0.0200		97	80-120			
Iron, dissolved	1.95	0.010 mg/L	2.02		96	80-120			
Lead, dissolved	0.0197	0.00020 mg/L	0.0199		99	80-120			
Magnesium, dissolved	2.00	0.010 mg/L	2.02		99	80-120			
Manganese, dissolved	0.0190	0.00020 mg/L	0.0199		95	80-120			
Molybdenum, dissolved	0.0190	0.00010 mg/L	0.0200		95	80-120			
Nickel, dissolved	0.0199	0.00040 mg/L	0.0200		99	80-120			
Phosphorus, dissolved	2.01	0.050 mg/L	2.00		101	80-120			
Potassium, dissolved	1.92	0.10 mg/L	2.02		95	80-120			
Selenium, dissolved	0.0190	0.00050 mg/L	0.0200		95	80-120			
Silicon, dissolved	1.7	1.0 mg/L	2.00		87	80-120			
Silver, dissolved	0.0192	0.000050 mg/L	0.0200		96	80-120			
Sodium, dissolved	1.90	0.10 mg/L	2.02		94	80-120			
Strontium, dissolved	0.0189	0.0010 mg/L	0.0200		95	80-120			
Sulfur, dissolved	4.8	3.0 mg/L	5.00		95	80-120			
Tellurium, dissolved	0.0199	0.00050 mg/L	0.0200		99	80-120			
	0.0199		0.0200		100	80-120			
Thallium, dissolved		0.000020 mg/L							
Thorium, dissolved	0.0196	0.00010 mg/L	0.0200		98	80-120 80-120			
Tin, dissolved Titanium, dissolved	0.0197	0.00020 mg/L	0.0200		98				
<u> </u>	0.0198	0.0050 mg/L	0.0200		99	80-120			
Tungsten, dissolved	0.0202	0.0010 mg/L	0.0200		101	80-120			
Uranium, dissolved	0.0201	0.000020 mg/L	0.0200		101	80-120			
Vanadium, dissolved	0.0204	0.0010 mg/L	0.0200		102	80-120			
Zinc, dissolved	0.0199	0.0040 mg/L	0.0200		99	80-120			
Zirconium, dissolved	0.0192	0.00010 mg/L	0.0200		96	80-120			
Duplicate (B0H2471-DUP1)		ource: 0082459-02	Prepared	: 2020-08-2	9, Analyze	ed: 2020-0			
Lithium, dissolved	0.0199	0.00010 mg/L		0.0193			3	20	
Aluminum, dissolved	< 0.0050	0.0050 mg/L		< 0.0050				20	
Antimony, dissolved	< 0.00020	0.00020 mg/L		< 0.00020				20	
Arsenic, dissolved	0.00506	0.00050 mg/L		0.00518			2	20	
Barium, dissolved	0.196	0.0050 mg/L		0.196			< 1	20	
Beryllium, dissolved	< 0.00010	0.00010 mg/L		< 0.00010				20	
Bismuth, dissolved	< 0.00010	0.00010 mg/L		< 0.00010				20	
Boron, dissolved	< 0.0500	0.0500 mg/L		< 0.0500				20	
Cadmium, dissolved	< 0.000010	0.000010 mg/L		0.000010				20	
Calcium, dissolved	89.1	0.20 mg/L		86.2			3	20	
Chromium, dissolved	0.00050	0.00050 mg/L		< 0.00050				20	
Cobalt, dissolved	< 0.00010	0.00010 mg/L		< 0.00010				20	
Copper, dissolved	0.00119	0.00040 mg/L		0.00119				20	
Iron, dissolved	< 0.010	0.010 mg/L		< 0.010				20	
Lead, dissolved	< 0.00020	0.00020 mg/L		< 0.00020				20	
Magnesium, dissolved	117	0.010 mg/L		118			< 1	20	
Manganese, dissolved	0.00091	0.00020 mg/L		0.00090				20	
Molybdenum, dissolved	0.00064	0.00010 mg/L		0.00063			2	20	
Nickel, dissolved	0.00096	0.00040 mg/L		0.00095				20	
Phosphorus, dissolved	< 0.050	0.050 mg/L		< 0.050				20	
Potassium, dissolved	5.65	0.10 mg/L		5.67			< 1	20	
Selenium, dissolved	< 0.00050	0.00050 mg/L		< 0.00050				20	
Silicon, dissolved	9.1	1.0 mg/L		9.1			< 1	20	
Silver, dissolved	< 0.000050	0.000050 mg/L		< 0.000050				20	
Sodium, dissolved	323	0.10 mg/L		324			< 1	20	
Strontium, dissolved	1.34	0.0010 mg/L		1.32			1	20	
Sulfur, dissolved	19.7	3.0 mg/L		21.3			8	20	
Tellurium, dissolved	< 0.00050	0.00050 mg/L		< 0.00050				20	

REPORTED TO PROJECT	Ecoscape Environn 19-2850 - Golden	nental Ltd.							2459)-10-21	11:00
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals,	Batch B0H2471, Contil	nued								
Duplicate (B0H247	71-DUP1), Continued	So	ource: 0082459-02	Prepared	: 2020-08-29	9, Analyze	ed: 2020-0	08-29		
Thorium, dissolved		< 0.00010	0.00010 mg/L		< 0.00010				20	
Tin, dissolved		0.00022	0.00020 mg/L		0.00021				20	
Titanium, dissolved		< 0.0050	0.0050 mg/L		< 0.0050				20	
Tungsten, dissolved		0.0052	0.0010 mg/L		0.0052			< 1	20	
Uranium, dissolved		0.00216	0.000020 mg/L		0.00206			5	20	
Vanadium, dissolved		< 0.0010	0.0010 mg/L		< 0.0010				20	
Zinc, dissolved Zirconium, dissolved		< 0.0040 < 0.00010	0.0040 mg/L 0.00010 mg/L		< 0.0040 < 0.00010				20	
	74 CDM4)	V 0.00010	0.00010 Hig/L	Dranarad) Analyza	.d. 2020 i	20	20	
Reference (B0H24	71-3KW1)	0.405	0.00040 //	· ·	1: 2020-08-29	•		J8-29		
Lithium, dissolved Aluminum, dissolved		0.105 0.240	0.00010 mg/L 0.0050 mg/L	0.100 0.235		105 102	70-130 70-130			
Antimony, dissolved		0.240	0.0030 mg/L	0.233		111	70-130			
Arsenic, dissolved		0.456	0.00020 mg/L	0.423		108	70-130			
Barium, dissolved		3.37	0.0050 mg/L	3.30		102	70-130			
Beryllium, dissolved		0.232	0.00010 mg/L	0.209		111	70-130			
Boron, dissolved		1.83	0.0500 mg/L	1.65		111	70-130			
Cadmium, dissolved		0.233	0.000010 mg/L	0.221		106	70-130			
Calcium, dissolved		7.10	0.20 mg/L	7.72		92	70-130			
Chromium, dissolved	<u> </u>	0.444	0.00050 mg/L	0.434		102	70-130			
Cobalt, dissolved		0.132	0.00010 mg/L	0.124		106	70-130			
Copper, dissolved		0.881	0.00040 mg/L	0.815		108	70-130			
Iron, dissolved		1.33	0.010 mg/L	1.27		105	70-130			
Lead, dissolved	.d	0.116	0.00020 mg/L	0.110		106	70-130			
Magnesium, dissolve		6.88 0.344	0.010 mg/L 0.00020 mg/L	6.59 0.342		104	70-130 70-130			
Manganese, dissolve Molybdenum, dissolve		0.424	0.00020 mg/L	0.342		105	70-130			
Nickel, dissolved	-cu	0.903	0.00040 mg/L	0.835		108	70-130			
Phosphorus, dissolve	ed .	0.505	0.050 mg/L	0.499		101	70-130			
Potassium, dissolved		2.94	0.10 mg/L	2.88		102	70-130			
Selenium, dissolved		0.0352	0.00050 mg/L	0.0324		109	70-130			
Sodium, dissolved		18.7	0.10 mg/L	18.0		104	70-130			
Strontium, dissolved		0.943	0.0010 mg/L	0.935		101	70-130			
Thallium, dissolved		0.0414	0.000020 mg/L	0.0385		107	70-130			
Uranium, dissolved		0.256	0.000020 mg/L	0.258		99	70-130			
Vanadium, dissolved		0.893	0.0010 mg/L	0.873		102	70-130			
Zinc, dissolved		0.912	0.0040 mg/L	0.848		108	70-130			
Dissolved Metals,	Batch B0H2636									
Blank (B0H2636-B	U K1\			Prenared	l: 2020-08-3) Analyze	.d. 2020-i	18-30		
Mercury, dissolved	LKI)	< 0.000010	0.000010 mg/L	Порагоа	1. 2020-00-0	o, Analyzo	u. 2020-	30-30		
•	VI 150\	V 0.000010	0.000010 Hig/L				1 0000	20.00		
Blank (B0H2636-B	SLK2)		0.000010 #	Prepared	1: 2020-08-3	J, Analyze	ed: 2020-0	08-30		
Mercury, dissolved		< 0.000010	0.000010 mg/L							
Duplicate (B0H263	36-DUP2)		ource: 0082459-05	Prepared	: 2020-08-3), Analyze	ed: 2020-0	08-30		
Mercury, dissolved		< 0.000010	0.000010 mg/L		< 0.000010				20	
Matrix Spike (B0H	2636-MS2)	Sc	ource: 0082459-11	Prepared	: 2020-08-30), Analyze	ed: 2020-0	08-31		
Mercury, dissolved		0.000260	0.000010 mg/L	0.000250	< 0.000010	104	70-130			
Reference (B0H26	36-SRM1)			Prepared	1: 2020-08-30), Analyze	ed: 2020-0	08-30		
Mercury, dissolved	·	0.00575	0.000010 mg/L	0.00581		99	70-130			
Reference (B0H26	36-SRM2)		-	Prenared	1: 2020-08-30) Analyze		08-30		
Mercury, dissolved	Jos Jitime)	0.00547	0.000010 mg/L	0.00581	. 2020-00-0	94	70-130	JJ-JJ		
iviciouly, uissuived		0.00047	0.000010 IIIg/L	0.00001		J +	10-130		Pa	ae 37 of 5

Analyte	EPORTED TO Ecoscape Environi ROJECT 19-2850 - Golden					REPOR	WORK ORDER REPORTED		-10-21	1 11:00	
		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie	
issolved Metals, E	Batch B0H2636, Contin	ued									
General Parameters Blank (B0H2187-BL				Prepared	I: 2020-08-2	26. Analvze	d: 2020-0	18-26			
Alkalinity, Total (as Ca	•	< 1.0	1.0 mg/L			, · · · · · · · · · · · · · · · · · ·					
Alkalinity, Phenolphtha		< 1.0	1.0 mg/L								
Alkalinity, Bicarbonate		< 1.0	1.0 mg/L								
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L								
Alkalinity, Hydroxide (a	as CaCO3)	< 1.0	1.0 mg/L								
Conductivity (EC)		< 2.0	2.0 µS/cm								
Blank (B0H2187-Bl	_K2)			Prepared	I: 2020-08-2	26, Analyze	d: 2020-0	8-26			
Alkalinity, Total (as Ca	CO3)	< 1.0	1.0 mg/L								
Alkalinity, Phenolphtha		< 1.0	1.0 mg/L								
Alkalinity, Bicarbonate	· · · · · · · · · · · · · · · · · · ·	< 1.0	1.0 mg/L								
Alkalinity, Carbonate (·	< 1.0	1.0 mg/L								
Alkalinity, Hydroxide (a Conductivity (EC)	as CaCO3)	< 1.0 < 2.0	1.0 mg/L 2.0 μS/cm								
<u>, , , , , , , , , , , , , , , , , , , </u>		\ 2.0	2.0 μο/οπ								
Blank (B0H2187-BL				Prepared	I: 2020-08-2	26, Analyze	d: 2020-0	18-26			
Alkalinity, Total (as Ca		< 1.0	1.0 mg/L								
Alkalinity, Phenolphtha Alkalinity, Bicarbonate		< 1.0 < 1.0	1.0 mg/L 1.0 mg/L								
Alkalinity, Carbonate (< 1.0	1.0 mg/L								
Alkalinity, Hydroxide (a		< 1.0	1.0 mg/L								
Conductivity (EC)	,	< 2.0	2.0 μS/cm								
LCS (B0H2187-BS1)			Prepared	I: 2020-08-2	26. Analvze	d: 2020-0	8-26			
Alkalinity, Total (as Ca	•	106	1.0 mg/L	100		106	80-120				
LCS (B0H2187-BS2	·			Drenared	I: 2020-08-2	26 Analyza	4· 2020-0	18-26			
Alkalinity, Total (as Ca	•	103	1.0 mg/L	100	1. 2020-00-2	103	80-120	0-20			
	·	100	1.0 mg/L		. 0000 00 0			0.00			
LCS (B0H2187-BS3	•	400	4.0		I: 2020-08-2			18-26			
Alkalinity, Total (as Ca	,	108	1.0 mg/L	100		108	80-120				
LCS (B0H2187-BS4	4)			Prepared	I: 2020-08-2	26, Analyze	d: 2020-0	8-26			
Conductivity (EC)		1460	2.0 µS/cm	1410		104	95-104				
LCS (B0H2187-BS5	5)			Prepared	I: 2020-08-2	26. Analvze	d: 2020-0	8-26			
Conductivity (EC)	,	1440	2.0 µS/cm	1410		102	95-104				
<u>, , , , , , , , , , , , , , , , , , , </u>					I: 2020-08-2	26 Analyzo		18 26			
LCS (B0H2187-BS6 Conductivity (EC)	<u>)</u>	1470	2.0 µS/cm	1410	1. 2020-00-2	104	95-104	0-20			
, , ,		1470	2.0 μ3/cm								
Reference (B0H218	37-SRM1)				I: 2020-08-2			18-26			
рН		7.00	0.10 pH units	7.01		100	98-102				
Reference (B0H218	7-SRM2)			Prepared	I: 2020-08-2	26, Analyze	d: 2020-0	8-26			
рН		6.99	0.10 pH units	7.01		100	98-102				
Reference (B0H218	7-SRM3)			Prepared	I: 2020-08-2	26. Analyze	d: 2020-0	8-26			
pH	··	7.00	0.10 pH units	7.01		100	98-102				
General Parameters	s, Batch B0H2194	7.00	orro pri amico				00 102				

