2021 HYDROGEOLOGICAL CHARACTERIZATION REASSESSMENT

GOLDEN REFUSE DISPOSAL FACILITY (OC -17006)

350 GOLDEN-DONALD UPPER ROAD, GOLDEN, BC

Prepared By: Ecoscape Environmental Consultants Ltd.

Prepared For: Columbia Shuswap Regional District October 2021

2021 HYDROGEOLOGICAL CHARACTERIZATION REASSESSMENT

GOLDEN REFUSE DISPOSAL FACILITY (OC -17006) 350 GOLDEN-DONALD UPPER ROAD, GOLDEN, BC

Prepared For:

Ben Van Nostrand, P.Ag., AScT.
Team Leader, Environmental Health Services
Columbia Shuswap Regional District
555 Harbourfront Drive NE
P.O. Box 978
Salmon Arm, BC
V1E 4P1

Prepared By:

Ecoscape Environmental Consultants Ltd. #102 – 450 Neave Court Kelowna, B.C. V1W 3A1

October 12, 2021

Project No. 19-2850.06

TABLE OF CONTENTS

1.0	Ir	ntroduction	1
2.0	0	Dbjective and Work Scope	1
3.0	Si	Site Description	3
4.0	Н	Historical and Current Groundwater Monitoring Program	3
5.0	Si	Site and Nearby Surrounding Area Environment	б
5.	1	Climate and Biogeoclimatic Zones	6
5.	2	Topography, Drainage and Nearby Watercourses	6
5.	3	Regional and Local Geology and Hydrogeology	7
	5	5.3.1 Water Levels and Groundwater Flow Direction	
5.	4	Hydraulic Conductivity	9
5.	5	Discharge and Mass Flux Estimates	10
	-	Groundwater Monitoring Program Results	
		Site Observations	
6.	1	Site Observations	11
6.	2	2020 Analytical Results Relative to Applicable Standards and Guidelines	11
6.	3	Mann Kendall Analysis of Water Quality Data from 2002 to 2020	15
7.0	Ρ	Piper Diagram	
8.0	Is	sotope Analysessotope Analyses	18
9.0		Discussion of Local Hydrostratigraphic Conditions and Conceptual Model	
10.0	Α	Assessment of Potential Receptors	23
10	0.1	1 Drinking Water Users	23
10	0.2	2 Aquatic Habitat	24
11.0	S	Summary and Conclusions	24
12.0	R	Recommendations	26
13.0	Li	.imitations	27
14.0	C	Closure	28
Pofo	ror	neac	20

FIGURES

Figure 1	Site Location
----------	---------------

Figure 2 Site Plan and Sample Locations

Figure 3 Cross-Section A-A' Figure 4 Cross-Section B-B'

APPENDIX

Appendix A Operational Certificate MR-17006

Appendix B Well Logs

Appendix C 2020 Groundwater Levels and Water Quality Data

Appendix D Historical Water Quality Data Appendix E Single Well Response Testing

Appendix F Time Series Plots

Appendix G Mann-Kendall, Regression and Piper Plots

Version Control and Revision History							
Version	Notes/Revisions						
Version A	August 13, 2021	MPS	LR	Draft for Internal Review			
Version 0	August 16, 2021	MPS	LR	Draft for Client Review			
Version 1	October 12, 2021	MPS	LR	Final Report			

ACRONYMS AND ABBREVIATIONS

BCAWQG BC Approved Water Quality Guidelines BC GWPR BC Groundwater Protection Regulation BCWWQG BC Working Water Quality Guidelines

CALA Canadian Association for Laboratory Accreditation

CARO Caro Analytical Services, Kelowna, BC

CaCO3 Calcium Carbonate

CCME Canadian Council of Ministers of the Environment

CFU Colony Forming Unit

CSR BC Contaminated Sites Regulation

CSR AW CSR Freshwater Aquatic Water numerical standard

CSR DW CSR Drinking Water numerical standard CSR IW CSR Irrigation Water numerical standard CSRD Columbia Shuswap Regional District

DO Dissolved Oxygen

DOC Dissolved Organic Carbon

DW Drinking Water numerical standard

EC Electrical Conductivity

EMA Environmental Management Act
EMP Environmental Management Plan

ENV BC Ministry of Environment and Climate Change Strategy

GCDWQ AO Guideline for Canadian Drinking Water Quality Aesthetic Objective

GCDWQ MAC Guideline for Canadian Drinking Water Quality Maximum Acceptable Concentration

GSC Geological Survey of Canada

HCR Hydrogeological Characterization Report

IDF Interior Douglas Fir LEL Lower Explosive Limit

LWMP Liquid Waste Management Plan

m aslm bgsMeters Below Ground Surfacem btocMeters Below Top of Casing

mg/L Milligrams per Litre
MPN Most Probable