0.10 NTU

< 0.10

Turbidity

REPORTED TO PROJECT	Ecoscape Environmen 19-2850 - Golden	ntal Ltd.				WORK C		0082 2020	2459)-10-21	11:00
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameter	s, Batch B0H2194, Contin	nued								
Blank (B0H2194-B	LK2)			Prepared:	2020-08-26	Analyzed	: 2020-08	8-26		
Turbidity	•	< 0.10	0.10 NTU			•				
LCS (B0H2194-BS	1)			Prepared:	2020-08-26	Analyzed	: 2020-08	8-26		
Turbidity		38.8	0.10 NTU	40.0		97	90-110			
LCS (B0H2194-BS	2)			Prepared:	2020-08-26	Analyzed	: 2020-08	8-26		
Turbidity		40.1	0.10 NTU	40.0		100	90-110			
Duplicate (B0H219	94-DUP2)	5	Source: 0082459-04	Prepared:	2020-08-26	Analyzed	: 2020-08	8-26		
Turbidity	,	45.1	0.10 NTU	· · · · · · · · · · · · · · · · · · ·	45.1			< 1	15	
General Parameter										
Blank (B0H2256-B	LK1)	.00	0.0	Prepared:	2020-08-26	Analyzed	: 2020-0	8-31		
BOD, 5-day		< 2.0	2.0 mg/L							
LCS (B0H2256-BS	1)			· · · · · · · · · · · · · · · · · · ·	2020-08-26	•		8-31		
BOD, 5-day		186	2.0 mg/L	180		103	85-115			
Blank (B0H2312-B Solids, Total Suspend	•	< 2.0	2.0 mg/L	· ·	2020-08-28,	•				
Blank (B0H2312-B	•			Prepared:	2020-08-28	Analyzed	: 2020-0	8-28		
Solids, Total Suspend	ded	< 2.0	2.0 mg/L							
LCS (B0H2312-BS	•				2020-08-28			8-28		
Solids, Total Suspend	ded	87.0	10.0 mg/L	100		87	85-115			
LCS (B0H2312-BS	•				2020-08-28			8-28		
Solids, Total Suspend	ded	98.0	10.0 mg/L	100		98	85-115			
General Parameter										
Blank (B0H2315-B				Prepared:	2020-08-27	Analyzed	: 2020-0	8-27		
Solids, Total Dissolve		< 15	15 mg/L							
Duplicate (B0H231	•		ource: 0082459-09	Prepared:	2020-08-27	Analyzed	: 2020-0			
Solids, Total Dissolve	ed	2700	15 mg/L		2720			< 1	15	
Reference (B0H23	· · · · · · · · · · · · · · · · · · ·				2020-08-27			8-27		
Solids, Total Dissolve	ed	245	15 mg/L	240		102	0-200			
General Parameter	s, Batch B0H2339									
Blank (B0H2339-B	LK1)			Prepared:	2020-08-27	Analyzed	: 2020-0	8-27		
Ammonia, Total (as N	I)	< 0.050	0.050 mg/L							
Blank (B0H2339-B	LK2)			Prepared:	2020-08-27	Analyzed	: 2020-0	8-27		
Ammonia, Total (as N	I)	< 0.050	0.050 mg/L							
Blank (B0H2339-B	LK3)			Prepared:	2020-08-27	Analyzed	: 2020-0	8-27		
Ammonia, Total (as N	I)	< 0.050	0.050 mg/L							

Commonia Commonia		Ecoscape Environmen 19-2850 - Golden	ntal Ltd.				WORK REPOR	ORDER RTED		2459)-10-21	11:00
Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.987 0.050 mg/L 1.00 98 90-115 LCS (B0H2339-BS2) Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.978 0.050 mg/L 1.00 98 90-115 LCS (B0H2339-BS3) Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.991 0.050 mg/L 1.00 99 90-115 LCS (B0H2339-BS3) Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.991 0.050 mg/L 1.00 99 90-115 Duplicate (B0H2339-DUP1) Source: 0082459-04 Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.415 0.050 mg/L 0.250 0.447 88 75-125 Matrix Spike (B0H2339-MS1) Source: 0082459-04 Prepared: 2020-08-31, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.050 0.00 0.00 Ammonia, Total (as N) 0.250 mg/L 0.250 0.050 0.00 0.00 0.00 Ammonia, Total (as N) 0.250 mg/L 0.250 0.050 0.00 0.00 0.00 Ammonia, Total (as N) 0.250 mg/L 0.250 mg/L 0.250 mg/L 0.250 mg/L 0.250 mg/L 0.250 mg/L 0.250 mg/			Result	RL Units	-		% REC		% RPD	RPD Limit	Qualifier
Ammonia, Total (as N)	rameters,	Batch B0H2339, Contin	nued								
Prepared: 2020-08-27, Analyzed: 2020-08-27	2339-BS1)				Prepared	: 2020-08-27	, Analyze	ed: 2020-0	08-27		
Ammonia, Total (as N)	Total (as N)		0.987	0.050 mg/L	1.00		99	90-115			
Ammonia, Total (as N) 0.978 0.050 mg/L 1.00 98 90-115	2339-BS2)				Prepared	· 2020-08-27	' Analyze	.d. 2020-0	18-27		
Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.991 0.050 mg/L 1.00 99 90-115 Duplicate (B0H2339-DUP1) Source: 0082459-04 Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.415 0.050 mg/L 0.050 mg/L 0.447 80 75-125 Matrix Spike (B0H2339-MS1) Source: 0082459-04 Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 80 75-125 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 80 75-125 Ammonia, Total (as N) Prepared: 2020-08-31, Analyzed: 2020-08-31 Ammonia,			0.978	0.050 mg/l	· · · · · · · · · · · · · · · · · · ·	. 2020 00 21			,		
Ammonia, Total (as N) 0.991 0.050 mg/L 1.00 99 90-115 Duplicate (B0H2339-DUP1) Source: 0082459-04 Prepared: 2020-08-27, Analyzed: 2020-08-27 2020-08-27 Ammonia, Total (as N) 0.415 0.050 mg/L Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.668 0.050 mg/L Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.668 0.050 mg/L Prepared: 2020-08-31, Analyzed: 2020-08-31 Ammonia, Total (as N) 0.668 0.050 mg/L Prepared: 2020-08-31, Analyzed: 2020-08-31 Blank (B0H2680-BLK1) Prepared: 2020-08-31, Analyzed: 2020-08-31 Chemical Oxygen Demand < 20 mg/L 500 100 89-115 Volatile Organic Compounds (VOC), Batch BUH2533 Prepared: 2020-08-31, Analyzed: 2020-08-31 Blank (B0H2833-BLK1) Prepared: 2020-08-31, Analyzed: 2020-08-31 Benzene < 0.5 0.5 µg/L Bromodichioromethane < 1.0 1.0 µg/L Bromodichioromethane < 1.0 1.0 µg/L Bromodichioromethane < 1.0 1.0 µg/L Chiorochane < 1.0	, ,		0.07.0	0.000g/_		. 2020 00 27			00.07		
Duplicate (B0H2339-DUP1) Source: 0082459-04 Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.415 0.050 mg/L 0.447 7 7 7 7 7 7 7 7 7			0.001	0.050 mg/l		: 2020-08-27			J8-2 <i>1</i>		
Ammonia, Total (as N) 0.415 0.050 mg/L 0.447 7 Matrix Spike (B0H2339-MS1) Source: 0082459-04 Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 General Parameters, Batch B0H2680 Blank (B0H2680-BLK1) Prepared: 2020-08-31, Analyzed: 2020-08-31 Chemical Oxygen Demand < 20 20 mg/L Prepared: 2020-08-31, Analyzed: 2020-08-31 Chemical Oxygen Demand 501 20 mg/L 500 100 89-115 Volatile Organic Compounds (VOC), Batch B0H2533 Blank (B0H2533-BLK1) Prepared: 2020-08-31, Analyzed: 2020-08-31 Bromodichloromethane < 1.0 1.0 μg/L Prepared: 2020-08-31, Analyzed: 2020-08-31 Bromodichloromethane < 1.0 1.0 μg/L Prepared: 2020-08-31, Analyzed: 2020-08-31 Bromodichloromethane < 1.0 1.0 μg/L Prepared: 2020-08-31, Analyzed: 2020-08-31 Bromodichloromethane < 1.0 1.0 μg/L Prepared: 2020-08-31, Analyzed: 2020-08-31 Bromodichloromethane < 1.0 1.0 μg/L	otal (as N)		0.991	0.050 mg/L							
Matrix Spike (B0H2339-MS1) Source: 0082459-04 Prepared: 2020-08-27, Analyzed: 2020-08-27 Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125 General Parameters, Batch B0H2680 Blank (B0H2680-BLK1) Prepared: 2020-08-31, Analyzed: 2020-08-31 Chemical Oxygen Demand < 20 20 mg/L Frepared: 2020-08-31, Analyzed: 2020-08-31 Chemical Oxygen Demand 501 20 mg/L 500 100 89-115 Volatile Organic Compounds (VOC), Batch B0H2533 Blank (B0H2533-BLK1) Prepared: 2020-08-31, Analyzed: 2020-08-31 Benzene < 0.5 0.5 μg/L Bromodorn < 1.0 μg/L Prepared: 2020-08-31, Analyzed: 2020-08-31 Benzene < 0.5 0.5 μg/L Prepared: 2020-08-31, Analyzed: 2020-08-31 Prepared: 2020-08-31, Analyzed: 2020-08-31 Benzene < 0.5 0.5 μg/L Prepared: 2020-08-31, Analyzed: 2020-08-31 Prepared: 20	(B0H2339-I	DUP1)	Sou	rce: 0082459-04	Prepared	: 2020-08-27	, Analyze	ed: 2020-0	08-27		
Ammonia, Total (as N) 0.668 0.050 mg/L 0.250 0.447 88 75-125	Total (as N)		0.415	0.050 mg/L		0.447			7	15	
Blank (B0H2680-BLK1)	ke (B0H233	39-MS1)	Sou	rce: 0082459-04	Prepared	: 2020-08-27	, Analyze	ed: 2020-0	08-27		
Prepared: 2020-08-31, Analyzed: 2020-08-31	Total (as N)		0.668	0.050 mg/L	0.250	0.447	88	75-125			
Chemical Oxygen Demand Color Co	rameters,	Batch B0H2680									
Prepared: 2020-08-31, Analyzed: 2020-08-31 Chemical Oxygen Demand 501 20 mg/L 500 100 89-115		•			Prepared	: 2020-08-31	, Analyze	ed: 2020-0	08-31		
Chemical Oxygen Demand 501 20 mg/L 500 100 89-115	xygen Dema	nd	< 20	20 mg/L							
Notatile Organic Compounds (VOC), Batch B0H2533 Blank (B0H2533-BLK1)	2680-BS1)				Prepared	: 2020-08-31	, Analyze	ed: 2020-0	08-31		
Blank (B0H2533-BLK1) Prepared: 2020-08-31, Analyzed: 2020-08-31 Benzene < 0.5	xygen Dema	ind	501	20 mg/L	500		100	89-115			
Stromoform		·									
Carbon tetrachloride < 0.5	oromethane										
Chlorobenzene < 1.0	achlarida										
Chloroethane < 2.0											
Chloroform											
Dibromochloromethane											
Dibromomethane	oromethane		< 1.0								
1,2-Dichlorobenzene < 0.5	oethane		< 0.3	0.3 μg/L							
1,3-Dichlorobenzene < 1.0	thane										
1,4-Dichlorobenzene < 1.0 1.0 μg/L 1,1-Dichloroethane < 1.0 1.0 μg/L 1,2-Dichloroethane < 1.0 1.0 μg/L 1,1-Dichloroethylene < 1.0 1.0 μg/L 1,1-Dichloroethylene < 1.0 1.0 μg/L 1,1-Dichloroethylene < 1.0 1.0 μg/L 1,2-Dichloroethylene < 1.0 1.0 μg/L 1,2-Dichloropropane < 1.0 1.0 μg/L 1,3-Dichloropropane < 1.0 1.0 μg/L 1,3-Dichloropropene (cis + trans) < 1.0 1.0 μg/L 1,4-Dichloropropene < 1.0 1.0 μg/L 1,1-Dichloropropene < 1.0 1.0 μg/L 1,1-Trichloroethane < 1.0 1.0 μg/L 1,1,1-Trichloroethane < 1.0 1.0 μg/L 1,1,1-Trichloroethane < 1.0 1.0 μg/L 1,1,2-Trichloroethane < 1.0 1.0 μg/L											
1,1-Dichloroethane < 1.0											
1,2-Dichloroethane < 1.0											
1,1-Dichloroethylene < 1.0											
cis-1,2-Dichloroethylene < 1.0											
trans-1,2-Dichloroethylene < 1.0											
Dichloromethane < 3.0											
1,2-Dichloropropane < 1.0		10									
1,3-Dichloropropene (cis + trans) < 1.0											
Ethylbenzene < 1.0	· ·	+ trans)									
Methyl tert-butyl ether < 1.0											
Styrene < 1.0											
1,1,2,2-Tetrachloroethane < 0.5											
Toluene < 1.0 1.0 µg/L 1,1,1-Trichloroethane < 1.0	achloroethan	ie	< 0.5								
1,1,1-Trichloroethane < 1.0	ethylene		< 1.0								
1,1,2-Trichloroethane < 1.0 1.0 µg/L											
• • • • • • • • • • • • • • • • • • • •											
Trichloroethylene < 1.0 1.0 ua/L											
	•			1.0 μg/L							
Trichlorofluoromethane <1.0 1.0 μg/L	oromethane		< 1.0	1.0 µg/L							ao 10 of

REPORTED TO Ecoscape Environmental Ltd. **WORK ORDER** 0082459 19-2850 - Golden 2020-10-21 11:00 **PROJECT** REPORTED Spike Source **REC** RPD Qualifier **RL Units** % REC % RPD Analyte Result Level Result Limit Limit Volatile Organic Compounds (VOC), Batch B0H2533, Continued Blank (B0H2533-BLK1), Continued Prepared: 2020-08-31, Analyzed: 2020-08-31 Vinyl chloride < 1.0 1.0 µg/L Xylenes (total) < 2.0 2.0 µg/L Surrogate: Toluene-d8 70-130 24.5 μg/L 92 26.5 Surrogate: 4-Bromofluorobenzene 25.2 101 70-130 24.9 μg/L Surrogate: 1,4-Dichlorobenzene-d4 26.5 μg/L 25.5 104 70-130 LCS (B0H2533-BS1) Prepared: 2020-08-31, Analyzed: 2020-08-31 0.5 µg/L 20.0 81 70-130 Benzene 16.2 Bromodichloromethane 20.0 14.2 1.0 µg/L 71 70-130 Bromoform 15.0 1.0 µg/L 20.1 75 70-130 Carbon tetrachloride 13.8 0.5 µg/L 20.2 68 70-130 SPK1 17.0 1.0 µg/L 20.1 85 70-130 Chlorobenzene Chloroethane 11.1 2.0 µg/L 20.0 56 60-140 SPK Chloroform 15.0 1.0 µg/L 20.1 74 70-130 1.0 µg/L 69 70-130 SPK1 Dibromochloromethane 13.9 20.2 0.3 µg/L 73 70-130 1,2-Dibromoethane 14.6 20.0 SPK1 Dibromomethane 13.7 1.0 µg/L 20.0 68 70-130 1 2-Dichlorobenzene 17.3 0.5 µg/L 20.1 86 70-130 1,3-Dichlorobenzene 17.0 1.0 µg/L 20.1 85 70-130 1,4-Dichlorobenzene 15.4 1.0 µg/L 20.1 77 70-130 1.0 µg/L 14 5 20 1 72 1 1-Dichloroethane 70-130 1.0 µg/L 1,2-Dichloroethane 14.6 20.1 73 70-130 1,1-Dichloroethylene 14.3 1.0 µg/L 20.1 71 70-130 14.6 1.0 µg/L 73 70-130 cis-1,2-Dichloroethylene 20.0 trans-1,2-Dichloroethylene 13.7 1.0 µg/L 20.0 68 70-130 SPK1 Dichloromethane 15.1 3.0 µg/L 20.1 75 70-130 1.0 µg/L 20.1 76 70-130 1,2-Dichloropropane 15.3 1,3-Dichloropropene (cis + trans) 28.0 1.0 µg/L 40.0 70 70-130 18.3 1.0 µg/L 20.0 92 70-130 Ethylbenzene Methyl tert-butyl ether 16.9 1.0 µg/L 20.0 85 70-130 Styrene 18.0 1.0 µg/L 20.0 90 70-130 1,1,2,2-Tetrachloroethane 18.1 0.5 µg/L 20.1 90 70-130 14 8 1.0 µg/L 20.1 74 Tetrachloroethylene 70-130 Toluene 15.8 1.0 µg/L 20.0 79 70-130 1,1,1-Trichloroethane 13.6 1.0 µg/L 20.0 68 70-130 SPK1 1.0 µg/L 74 1.1.2-Trichloroethane 14.8 20.1 70-130 Trichloroethylene 14.7 1.0 µg/L 20.1 73 70-130 Trichlorofluoromethane 15.2 1.0 µg/L 20.0 76 60-140 Vinyl chloride 16.9 1.0 µg/L 20.0 85 60-140 Xylenes (total) 53.8 2.0 µg/L 60.0 90 70-130

QC Qualifiers:

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,4-Dichlorobenzene-d4

S02 Surrogate recovery outside of control limits. Data accepted based on acceptable recovery of other surrogates.

μg/L

μg/L

μg/L

26.5

24.9

25.5

97

103

106

70-130

70-130

70-130

SPK The recovery of this analyte was outside of established control limits.

25.6

25.7

27.0

SPK1 The recovery of this analyte was outside of established control limits. The data was accepted based on performance of other batch QC.

Page 41 of 50

Isotope Analyses for: Caro Analytical Services

IT² FILE # 200122

2020-10-19

Approved by:

9600

Orfan Shouakar-Stash, PhD

Isotope Tracer Technologies Inc. 695 Rupert St. Unit B, Waterloo, ON, N2V 1Z5

Tel: 519-886-5555 | Fax: 519-886-5575

Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Caro Analytical Services Address: #102 3677 Highway 97N

Kelowna, BC V1X 5C3 **Tel:** 250 765 9646

Fax:

Attn.: Monika Sajdak
E-mail: sublet@caro.ca
E-mail: msajdak@caro.ca

 File Number:
 200122

 WO Number:
 0082459

#	Sample ID	Sample #	δ ¹⁸ Ο	Aver	Stdv	δ^2 H	Aver	Stdv
		'	H ₂ O	VSMOW		H ₂ O	VSN	10W
1	0082459-01	62800	Х	-19.04	0.05	Х	-150.1	0.3
2	0082459-02	62801	Χ	-19.23	0.04	Х	-148.6	0.1
3	0082459-03	62802	Х	-19.22	0.03	Х	-148.3	0.3
4	0082459-04	62803	Χ	-20.72	0.03	Х	-160.9	0.1
5	0082459-05	62804	Х	-19.92	0.04	Х	-152.5	0.2
6	0082459-06	62805	Χ	-19.77	0.03	Х	-152.0	0.3
7	0082459-07	62806	Χ	-19.88	0.03	Х	-154.7	0.2
8	0082459-08	62807	Χ	-20.15	0.03	Χ	-156.6	0.2
9	0082459-09	62808	Χ	-18.94	0.03	Χ	-150.1	0.3
10	0082459-10	62809	Χ	-18.95	0.03	Х	-150.4	0.2
11	0082459-11	62810	Χ	-19.85	0.02	Х	-150.4	0.2

¹⁸O & ²H (CRDS)

Instrument Used: Cavity Ring Down Spectroscopy (CRDS)

CRDS (Model L2130-i) (Picarro, California, USA).

Standard Used:

IT2-2B / IT2-11B / IT2-12C Calibrated with IAEA Standards (V-SMOW, SLAP, and GISP)

Typical Standard deviation:

 $(^{18}O \pm 0.1\%) (^{2}H \pm 1\%)$

Approved by:

Carlotte - -

Orfan Shouakar-Stash, PhD

Director

Isotope Tracer Technologies Inc. 695 Rupert St. Unit B, Waterloo, ON, N2V 1Z5

Tel: 519-886-5555 | Fax: 519-886-5575

Email: orfan@it2isotopes.com

Website: www.it2isotopes.com

Client: Caro Analytical Services **Address:** #102 3677 Highway 97N

Kelowna, BC V1X 5C3 **Tel:** 250 765 9646

Fax:

Attn.: Monika Sajdak
E-mail: sublet@caro.ca
E-mail: msajdak@caro.ca

 File Number:
 200122

 WO Number:
 0082459

#	Sample ID	Sample #	E ³ H	Result	± 1σ
1	0082459-01	62800	Χ	31.7	2.2
2	0082459-02	62801	Χ	3.4	0.6
3	0082459-03	62802	Χ	70.6	4.7
4	0082459-04	62803	Χ	15.8	1.2
5	0082459-05	62804	Χ	1.9	0.6
6	0082459-06	62805	Χ	4.8	0.7
7	0082459-07	62806	Χ	3.2	0.6
8	0082459-08	62807	Χ	1.4	0.6
9	0082459-09	62808	Χ	157.6	11.2
10	0082459-10	62809	Χ	31.7	2.2
11	0082459-11	62810	Χ	4.2	0.6

E³H ANALYSES

Tritium is reported in Tritium Units.

1TU = 3.221 Picocurries/L per IAEA, 2000 Report.

1TU = 0.11919 Becquerels/L per IAEA, 2000 Report.

Approved by:

Continue Con

Orfan Shouakar-Stash, PhD Director

Isotope Tracer Technologies Inc. 695 Rupert St. Unit B, Waterloo, ON, N2V 1Z5

Tel: 519-886-5555 | Fax: 519-886-5575

Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Caro Analytical Services **Address:** #102 3677 Highway 97N

Kelowna, BC V1X 5C3 **Tel:** 250 765 9646

Fax:

Attn.: Monika Sajdak
E-mail: sublet@caro.ca
E-mail: msajdak@caro.ca

 File Number:
 200122

 WO Number:
 0082459

#	Sample ID	Sample #	δ ³⁷ Cl	Result	Stdv
		·		SM	IOC
1	0082459-01	62800	Χ	0.34	0.10
2	0082459-02	62801	Χ	0.43	0.05
3	0082459-03	62802	Χ	0.02	0.14
4	0082459-04	62803	Χ	0.20	0.05
5	0082459-05	62804	Χ	0.45	0.14
6	0082459-06	62805	Χ	0.22	0.13
7	0082459-07	62806	Χ	0.31	0.11
8	0082459-08	62807	Χ	0.11	0.10
9	0082459-09	62808	Χ	0.02	0.13
10	0082459-10	62809	Χ	-0.20	0.08
11	0082459-11	62810	Χ	-0.16	0.05

³⁷Cl ANALYSES

Instrument Used:

Isotope Ratio Mass Spectrometry (IRMS) - MAT 253, Thermo Scientific, Germany Coupled with an Agilent 6890 Gas Chromatograph (GC)

Standard Used:

SMOC

Typical Standard deviation:

 $\pm~0.15\%$

Approved by:

Total and the state of the stat

Orfan Shouakar-Stash, PhD

Director

Isotope Tracer Technologies Inc. 695 Rupert St. Unit B, Waterloo, ON, N2V 1Z5

Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com

Website: www.it2isotopes.com

SUBCONTRACT REQUEST (WO# 0082459)

RECEIVING LABORATORY:

I = C19_40 mL Vial (General CG)

Isotope Tracer Technologies Inc. (IT2)
Unit B - 695 Rupert Street
Waterloo, ON N2V 1Z5
Phone: 1(519) 886-5555

Comments

TAT AAJUDAA

Analysis / Method

CARO Sample ID: 0082459-01 | Matrix: Water | Sampled: 2020-08-24 16:30

Container(s) Submitted: G = C13_500 mL Plastic (General)

Contact sublet@caro.ca

Phone: (250) 765-9646

Kelowna, BC V1X 5C3

M79 yswdgiH 778£ 201#

CARO Analytical Services

SENDING LABORATORY:

J = C19_40 mL Vial (General CG)

H = 13 500 mL Plastic (General)

AN 318O Isotope Ratios [Stable - Topes]
Miscellaneous Subcontracted Analysis [A/N]

CARO Sample ID: 0082459-02 | Matrix Water | Sampled: 2020-08-25 08:00

2021-08-25

2020-09-21

Nand 180 Isotope Ratios [Stable Edopes] [A/N] Aiscellaneous Subcontracted Analysia [A/N]

CARO Sample ID: 0082459-03 | Matha: Water | Sampled: 2020-08-25 08:00

Container(s) Submitted:

31) I = C19_40 mL Vial (General CG)

I = C19_40 mL Vial (General CG)

1 = C19_40 mL Vial (General CG)

H = C11_500 mL Plastic (General)

G = C13_500 mL Plastic (General)
J = C19_40 mL Vial (General CG)

J = C19_40 mL Vial (General CG)

2020-09-25

AN and 180 lsotope Ratios [Stable lsotopes] Miscellaneous Subcontracted Analysin [N/A]

CARO Sample ID: 0082459-04 | Matrix Water | Sampled: 2020-08-24 15:10

Container(s) Submitted:

G = C13_500 mL Plastic (General)

J = C19_40 mL Vial (General CG)

AS-80-1202 September School Off has HS accorded to the Policy of the Pol

C: N1:30 Sample ID: 0052469-0-1 | Mainta: Unital | Sampled: 2020-08-24 11:30

catalant Schalanto

The present the "PE DEBUG WE

2021-08-24 2020-09-24 | Hand 1861 Leaning Restant Stabble Spaces | Hand | Hand Restant Description | Hand Restant Page 2 of 7 to 2 description | Hand Restant Page 2 of 7 to 2 description | Hand Restant Page 2 of 7 to 2 description | Hand Restant Page 2 of 7 to 2 description | Hand Restant Page 2 description | Hand Restant Page 2 description | Hand Restant Page 2 description | Hand Restant Page 2 description | Hand Restant Page 2 description | Hand Restant Page 2 description | Hand Restant Page 2 description | Hand Restant Page 2 description | Hand Restant Page 2 description | Hand Restant Page 2 description | Hand Restant Page 3 des

contacts with them thereth leaders

SUBCONTRACT REQUEST (WO# 0082459)

Comments	Expires	-	Analysis / Method
1 = C19_40 mL Vial (General CG)	Sampled: 2020		ARO Sample ID: 0082459-06 MacContainer(s) Submitted: G = C13_500 mL Plastic (General) H = C19_40 mL Vial (General CG)
	2021-08-24 12-60-09-24		Miscellaneous Subcontracted Analy
06:25 08:30	Sampled: 2020	trix: Water	ARO Sample ID: 0082459-07 Ma
(5) leieneis) (5) mL Vial (6eneral C6)	Plastic (General)	= C 3 200 mL	Sontainer(s) Submitted: G = C13_500 mL Plastic (General) H : J = C19_40 mL Vial (General CG)
	2021-08-25 2020-09-22		Plastel Stable Ratios Stable Stab
74:80 dd-80-0	Sampled: 2020	trix: Water	ARO Sample ID: 0082459-08 Ma
I = C19_40 mL Vial (General CG)	Plastic (General)	= C43 ⁻ 200 mF	Sontainer(s) Submitted: G = C13_500 mL Plastic (General) H : J = C19_40 mL Vial (General CG)
	2021-08-25 2020-09-25		Plane 180 Isotope Ratios [Stable Miscellaneous Subcontracted Analy
9-08-24 18:02	Sampled: 202	itrix: Water	ым e0-e542800 : Оі əiqmв2 ОЯА
I = C19_40 mL Vial (General CG)	Plastic (General)	= C43 200 mL	Container(s) Submitted: G = C13_500 mL Plastic (General) H = C19_40 mL Vial (General CG)
	2021-08-24 2020-09-21		Miscellaneous Subcontracted Anal
06:31 46:30	Sampled: 202	ntrix: Water	:M 01-6542800 :Ul əlqms2 ОЯА
= C19_40 mL Vial (General CG)	Plastic (General)	= C13 200 mF	Container(s) Submitted: G = C13_500 mL Plastic (General) H = C19_40 mL Vial (General CG)
	2021-08-24 2020-09-21		Pland 180 Isotope Ratios [Stable Maliscellaneous Subcontracted Analy

SUBCONTRACT REQUEST (WO# 0082459)

Comments Expires Analysis / Method

CARO Sample ID: 0082459-11 | Matrix: Water | Sampled: 2020-08-24 11:55

Container(s) Submitted:

I = C19_40 mL Vial (General CG)

H = C#3_500 mL Plastic (General)

[seqotosl eldstS] soits A eqotosl O81 bns HS J = C19_40 mL Vial (General CG)

G = C13_500 mL Plastic (General)

2020-09-21 2021-08-24 Miscellaneous Subcontracted Analysis [N/A]

Date

Received By

Released By

standary Leoscape Bird province

四元至19年20年2月

DESCRIPTION OF E SAMEDINGS

CURRENT MANDER IN

WWW.CCC.

DATE USA A WOULD 据在特别。 Loter Well set THE BULL AND

DAME: N

那位一

FERR LINE DE

ANALYH SLEET

WW33 062

MINERALLY THE HILLS THE PARTY OF THE

School and the Street Wilking

ADDRESS: 600/95 New Or - Melcount.

C-APPENDED USE OF HALF OF THE

COUNTY NO MARTIN

Alega salibera especial into

7: Ned this person and kloser.

REPORTTO

ENGLISH THE

DUALS:

Mark W

SAMPLED BY: KILL

CARO, car 1-888-311-8846

MARKAY Emission Productional

的现在分词 (1995年) (1996年) (1996年) (1996年)

30000

LIMARY

DESCRIPTION OF THE

tre annealithic condess and fired; about the all property were by store of their fired bale.

Transpersion may if you

motest comment of their

i rincular i Miste Servicepo

拉斯以时,那么

2000日

中的人的特殊的

国特别国际

Spream Han

25 A 16 50 50

5747 KE, 24

Zierszo

5.8 PETER TOTAL TOTAL de Lord at the To

表现的证明的 Other conducting deaths, being

INVADITATION.

6.200 Sec.

722/7/01

ESSERIE

24-12

2001.1

PO L

··· Biggrand Ship prig dig that must be and make by the room for the control of the control of the graph was trace. [7] MATTERS 1

Date:

#119-4033 CMrsg Weg. Distributions of HTF 767 4115-5417 Highway (Fig. Believe, Nr. 918/90) CODE TO December MV, Schmidton, 701 Tel 142

一块水色的现在分词

CONCURRENCE

CARDING CONCREMENTAL

43	tori auto spile bile	TE.	34		H.		A legan	P.	-13		ESPE CSM					1916		din		は続け		une se		
		717		F 8061 1	-	t - cross-and E nature	Title in T	2	第二十三十三年	75 2	26 A 20 -	h Ec)De	(2)	7 25 4		English Landerson College	to the Salama, homes, totale.	1 1 2					A STANDARD CONTRACTOR AND AND AND AND AND AND AND AND AND AND
	# KX	7	TOTAL COLOR	*** (C. C. C. C. C. C. C. C. C. C. C. C. C.	15 1 1 1 X 2	8 m.7 n 1 7	WHAT WATERTHE	THE PARTY OF A PARTY.	100 times	N X X X	- 50 B 41	NO BEST	DEFEN	Service and when	200 m 16-85	sacre:	To be the second	4	MENTAL SELECT	Armeterit		3	OL.	THE REAL PROPERTY.
	Ů,							*		P.	*	¥	-	Ļ	-		1	100	10	Ĭ	× .			
	8				Н			į.		M			ŀ	i	-	Н	<u> </u>	1			100	4	1	
	15			Ť				v.		7	-	,										+	Ħ	
	2							Ž.		7	7	v			ī		7	÷	è		2			
	W.	T		Ū				0		Ž,	8	1			Ī	П	K.	ø	Ÿ.	v.	4	Ť	Ţ	
	*			I				×		$\tilde{\tau}$	7	4			Ų		4		1		T	=	Ī	
	8							7		ø	10	7					4	ř	1	a.	4		I	
	3						1	1			8	7					*	111	1	2				
	97				_			4		4	1	*	Н	h				d.		14	4			L
Ш	1						Ų.	"	Ш	100	*	1					4	8		e	40)		1	

CA	RO
Spane chark	Results (Brokensky

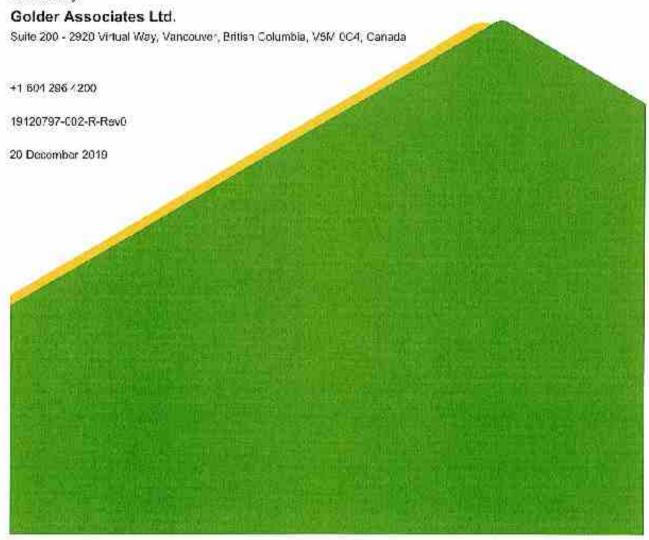
CHAIN OF CUSTO	DANAECOND	1000
FRANK MORTOW #	A Visited and Art	1157.00

100	A THE		
	200 B 100		

	WAS THE PARTY OF THE PARTY.	er VX er diffele	ermoly RC 1979/2009	The second second	MULTINETIC	cango	58 XIII.	4,4714,7	210011	Section 2			-1472	44	(24H)
DATE OF THE PARTY	A CONTRACTOR OF THE		aroma of HIKSCA	72	454		700	300	1100	ANZMER				100	
Coding About Results (Britis)	on departure Annual	The second secon	unun 48 fai 18#	A STATE OF THE PARTY OF THE PAR	TE DE SE	Samuel Samuel			1	erenic	and proved		- 0	HE	fore F
Rivora to			3/19 (m) 4 to 14th	France	Sel Bayer B			156.3	1.50	and the	W. Alex	Barre .	winds of	Sec. 1	(march)
(XXXXXII :: Loopcope , рубовлений	COMPANDE:	nimix Em	romontal	The second second				100	1970 400	後のことの 基準性であ			uni inde	MENA	VILLEY PRINT
Andress 163-456 Wave St. Ricket	id ₁			Puriosci,	de Tot Society	(Period)	# 11 x 3 m	12.00			3	du:			
JC, VIV 202		wifewaya a a			6.0 000 25 (1 1-1:19.055				art o	Famal I	= 440m +1.00m		60° 10	e gitte e	Sec.
CONTRACT SHARW MINE	Complete a Min	the property of	•	1 304.00	1775-1481303	A17.5			-1-	411	Mrc	2	tuh	China	# 15 T
TELIFAS: INCHRET-COV	TELEPOX.				18-14	10	6500	PSES I	isqui	STEEL	-				
BONG-FITSHEND BOS X BALD F BONG-Sales — A R MATERIAND DA		e (340) v (36 Tranjungposos:			F	15	i iri								32
1007 P 111/11 C	261 (200.3 Sec.	Transfer of	144f2324	71	(34)		. 7			拉压					3
POWER Burstaglessessbetager Discharge Burstaglessessbetager	1281.3			45			支机			415	_				2
	101			12 1	k = 100	r la l	8 12	h.E		mic					3
Tymes it became note the Sussensity	etransis (n. 1952), milin Mariata (n. 1952)	THE STATES	pleased with the con-	10 = 3		Experient Land	A MARKET AND A STATE OF THE STA		計劃	\$ 10	15	8		all	- 12
BAMPLECISM: RT	(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	W-0-	# (glavera)	+ =	居出		1 1	1.41	夏楼	A STORESON	Trybe	Street will be	1,000		- 13
	2 S S XXI	09403	4 4 ₽	release			2 8 2	1	名臣	2000	913	ž	Sunter Company	All.	4
CLICKT SAGNYLD ID:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	o late	CHARLES TO	量 数3	5 3			± 4	8 x	218	13/17	14	3 5		1100
V975-967	29/194	De deci	4.4			PMA	nab		70	544		100	1.1		
EM/208	H 144 C C C C C C C C C C C C C C C C C C		33 (0)				-	-	-	-	-19				-
Xe3.0	ZSAW	3.0		11.4						H	Ш	10	800		
1 1000	24 mil	1400	XX				-11				12	1120	00		-
No MI		65	200									12	Y Y		
Israi Wa #		1000	* *	774								pr.	e . e		
Town God 2.4	210.0	- 100 march	Asia:	11111							10	190	100		
DWM5	25Aug		x x	137	1100	-							10	ШЕ	
0.904	2574		83						ш		7	W.	0.0		#
76/40/223			VIC	001.11		1	-	H		Ħ	-16	12	10		=
1955	- 24/48	4 10	NZ:	Julian.			-	-			-117	13	10.00		
	. 0	IE3×	XX	1							- 11	1	100		_
90'+794"	· 6 6700		×6+4								10	123	$\mathcal{M}(\mathcal{M})$		
			Section 1								瑟形		vec mile	施	
		an er mai fill	стона 🙏 " 55.	3541_		600	2012			44304		Pice	esunita	9	100
nAft = Pasks:	A THE WHILE	Commence of the contract of th	2 y =10	m4 /	asM Lond		0.01	الملسالا	l Service	0.34		—		第五	驴
	tale fell en la lie le	50 (60)	BILL CAP !		House.	Sec	activity	i i ka ifi	44	41.77.8	0.04 - 11 - 1		最終		1
	Committee of the Commit	医多种性 医甲基甲基	医水性皮肤 化化物 医皮肤神经病	THE RESERVE OF THE PERSON NAMED IN	化化物化物 化邻苯	Committee of the	Section 14 miles	1 1 THE R. P. LEWIS CO., LANSING		1.001.75.000	ALCOHOL:	40.74	A 15 P. L.		100

APPENDIX G GOLDER 2019 ENVIRONMENTAL MONITORING PLAN

REPORT


Golden Landfill Environmental Monitoring Plan

Submitted to:

Columbia Shuswap Regional District

PO Box 378 555 Farbourfront Drive NE Salmon Arm. BC V1E 4P1

Submitted by:

19120797-002-R-Rev0

Distribution List

1 electronic copy: Columbia Shuswap Regional District

1 electronic copy: Golder Associates Ltd.

20 December 2019 19120797-002-R-Rev0

Study Limitations

Golder Associates Ltd. (Golder) has prepared this occument in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this document. No warranty, express or implied, is made.

This document, including all text, data, tables, plans, figures, drawings and other documents contained herein, has been prepared by Golder for the sole benefit of the Client (Columbia Shuswap Regional District). It represents Golder's professional judgment based on the knowledge and information available at the time of completion. Golder is not responsible for any unauthorized use or modification of this document. All third parties relying on this document do so at their own risk.

The factual data, interpretations, suggestions, recommendations and opinions expressed in this document pertain to the specific project. Site conditions, design objective, development and purpose described to the Client, and are not applicable to any other project or location. To properly understand the factual data, intercretations, suggestions, recommendations and opinions expressed in this document, reference must be made to the entire document.

This document, including all text, data, tables, plans, figures, drawings and other documents contained herein, as well as all electronic media prepared by Golder, are considered, its professional work product and shall remain the copyright property of Golder. The Client may make copies of the document in such quantities as are reasonably necessary for those parties conducting business specifically related to the subject of this document or in support of or in response to regulatory inquiries and proceedings. Electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore no party can rely solely on the electronic media versions of this document.

Table of Contents

1.0	INTR	ODUCTION	······································
	1.1	Background	
	1.2	Objective	
	1.3	Regulatory Context	
	1,3,1	General	1
	1.3.2	Water Quality Standards and Guidelines	2
	1.3.3	Selection of Applicable Water Quality Standards and Guidelines	2
	1.3.4	Landfill Gas	3
	1.4	Sitc Setting	4
	1,4.1	Topography, Brainage and Land Use	4
	1,4.2	Gealagy	4
	1.4.3	Hydrcgeology	5
	1.5	Potential Environmental Receptors	6
	1.6	Potential Impacts	6
2.0	ENVI	RONMENTAL MONITORING PROGRAM	7
	2.1	Groundwater	7
	2.1.1	Groundwater Well Nelwork	8
	2.1.2	Groundwater Sampling and Groundwater Level Monitoring	9
	2,1.3	Field Measurements	11
	2.1.4	Chemical Analyses	11
	2.2	Surface Water Monitoring	12
	2.3	Landfill Gas Monitoring	12
	2.3.1	Landfill Gas Monitoring in the Reuse Centre	13
3.0	METH	HODS	14
	3.1	Field Program	
	311	Protocols	14

	3.1.2	Health and Safety	14
	3.2	Laboratory Analyses	14
	3.3	Quality Assurance/ Quality Control	14
	3.4	Data and Interpretation	15
	3.4.1	Data Management and Analysis	15
4.0	REGL	JLATORY LIMITS, TRIGGERS AND REMEDIAL ACTIONS	15
	4.1	Groundwater	15
	4.2	Landfill Gas	16
	4.3	Reporting	16
5.0	DOCL	JMENT TRACKING	16
6.0	CLOS	URE	17
7.0	REFE	RENCES	18

FIGURES (END OF TEXT)

Figure 1: Key Plan

Figure 2: Monitoring Location Plan

1.0 INTRODUCTION

1.1 Background

On behalf of the Columbia Shuswap Regional District (CSRD), Golder Associates Ltd. (Golder) is pleased to provide this Environmental Monitoring Plan (EMP) for the Golden Landfill (Landfill or Site), located at 350 Golden Donald Upper Road in Golden, BC approximately 2 km northwest of the town centre (Figure 1). The Site is authorized under Ministry of Environment and Climate Change Strategy Operational Certificate (OC) 17006 that was last updated 29 August 2012. This Plan is based on a review of the following documents for the Site provided by CSRD:

- Operational Certificate 17006
- most recently completed Design and Operating Plan (Golder 2013) and in-progress Design, Operations and Closure Plan (DOCP) update (Golder 2019)
- annual environmental monitoring reports (Summit 2011 and 2012)
- hydrogeological characterization report (WWAL 2018)
- most recent landfil annual report (CSRD 2018)
- BC Ministry of Environment and Climate Action Strategy (BC ENV) Environmental Impact Assessment Review (BC ENV 2018a)

1.2 Objective

This EMP has been prepared to fulfill the requirements of OC 17006 Section 4 whereby a monitoring program must be developed by Qualified Professional and submitted to the satisfaction of the Director, *Environmental Management Act.* To meet these requirements, the EMP has been designed to assess compliance of the Landfill performance with respect to groundwater quality at the landfill boundary, residential well water quality and surface water quality, and to characterize the Landfill leachate.

1.3 Regulatory Context

1.3.1 General

A description of the requirements for design and operations of the Site landfill are detailed in the DOCP (Goldor 2019). The following regulatory and guidance documents were consulted in the development of this EMP:

- Operational Certificate 17006 amended August 29, 2012
- BC Environmental Management Act (EMA [SBC 2003]), notuding the Landfill Gas Management Regulation
 BC Reg 391/2008 O.C. 903/2008 brought into force on 1 January 2009.
- Lendfill Criteria for Municipal Solid Waste (Landfill Criteria; BC ENV 2016)
- Guidelines for Environmental Manitering at Municipal Solid Waste Landfills (BC ENV 2019)
- British Columbia Field Sampling Manual (BC ENV 2103a)
- British Columbia Environmental Laboratory Manual (BC ENV 2013b)

The Landfill Criteria guidance decument (BC ENV 2016) specifies that current and planned future uses of groundwater and surface water shall be identified within 1 km of the landfill footprint and after considering these uses, a Qualified Professional must recommend the appropriate water quality criteria, compliance locations, and provide related rationals and justification. As a minimum, the criteria must be satisfied at and beyond the landfill site boundary, or 150 m from the landfill footprint, whichever is closer. The water quality criteria and compliance monitoring locations are subject to approval of the Director, who may set more stringen, requirements.

1.3.2 Water Quality Standards and Guidelines

The following provincial water quality standards and guidelines apply within BC:

- BC Contaminated Sites Regulation (CSR; BC Reg. 375/96 O.C. 1483/96, including amondments up to B.C. Reg. 116/2018, 24 January 2019. EMA [SBC 2003]) Schedule 3.2 Generic Numerical Water Standards.
 - One or more of Aquatic Life (AW), Irrigation (W), Livestock (LW), or Drinking Water (DW) standards may
 be applicable at a site, depending on the water use determination.
 - Aquatic Life standards are typically 10 times greater than the respective BC WQGs based on the
 assumption that 10-fold dilutions will occur before discharge.
- BC Water Quality Guidelines (BC WQGs) for the protection of aqualic life, which apply to receiving surface waters and comprise working and approved guidelines (BC ENV 2017a; BC ENV 2018b).
 - Approved Water Quality Guidelines, which are considered safe concentrations of substances for
 particular water uses and have been developed to provide policy direction for decision makers within the
 ENV, including for the purpose of assessing allowable limits in wasta discharge authorizations.
 - Working Water Quality Guidelines, which have been adopted for substances that do not have formally
 approved water quality guidelines. They provide benchmarks for parameters that have not been fully
 assessed by BC ENV; however, as they may be based on historical information or different derivation
 protocols from different agencies, they should be used with caution.

In addition, the Guidelines for Canadian Drinking Water Quality established by Health Canada apply to groundwater derived from water supply wells.

1.3.3 Selection of Applicable Water Quality Standards and Guidelines

The qualified professional responsible for implementing the environmental monitoring plan and interpreting the results should select appropriate guidelines for comparison of environmental monitoring program sample results that consider the current and future land use, background conditions, and provincial regulatory guidance. In addition to the regulations and standards listed above, the following guidance documents are considered applicable with respect to groundwater monitoring:

- Technical Guidance on Contaminated Sites 3: Environmental Quality Standards (BC ENV 2017b)
- Technical Guidance on Contaminated Sites 15: Concentration Limits for the Protection of Aquetic Receiving Environments (BC ENV 2017c)
- Protocci 21 for Contaminated Sites Water Use Determination (BC ENV 2017d)

Based on the regulations, standards and guidance documents above, the following water quality standards are considered applicable to the assessment of groundwater conditions:

- for the Site monitoring wells, CSR drinking water (DW) standards to protect drinking water in the area are applicable because groundwater is extracted for drinking water use in the area and based on *Protocol 21* (BC ENV 2017d)
- for the monitored off-Site water supply wells, CSR drinking water (DW) standards and Canad an Drinking Water Guidelines are applicable

CSR aquatic life (AW) standards are not considered applicable since the only mapped surface water bodies within 500 m of the Site are ephameral streams. CSR standards for irrigation and livestock are not considered applicable because groundwater in the vicinity of the Landfill is not known to be used for irrigation of livestock watering.

In addition to water quality standards, the groundwater sampling results should be evaluated in the context of background groundwater chemistry.

Descriptions of the sampling locations and frequencies are presented in Section 2.0 and descriptions of regulatory limits, triggers and remedial actions are presented in Section 4.0 of this report.

1.3.4 Landfill Gas

The Landfill Criteria (BC ENV 2016) requires that:

- Soil gas concentrations at the landfill Site boundary must not exceed the lower explosive limit of methane (5 percent by volume) at any time and combust ble gas concentrations measured in on-site buildings must not exceed 20 percent of the lower explosive limit of mothane (1 percent by volume) at any time.
- Landfill gas must be managed in accordance with all migration and health and safety requirements, for example, WorkSafe BC.
- Landfill gas management should meet the requirements of the Landfill Gas Management Regulation. In addition to the reporting requirements of this regulation, andfills determined to be generating more than 1,000 tonnes of methane per year are required to propore a LFG management plan and implement a LFG management system. Methane generation at the Golden Landfill is currently less than 1,000 tonnes per year and is estimated to remain below this threshold for the remaining lifespan of the facility.

It is noted that OC 17006 states that the Landfill must not cause combustible gas concentrations to exceed the lower explosive limit in soils at the property boundary or 25 percent of the lower explosive limit in on-site structures. However, it is recommended that the 26 percent LEL guideline presented in the Landfill Criteria be adopted for on-site structures since it provides a safer trigger limit.

1.4 Site Setting

Detailed descriptions of the Landfill site setting are provided in the Design and Operating Plan (Golder 2013) and hydrogeological characterization report (WWAL 2019a). A summary of the site setting and identified environmental receptors is provided below.

1.4.1 Topography, Drainage and Land Use

The Landfill property occupies a plan area of approximately 16 hectares. The Landfill generally slopes down to the southwest from elevation 955 m (above sea level) at its northeast corner, to elevations of about 925 to 930 m along the northwest southeast diagonal of the Site (Golder 2013). The topography is flatter from the northwest-southeast diagonal to the southwest corner of the Landfill. The slopes at the southwest corner of the Site are about 120 m higher than the Kicking Horse River. Currently, other than roads along its east, north and west perimeter, the Landfill is surrounded by natural terrain vegetated with trees. Based on the 2011 Town of Golden Zoning (bylaw 1294), planned future land use for land to south and west of the Landfill boundaries is residential; parks and trails; and, community education and culture.

As documented in the BOCP (Golder 2019), surface water will be directed around the Landfill fcotpant, including intermittent flows which enter from a ravine at the northeast comer. The ravine is normally dry but flows in extremely wet weather or periods of high runoff. Ponds will be established on-site cutside of the landfill footprint to detain surface water and allow it to infiltrate into the subsurface. Any overflow from these pends will enter the drainage system adjacent to Golden Donald Upper Road which flows to the south and then west for about 2.5 km and discharges to the Kicking Horse River. Another unnamed surface watercourse exists approximately 180 m south of the Site. This watercourse flows to the southwest for about 1.1 km and discharges to a catch-basin near Station Avenue.

Hospital Greek collects drainage from the sub-watershed area northwest of the Landfill. It is located approximately 800 m from the Landfill and flows in a southwesterly cirection until discharging to the Kicking Horse River.

1.4.2 Geology

The Landfill is underlain with ablation till to the east and ice-contact materials to the west, both of which primarily comprise sit, sand and gravel (Golder 2013). Surficial deposits vary across the Site, with the surficial sediments on the east side of the Site being siltier and comprising, dense, gravelly sand and sity till-like material (Golder 2013). These deposits are estimated to have low hydraulic conductivity. Clean, bedded sand and gravel alluvial deposits are present on the south side of the Landfill and have been characterized as moderately permeable (Golder 2013).

Unconsolidated material is thicker in the southwest area of the Site and thinner toward the north and bedrock butcrops at the eastern edge of the Site (WWAL 2019a). Geological Survey of Canada mapping classifies bedrock beneath the Site as McKay Group limestone, limestone conglomerate, shale and associated meta-sedimentary rocks.

1.4.3 Hydrogeology

Conceptual Model of Regional Hydrogeology

Golder developed a regional conceptual hydrogeological model for the Town of Golden (including the area of the Landfill) as part of groundwater protection planning work (Golder 2006). Based on this model, regional groundwater flows occur in the surficial deposits (i.e., sand and gravel), and in the bedrock strata below. The upland areas are typically groundwater recharge areas, and the Columbia River valley represents a regional discharge area. Groundwater infiltrating the bedrock in the upland areas migrates downward, and then laterally into the surficial deposits that occur in the river valley, via fractures in the bedrock. Groundwater flow in the main sand and gravel aquifor that occupies the river valley is relatively slow and generally from southeast to northwest, along the Columbia River valley; however, lateral inflow also occurs (Golder 2006).

The ENV Water Resources Atlas (Province of BC 2019) has mapped one unconfined sand and gravel aquifer (No. 456) in Golden at the confluence of the Kicking Horse River and the Columbia River. Previous work by Gulder indicates that there are three generally laterally continuous, sand and gravel deposits that make up the regional aquifer system (Golder 2006). The deeper water-producing strata are interlayered with finer-grained strata. Institute as aquitards. Most of the groundwater supply wells in the area that are completed in unconsolidated material are installed bancath confining layers and are protected from potential impacts to groundwater quality from surface activities. Based on previous publicly available groundwater protection work completed for the Town of Golden, the Landfill lies to the north, outside of the extent of Aquitor No. 456 and outside of the time-of-travel capture zones and buffer zones for municipal wells No. 4 and No. 6 (Golder 2006).

Hydrogeological Characterization of Site

A detailed description of the Site hydrogeology is provided in the recently completed hydrogeological characterization report by others (WWAL 2019a). Below is a summary of the information from the report that is relevant to the development of this environmental monitoring plan.

The FNV Water Resources Atlas (Province of BC 2019) does not report an aquifer beneath the Landfill. Based on well records for drilling completed at the Site, the unconsolidated deposits are thicker in the southwest area of the Landfill (115 m at MW18-11) and thinner toward the north, with bedrock outcropping at the eastern edge of the Site, Drilling records indicate that the unconsolidated materials in the area of the Landfill are largely unsaturated; however, there are areas where saturated conditions within the overburden sediments were encountered e.g., MW09-08 (WWAL 2019a). The saturation love of shallow unconfined sediments in the area of the Landfill will be strongly controlled by groundwater recharge from precipitation and surface water loss to ground. WWAL inferred that the majority of racharge to groundwater from precipitation infiltrating the Landfill will migrate downward to the bedrock surface.

Groundwater flow in bedrock aquifers can be complex and less predictable than flow in unconsolidated materials since fracture orientation and density are important factors. With the available information it is difficult to assess the groundwater flow paths and travel times for transport of leachate constituents from the Landfill. Based on data from four monitoring wells installed in the bedrock, groundwater flow at the site is from northeast to southwest (WWAL 2019a). The steeply dipping bedrock surface at the southern boundary makes it difficult to estimate the groundwater flow direction and gradient immediately downgradient of the Landfill, and it is uncortain how and where potential leachate-affected groundwater migrates through the bedrock aquifer and discharges to Aquifer No. 456 (WWAL 2019a).

1.5 Potential Environmental Receptors

Based on the Site setting and land use, the following potential environmental receptors were considered in the development of the Environmental Monitoring Plan:

- Groundwater used for drinking water downgradient of Site
- Aquatic receiving environments downstream of the Site
 - Kicking Horse River
 - Hospital, Creek
- Soil quality on adjacent lands where daylighting of leachate seepage from the She may occur
- Air quality within on-Site structures and crawl spaces

Based on the surface water regime described in Section 2.2, the equatic receiving environment is not considered to be subject to a Landfill influence and therefore surface water monitoring has not been included in the Environmental Monitoring Plan. Based on the soil sampling conducted by others that is described in Section 1.6. Bulle, 7, the soil quality on adjacent lands is not characterized by constituents associated with a Landfill influence and therefore the Environmental Monitoring Plan does not include monitoring of soil chemistry. The Monitoring Plan includes provisions for groundwater monitoring to assess the potential influence of the Landfill on downgradient groundwater resources (Section 2.1) and for Landfill gas monitoring (Section 2.3).

1.6 Potential Impacts

The hydrogeological characterization and analysis of environmental monitoring data for the Landfill have been completed by others. Based on the hydrogeological characterization (WWAL 2019a) and most recent environmental monitoring annual report (WWAL 2019b) contained within the 2018 Annual Operations and Monitoring Report (CSRD 2019):

- Western Water Associates Ltd. estimated the potential mass loading of chloride from the Landfill to Aquifer 456 of on the order of 394 mg/day which was estimated to represent less than 1% of the annual chloride contained in the aquifer. As a result, they infer that the Landfill is not contributing to measurable water quality degracation within Aquifer No. 456 (WWAL 2019a).
- Exceedances of drinking water guidelines/standards for arsenic, lithium, strontium, fluoride, Iron, manganese, and cobalt observed at the historically-monitored wells, the two new monitoring wells installed at the Landfill in 2018, and the five additional domestic wells sampled in 2018 are interpreted by WWAL to be naturally-occurring within the bedrock (WWAL 2019a).
- Domestic wells DWM-1b and DWM-4, which are located upgradient of the Landfill, are not interpreted to be impacted by the Landfill (WWAL 2019a).
- There is the potential that groundwater beneath a portion of the neighboring property exceeds the groundwater quality standards based on chloride and nitrate exceeding applicable drinking water guidelines/standards at MW18-10, which is located at the south boundary of the Site and installed in bedrock to a depth of 36.4 m below grade (WWAL 2019a).

20 December 2019 19120797-C02-R-Rov0

Groundwater quality at MW09-6S, located near the western boundary and installed in overburden to a depth
of 34.5 m below grade, shows evidence of groundwater quality impact from Landfill leachate. Concentrations
of chloride and intrate appear to have decreased since 2009 (WWAL 2019b).

- Based on one sample collected since it was drilled, groundwater quality at MW18-11, which was installed in becrock to a depth of 148.3 m below grade, does not appear to be impacted by Landfill leachate (WWAL 2019a).
- Based on soil sampling conducted at the neighboring property to the south of the Site in 2018, no impact on soils related to metals and chloride from off-site surface water runoff were detected (WWAL 2019b).
- During spring freshet and high precipitation periods, surface water may flow onto, through and off the Landfill site, and there is evidence that this flow has at times been impacted by the Landfill (BC ENV 2018a).

In Golder's opinion, the assessment of potential impacts from the Landfill must be carried out in the context of local hydrogeological conditions, which are highly complex. Only isolated portions of the unconsol dated material in the vicinity of the Landfill are saturated. The occurrence of groundwater in the underlying becrock, through which most local groundwater flow occurs, is variable, ranging from approximately 30 m below ground surface beneath the Landfill to 150 m below ground surface downgradient and southwest of the Landfill. This variability complicates the interpretation of the groundwater flow pattern downgradient of the Landfill. The lithologies of the underlying sedimentary bedrock material vary from limestone to argillite to state. These differing lithologies influence the groundwater geochemistry in the monitoring wells and car result in naturally occurring exceedances of some metals and possibly dissolved anions. The occurrence of elevated chloride in groundwater that is not hydraulically downgradient of the Landfill suggests that the elevated chloride concentrations in groundwater at some locations is not related to the Landfill but rather to alternative sources, such as road salt. Finally, the decline in concentrations of chlorice and nitrate in downgradient monitoring wells MW09-06S and MW09-08D raises the possibility that the elevated concentrations of these constituents at those locations could have been the result of water introduced during the drilling process, rather than the Landfill.

2.0 ENVIRONMENTAL MONITORING PROGRAM

The following sections describe the environmental monitoring program currently recommended for the Landfill. Monitoring locations are shown in Figure 2. The monitoring program should be updated when new information becomes available, and at a minimum every five-years as required by OC 17066.

2.1 Groundwater

Groundwater monitoring has been carried out at the Lancfill by Sperling Hansen Associates prior to 2008, by Summit Environmental Consultants (now Associated Engineering) from 2008-2013, and Western Water Associates Ltd. since 2014. From 2010-2018 the groundwater monitoring program was carried out three times per year. The following subsections describe the groundwater monitoring program implemented in 2018 and any recommended modifications.

2,1.1 Groundwater Well Network

The monitoring wells in which groundwater levels and groundwater samples are collected are located either along or cutside the Landfill perimeter. Their locations are shown in Figure 2. A summary of the Site monitoring wells and other historically menitored wells, and their respective installation details is provided in Table 1.

Table 1: Details of Groundwater Monitoring Wells at the Golden Landfill and other Wells Historically Monitored

Well ID	Screened Unit	Lithology	Location Relative to Landfill	Approximate Ground Surface Elevation (masi)	Total Depth (mbtoc)
MW95-2 (TH2) — Decommissioned	Overbuiden		Cowngradient	£15	22.5
MW39-C6S (MW- 6S)	Overburcon	Gravel	Within Landfi I footprint	920	34.5
MW05-06D (MW- 6D)	Bedrock	Limestone	Within Landtill footprint	920	65,9
MW09-07 (TH-7) Status Unknown	Overbuiden	Gravel, sand	Downgradient	Linknown	31.7
MW10-38 (TH-8)	Bedrock	Siste and "quartz bedrock"	Upgrad ent	921	26,2
WW18-10	Bedrock	'Mapped as argill to, shale, limestone*	With n Landfill footprint	920	36.4
MW18-11	Bedrock	"Mapped as argillite, shale limestone"	Downgradient	915	146.3
Town Well#4	Unknown (assumed to be overburden)		Side-gradient	790	Unknown
Town Wall #6	Unknown (assumed to be overpurden)	Sand and gravel	Side-gradien:	Unkrown	Unknown
DWW-15	Badrock		Up-gradient	975	60
DMW-4	Unknown (assumed to be bedrack based on depth)		Up-gradient	Unknown	120

Notes:

Data is from WWWAL 2019b

mast-metres above sea level, robtod = metres below top of casing, mings = meters below ground surface

2.1.2 Groundwater Sampling and Groundwater Level Monitoring

Groundwater monitoring was carried out twice per year before 2010, and three times per year after 2010. Sampling in 2018 was carried out in June, September and December, with groundwater samples collected from four monitoring wells (MW09-6S, MW10-08, MW10-10 and MW18-11); two domestic wells (DMW-1b and DMW-4) considered to represent background conditions; and, two municipal supply wells (Town Well #4 and Town Well #6). Groundwater monitoring wells MW95-2 (TH2) and MW09-07 (TH7) have been historically dry, and samples were not obtained from either well in 2018. MW95-2 was decomin scioned by a qualified well driller in June 2018. Water qualify monitoring of MW09-6D was stopped in 2011 because it was considered redundant to MW09-6S (WWAL 2019b).

The hydrogeological review presents a figure showing the inferred groundwater flow direction in the bedrock (WWAL 2019a); however, the 2018 annual monitoring report (WWAL 2019b) does not present groundwater level measurements.

The 2018 annual report (WWAL 2015b) contains the following recommendations regarding the groundwater monitoring program at the Site:

- Continue to monitor the newly added monitoring wells (MW18-10 and MW18-11) and, if the landowner agrees, add private water Well ID 22853 (screened in gravel and sand) to the groundwater monitoring program.
- Conduct two more years of water level and aquifer geochemical data collection to assess variation in groundwater flow direction in the bedrock and the presence of tronds in concentrations of chlor de and nitrate. If further exploration of the bedrock aquifer to assess for contamination is deemed appropriate, a downgradient, off-site monitoring well should be drilled, potentially at Pine Road and Golden Donald Upper Road, approximately 250 m southwest of MW18-10.

In addition to the recommendations made in the hydrogeological review (WWAL 2019a) and 2018 monitoring (WWAL 2019b) reports, Golder recommends that:

- Monitoring of bedrock monitoring well MW09-ED should be recommended. The groundwater geochemistry at MW09-6D differs from the overburden well at that location (VW09-6S) and monitoring both wells will help to discorn the potential for Landfill-impacted groundwater to migrate through both the bedrock and overburden sediments at that location.
- The groundwater monitoring frequency be increased to quarterly to assess seasonal variations in water levels and chemistry. In 2018 sampling was conducted in June, September, and December. The first quarter sampling event should be timed to target peak groundwater levels (i.e. inferred to be March).
- A water level monitoring program should be implemented at the Landfill monitoring wells to assess seasonal variations in groundwater levels and flow direction. A high-accuracy geodetic elevation survey should be completed for the monitoring wells and should include the ground surface and water level monitoring datum for each well. A round of manual groundwater level measurements should be recorded for each water quality sampling event. After a year of water level measurements is collected, the frequency of water level measurements should be re-evaluated by the qualified professional responsible for analysis of the hydrogeological monitoring data. The water level data collected during the monitoring program should be tabulated and plotted appropriately to assess for seasonal changes in groundwater flow direction and

- gradient. Installation of automatic recording pressure transducers in select monitoring wells at the Landfill would be helpful for this purpose.
- Should results of the groundwater level monitoring indicate that the groundwater monitoring program is not capturing the full range of annual seasonal fluctuations in groundwater level, consideration should be given to increasing the water level monitoring and quality sampling frequency. The sampling events should be timed to capture seasonal high and low groundwater levels.
- Response testing should be carried out at monitoring wells where the hydraulic conductivity has not already been estimated.

A summary of the proposed groundwater monitoring program is presented in Table 2.

Table 2: Proposed Golden Landfill Environmental Monitoring Groundwater Program

Wellin	Location	Water Level Monitoring	Field Parameters and Water Quality Sampling
MW09-3 S (MW - 65)	Within Landfill footprint	Yes, assess for seasonal variations	quarterly
1/W09-8D (MW- 6D)	Within Landfill footprint	Yes, assess for seasonal variations	quarte-ly
MW09-07 (TH-7)	Downgradient	If accessible, monitor to confirm well is dry	None
MW10-08 (TH-8)	Upgradient	Yes, assess for seasonal variations	quarterly
MW18-10	Within Landfill footerint	Yes, assess for seasonal varietions	quarterly
MW18-11	Downgracient	Yes, assess for seasonal variations	cuarterly
Town Well #4	Side-grad ent	Not required as part of landfill mor loring	ennually
Town Well#6	Side-grad ent	Not required as part of landfill monitoring	annually
DMW-1b	Upgradient	If possible	quarterly
DMW-4	Jegracient	If possib a	quartedy
Private Wel 22563	Downgradient	Not required as part of landfill monitoring	quarterly

We'll records for upgradient wells DMW-1b and DMW-4 are not available; however, based on their dep.lis, both wells are interred to be completed in bedrock. A review of bedrock mapping for the area indicates that bedrock upgradient, beneath and downgradient of the Site is characterized by mudstone, sitistone, shale and fine clastic rocks of the McKay Group. As a result, DMW-1b and DMW-4 are considered appropriate for monitoring of upgradient groundwater bedrock chemistry.

2.1.3 Field Measurements

At each sampling event a record should be made of the monitoring well condition, and a water level measurement should be recorded, along with the date and time of the measurement. Depending on the sampling method used, field parameter measurements should be recorded either following purging of the standing water, or stabilization (for low-flow, minimal drawdown sampling).

The following field parameters should be recorded:

- temperature
- m pH
- electrical conductivity
- ox dation-reduction potential
- dissolved oxygen

In addition, the sample turbidity, colour and any other notable observations (odour sheen) should be recorded. Efforts should be made to collect groundwater samples with a turbidity of less than 50 NTU.

2.1.4 Chemical Analyses

After the collection of groundwater samples, selected samples should be submitted to a certified analytical laboratory for chemical analyses. Each groundwater sample collected should be analyzed for the following suite of good-emical parameters, which are typical indicators of landfill leachate:

- electrical conductivity and pH
- total suspended solids and turbidity
- hardness and total alkalinity
- anions (chloride, fluoride, bromide, and sulphate)
- nutrients (ammonia, nitrate, and n trite).
- dissolved metals

In addition, analyses should be conducted for total dissolved solids (TDS), biological oxygen demand (BOD) and chemical oxygen demand (COD).

Analysis for petroleum hydrocarbons and volatile organic compounds is recommended for each monitoring well location once per year, to evaluate potential impacts from contaminated soils that have been handled at the Landfill.

To provide additional insight into the groundwater chemistry of the site, sampling for isotopes is recommended on an annual basis over a two-year period (monitoring years 2020 and 2021). The analysis may include sampling and analysis for tritium (a leachate indicator parameter), oxygen and deuterium (an indicator of groundwater origin) and chlorine isotopes (as an indicator of chloride sources).

2.2 Surface Water Monitoring

The Landfill is located in an area with a relatively dry climate, with hot summers and moderate winters. The climate normals from 1981 to 2010 for the Goldon A Climate Station (ID 1173210) from Environment Canada indicate that the average temperature at the Site is 5.1°C. The coldest month is January, with an average daily minimum temperature of -11.5°C. The wormest month is July, with an average cally maximum temperature of 24.5°C.

The general area where the Landfill is located receives an average annual precipitation of 467 min. Most of this precipitation occurs as rainfall (325 mm), with the remainder as snowfall. Monthly precipitations vary from 24.1 to 51.1 mm.

Given the climate conditions at the Landfill, surface water is observed at or near the Landfill only during the spring melt, although ephemeral surface water might be present in the summer during and after short-duration, high-intensity roinfall events. Since surface water is not present at the Landfill consistently, no regular surface water moritoring is currently conducted at the Landfill.

The OC 17006 requires that the quality of surface water at the Site be monitored. No regular surface water monitoring is currently recommended because surface water is not present at the Landfill consistently; and, the closest water body to the Landfill is Hospital Creek, located approximately 800 m to the northwest. Similarly, the Kicking Horse River is located over 1 km to the southwest. Furthermore, upgrades to the Landfill surface water drainage are planned that would divert water around the footprint. Thus, a surface water monitoring program is not recommended at this time.

The 2019 DOCP update (Golder 2019) is recommending that future Landfill development phases be constructed with an engineered leachate containment and collection system. Leachate sampling should be included in the EMP once the leachate collection system is in place so that leachate quality can be characterized.

2.3 Landfill Gas Monitoring

As described in the DOCP (Golder 2019), the predicted annual rate of potential methane generation is expected to remain below the 1,000 tonne per year trigger in the Landfill Gas Management Regulation for preparing an LFG management facility design plan and the subsequent installation of such a system at the Landfill. Therefore, a cetalled LFG monitoring plan is not required for the Landfill at this time,

Landfill gas has been monitored by CSRD since 2013 using two nested gas sampling probes, installed along Landfill property boundaries (CSRD 2019). Gas probe 6 (GP-6S/GP-6D) is located on the west side of the property and gas probe 7 (GP-7S/GP-7D) is located at the southwest corner of the property. The gas sampling probes are nested with monitoring wells MW09-06 and MW09-07 (Figure 2). Each probe has 3 m of screened pipe and the nested probes are isolated by a 1 m length bontonite plug. The shallow probes are screened from approximately 1-4 m below grade and the deep probes are screened approximately 5-8 m below grade within loose unsaturated sed ments. The installation of additional soil gas probes is recommended on the eastern Landfill property boundary since there are off-site structures to the east of the Landfill.

The Landfill has a weigh scale and a reuse centre. The weigh scale is occupied by the Site attendant during most of the operating hours, and the reuse centre is frequented occasionally by staff or Landfill users. Typically, Landfill buildings and offices are, and will be, all build above ground to reduce the potential for LFG migration into

20 December 2019. 19120767-002-R-Rov0

the structures. The scale house is equipped with a continuous gas monitoring detection unit so no additional gas monitoring is considered necessary at this time. The CSRD should carry out periodic LFG monitoring within the reuse centre and any other future enciosed structures (if any) to confirm that air in the structures and their crawlapaces complies with the *Occupational Health and Selety Regulation* BC Reg. 296/97 of the *Workers Compensation Act* (RSBC 1996).

The proposed landfill gas monitoring locations, frequency and constituents are provided in Table 3. The following QA/QC protocols should be implemented as part of the LFG men tering program:

- The combustible gas meter used to sample ambient air within the scale house and reuse centre should be bump tested weekly and calibrated annually
- Field staff who monitor the soil gas probes should ensure that the portable landfill gas analyzer has been calibrated within the 30 days prior to the monitoring event

These QA/QC activities should be documented and included with the maniforing records.

Table 3: Landfill Gas Sampling Locations

Location	Instruments	Constituents	Monitoring Frequency
GP-65/GP-6D	Portable fandfill gas analyzer such as a Landled GEM series or equivalent	Mathane CC ₂	Twice a year
GP-78/GP-7D	Portable landfill gas analyzer such as a Landtec GEM series or equivalent	HeS O2 %LEL ¹	Twice a year
Soil Gas Probes on Eastern Property Boundary	Portoble landfill gas analyzer such as a Landtec GEM series or equivalent		Twice a year
cuse Contre ² Portable combustible gas meter to sample ambient air		%LEL	Daily or as required by OHS legislation ³

Notes:

Monitoring requirements can be avoiced if building ventilation is enhanced as described in Section 2.3.1.

2.3.1 Landfill Gas Monitoring in the Reuse Centre

The Landfill rause centre has a sliding door that is open during Landfill operating hours and some ventilation provided by gaps below the side walls. However, there is the risk that if the building door remains closed for an extended period of time, landfill gas concentrations could accumulate within the structure.

If the CSRD would rather avoid the recommenced monitoring requirements associated with this structure, it is recommended that building ventilation be improved. The recommended improvements induce either removing the existing door or adding four 150 mm x 300 mm vents or openings on opposite walls and positioning them so that they are 0.6 to 1.5 m off the ground. These vents should remain unobstructed by materials inside the shed.

Percent lower explosive limit

Air sampling to detect landfill gas in enclosed work areas should be conducted according to applicable occupational health and safety legislation. If the frequency of sampling is not specified in the legislation, then a health and safety professional should be consulted to develop a risk-based in ordinary plan. In the interim, cally monitoring would provide a regular frequency that should make scheduling easier to implement along with other site operation and maintenance activities.

20 December 2019 19120797-202 R: Roy0

3.0 METHODS

3.1 Field Program

3.1.1 Protocols

As indicated in OC 17006, sampling for the environmental monitoring program must be carried out in accordance with the procedures described in the most recent edition of the British Columbia Field Sampling Manual (BC ENV 2013a), or suitable alternative procedures as authorized by the Director.

3.1.2 Health and Safety

The contractor responsible for implementing the environmental monitoring program should prepare a site-specific health and safety plan to identify hazards and appropriate controls to mitigate the risks. The contractor should implement the health and safety plan and conduct daily checks during field work to verify that the controls being implemented are appropriate.

3.2 Laboratory Analyses

As indicated in OC 17006, laboratory analyses for the environmental monitoring program must be carried out by a certified analytical laboratory in accordance with the procedures described in the most recent edition of the British Columbia Environmental Laboratory Manual (BC ENV 2013b), or suitable alternative procedures as authorized by the Director.

3.3 Quality Assurance/ Quality Control

The environmental monitoring program should implement quality assurance/quality control (Q/VQC) measures that meet the requirements of OC 17006, the British Columbia Field Sampling Manual (BC ENV 2013a), and the British Columbia Environmental Lacoratory Manual (BC ENV 2013b). The QA/QC measures should include:

- Chain-of-Custody procedures for the collection environmental quality samples and transportation to the analytical laboratory
- Decontarrination of re-useable equipment
- Calibration of field equipment
- Collection of samples in laboratory-supplied containers, preservation of samples with chemicals supplied by the laboratory (if required), and storage of samples under refrigerated conditions until delivery to the analytical laboratory
- Field blank samples to assess the potential for contamination of samples.
- Field replicate samples to assess the reproducib lity of the sampling
- Checks and reviews during data tabulation, analysis and reporting

The OC 17006 has a requirement for CSRC to produce, on request, "Field and Laboratory Quality Protocols and Quality Assurance Criteria" acceptable to the Director. Specific requirements of those protocols and criteria are described in OC 17006, and include: procedures to assess precision, accuracy and blank quality, procedures for sampling and handing, corrective measures, and acceptance criteria for accuracy, precision, and method blanks.

3.4 Data and Interpretation

3.4.1 Data Management and Analysis

Documentation and samples collected for the environmental monitoring program should use consistent naming conventions. It is recommended that the environmental monitoring data be saved in a secure database-type system where results can be easily queried for reporting purposes. If required, analytical laboratory results for samples with EMS IDs should be uploaded to the Province of BC Environmental Monitoring System (EMS) database.

To meet the requirements of DC 17003, the data should be tabulated in accordance with the Guidelines for Environmental at Municipal Solid Waste Landfills (BC ENV 2019) and should be analyzed using appropriate statistical and graphical analyses to evaluate the potential impacts of the discharges on the receiving environment.

4.0 REGULATORY LIMITS, TRIGGERS AND REMEDIAL ACTIONS

4.1 Groundwater

The groundwater data from the monitoring wells should be compared with the CSR drinking water standards. Groundwater data from the off-Site drinking water wells should be compared to the same standards, along with the Canadian Drinking Water Guidelines established by Health Canada. Potential exceedances of these standards should be interpreted in the context of background groundwater quality conditions.

Should exceedances of the standards and/or guidelines occur at concentrations considered above the background groundwater quality, analysis of the results by a qualified professional should be undertaken to determine whether the exceedances are attributable to the Landfill (as opposed to alternative sources, such as read salt). This assessment should consist of refining the conceptual model for the Site through additional geochemical sampling and analysis (for example, isotopic analysis and review of major ion ratios) of existing monitoring wells, and if possible, leachate characterization.

If, based or this analysis, groundwater exceedances are inferred to be attributable to the Landfill, the recommended action, which is consistent with the 2018 Hydrogeological Assessment Report (WWAL, 2019a), is to collect two years of additional water-level and aquifer geochemical data to support the interpretation. Based on discussions with the CSRD, it is recommended that this data be reviewed and the Environmental Monitoring Plan be updated to reflect the findings by the end of the 2021 monitoring year. If, based on that review, the additional data suggests a Landfill source, a field investigation (including Installation of one or more additional monitoring wells) should be implemented to further investigate the extent of the Landfill influence, the inferred groundwater flow pathways, and the potential impact on downgradient receptors. This may include the installation of an off-site downgracient bedrock monitoring well near Pine Drive and Golden Donald Lipper Road as recommended by WWAL (2019a), and/or an on-site overburden monitoring well near the southwest corner of the Landfill. The

23 December 2019 1912C797-002-R-Rev3

investigation should include an updated survey of nearby drinking water wells in accordance with WWAL (2019a). Should the field investigation identify a potential threat to downgradient receptors as a result of the Landfill, mitigative measures should be identified and implemented. Potential mitigative measures may include a Human Health and Environmental Risk Assessment to assess potential impacts, and/or the implementation of Landfill engineering controls.

4.2 Landfill Gas

Shock elevated LFG concentrations be observed in enclosed spaces at the Landfill, the contingency response plans presented in the DOCP (Golder 2019) should be implemented immediately. If LFG concentrations exceed the regulatory criteria in the gas probes at the property boundary, then a qualified professional should be retained to assess the nature of the exceedance and recommend appropriate actions. Such follow-up actions could include verification monitoring, passive gas controls or active gas controls.

4.3 Reporting

The environmental monitoring program data should be compiled and reviewed annually by a qualified professional for submission of an annual report that meets the requirements of OC 17006. The current reporting requirements are to submit an Annual Report to the Director on or before 30 April each year for the previous calendar year and to submit a Five-Year Report to the Director on or before 30 April on the five-year anniversary of the last submission. Both these reports must include an outline of the current Environmental Monitoring Program and a compendium of all environmental monitoring data in accordance with requirements specified in the most recent version of Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills and Landfill Criteria for Municipal Solid Waste. The reports must document any potential effect of the discharge on the quality of the receiving environment using appropriate statistical and graphical analysis. Trend analyses, as well as an evaluation of the potential impacts of discharges on the receiving environment must be included.

5.0 DOCUMENT TRACKING

The following table provides information on the revision status of this environmental monitoring plan.

Table 4: Document Revision Tracking Table

Version	Date Issued	Author	Reference No:	CSRD Approver	Distribution
0	December 20, 2019	Solder	19120797-002-H-Rev0	Ben Van Nostrand, P.Ag.	Golder CSRD

6.0 CLOSURE

This Environmental Monitoring Plan was prepared by Golder Associates Ltd. with inputs from the Columbia Shuswap Regional District. Any required updates to this Plan should be identified in each year's annual Landfill report submitted to ENV as a requirement of OC 17006.

Golder Associates Ltd.

Pattle Amison, MSc, EP, PGeo Senior Hydrogeologist

Pattre Ronison

Michael Budzik, MEng, PEng Senior Solid Waste Engineer

(John

Jillian Sacré, MSc, PGeo Principal, Senicr Hydrogeologist

PVA/MB/JS/asd

Golder and the G logo are trademarks of Golder Associates Corporation

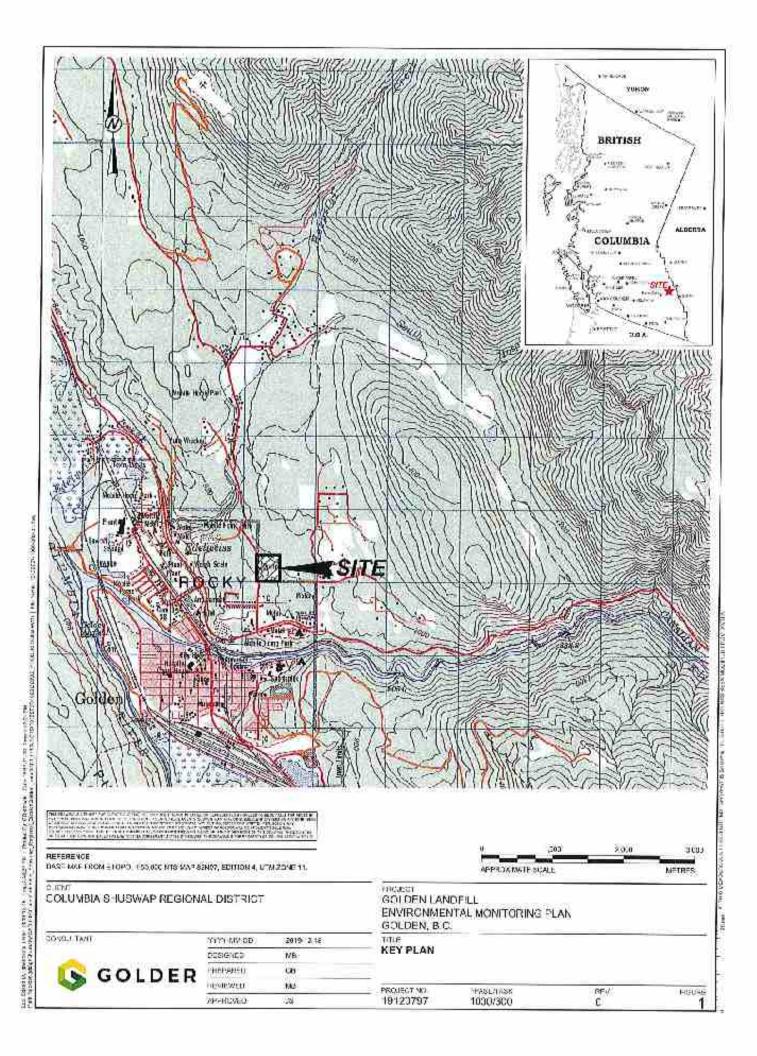
https://golderassociates.sharepoint.com/sites/107380/project files/6 dub-state/colleged to client_for wp/resuled to client_for wp/select_for w

20 December 2019 191207€7-002-R-Rev0

7.0 REFERENCES

BC ENV. 2013a, British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples, 2013 Edition (Permittee).

- BC ENV. 2013b. British Columbia Environmental Laboratory Manual (2013 Permittee Edition).
- BC ENV. 2016. Landfill Criteria for Municipal Solid Waste.
- BC ENV. 2017a. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture, Updated June 2017.
- BC ENV. 2017b, Technical Guidance on Contaminated Sites 3. Environmental Quality Standards. Version 2. 1 November 2017.
- BC ENV. 2017c, Technical Guidance or Contaminated Sites 15. Concentration Limits for the Protection of Aquatic Receiving Environments: Version 2. 1 November 2017.
- BC ENV, 2017d, Protocol 21 for Contaminated Sites, Water Use Determination, Version 2.0, 31 October 2017.
- BC ENV. 2018a. Environmental Impact Assessment Review, Columbia Shuswap Regional District. Golden Refuse Disposal Site OC 17806.
- BC ENV. 2018b. British Columbia Approved Water Quality Guidelines; Aquatic Life. Wildlife & Agriculture, Summary Report. March 2018.
- BC ENV. 2019. Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills, undated document downloaded from ENV website on 11 June 2019; https://www2.gov.bc.ca/gov/content/environment/waste-management/garbage/landfills
- CSRD (Columbia Shuswap Regional District). 2019. Solid Waste Management Annual Operations and Monitoring Report, Golden Refuse and Disposal Facility (MR 17006), 2018.
- Golder (Golder Associates Ltd.). 2006. Conceptual Model, Preliminary Numerical Model and Contaminant Inventory. Town of Golden, BC. Aquifer Protection Plan.
- Golder (Golder Associates Ltd.). 2013 Golden Landfill Design and Operating Plan, Golden, BC. Prepared for Columbia Shuswap Regional District. Golder Document No. 1314470187-001-R-Rev0-6000.
- Golder (Golder Associates Ltd.), 2019, Draft Report in progress: Golden Landfill Dasign, Operations and Closure Plan. Prepared for Columbia Shuswap Regional District.
- Kala (Kala Groundwater Consulting Ltd.). 1995. Hydrogeological Assessment, Columbia Shuswap Regional District Sanitary Landfill – Golden, BC. Report prepared for Reid Crowther & Partners Ltd. Kelowna, BC. Reference No. KG095.-057.
- Province of BC, 2019, BC Water Resource Atlas, http://maps.gov.bc.ca/ess/hm/wrbc/
- RSC (Revised Statues of Canada), 1985, Fisheries Act, c. F-14, s.1.
- RSBC (Revised Statues of British Columbia), 1996, ch. 492. Workers Companyation Act. Current to 29 May 2019.
- SBC (Statues of British Columbia), 2003, ch. 53, Environmental Management Act. Current to 15 May 2019,


20 December 2019 19120797-002-R-Rev0

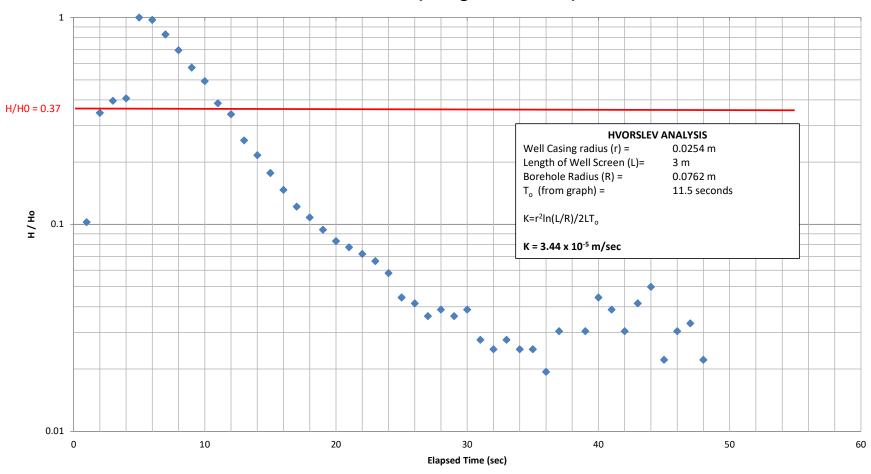
Summit (Summit Environmental Consultants Inc.). 2012. 2011 Annual Environmental Monitoring Report, Golden Refuse Disposal Site, Golden, BC. Prepared for Columbia Shuswap Regional District. Summit Project No. 2009-8130.040.

- WWAL (Western Water Associates Ltd.). 2019a. 2018 Hydrogeological Characterization Report, Golden Refuse and Disposal Facility (MR 17006), Golden, BC. Prepared for Columbia Shuswap Regional District. WWAL Project No. 14-024-21.
- WWAL (Western Water Associates Ltd.). 2019b. 2018 Environmental Monitoring Report Golden Refuse and Disposal Facility (MR 17006), Golden, BC. Prepared for Columbia Shuswap Regional District. WWAL Project No. 14-024-16.

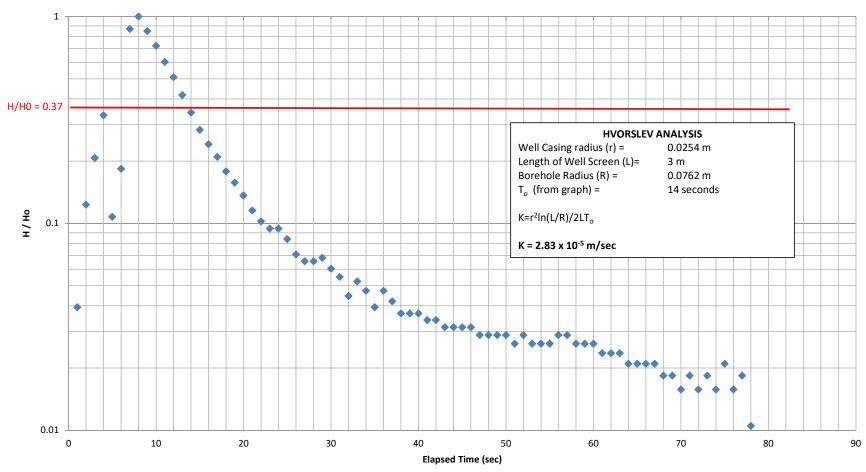
GOLDER

19

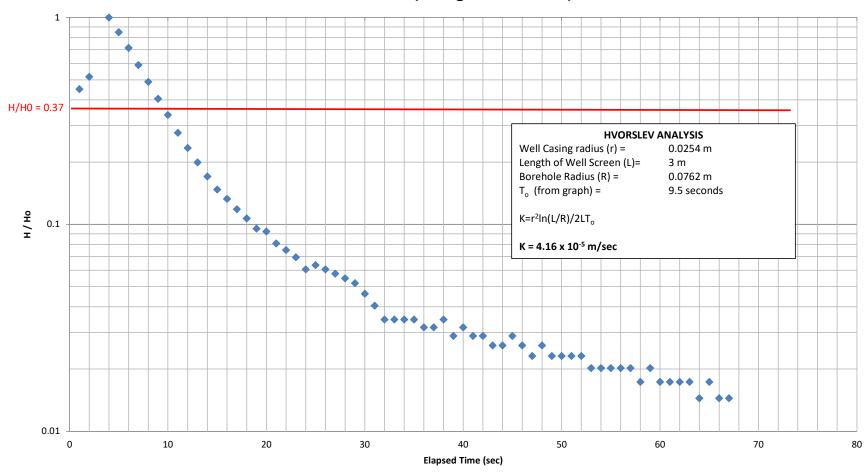
them stable for ann of the transfer of the tra

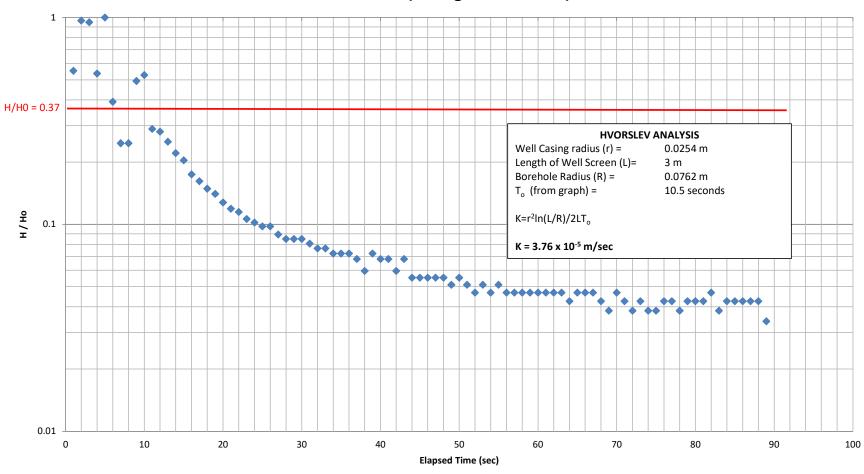


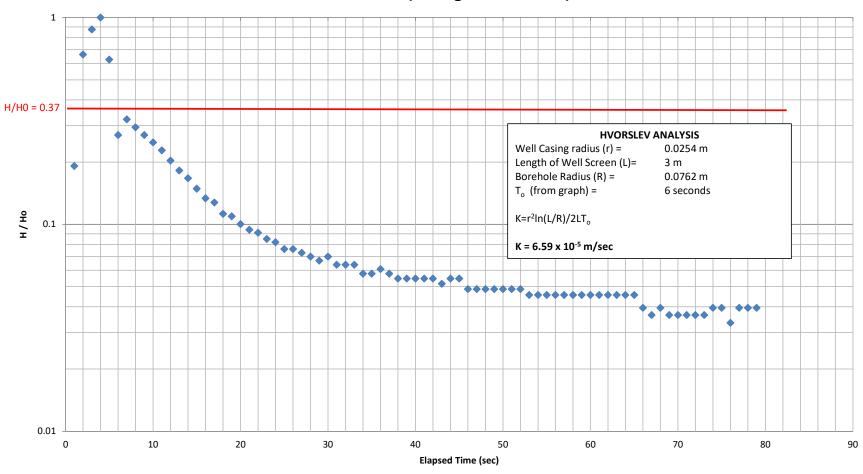
golder.com

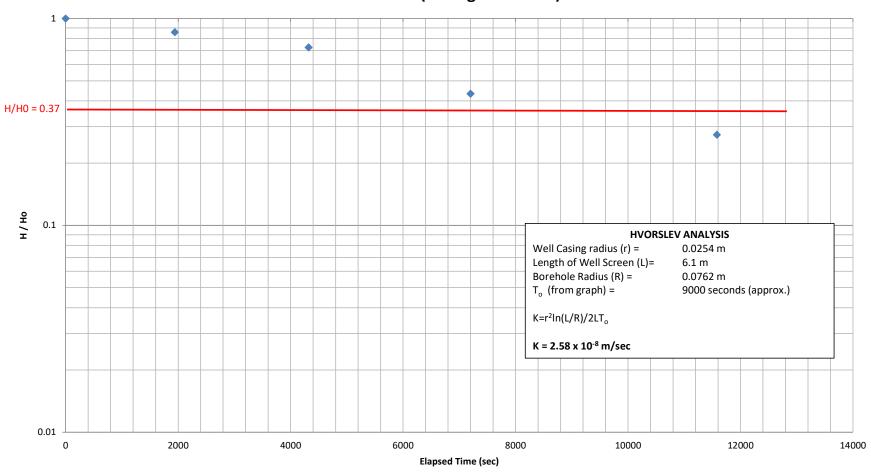

,			

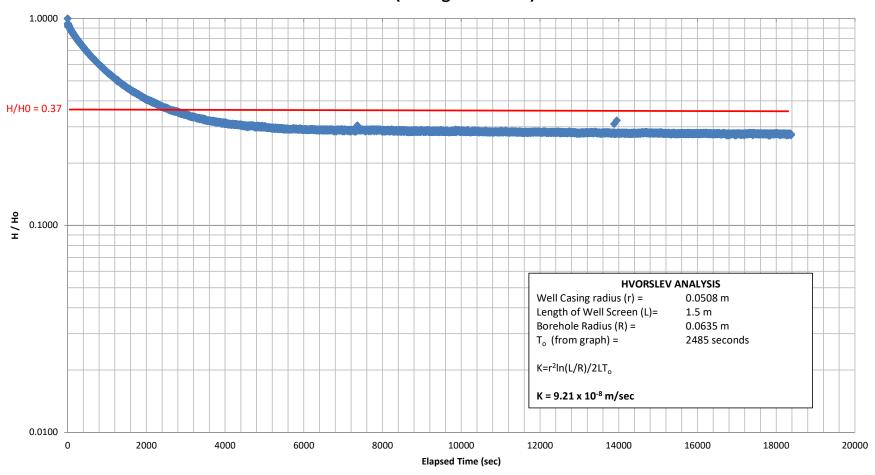
APPENDIX H SINGLE WELL RESPONSE TESTING

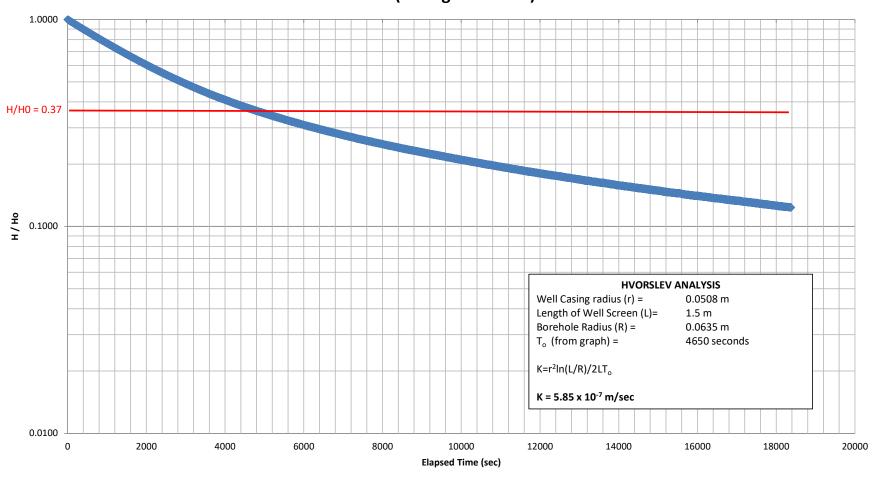

MW09-06S (Rising Head Test #1)


MW09-06S (Rising Head Test #2)


MW09-06S (Rising Head Test #3)


MW09-06S (Falling Head Test #1)


MW09-06S (Falling Head Test #2)


MW09-06D (Falling Head Test)

MW10-08 (Falling Head Test)

MW18-11 (Falling Head Test)

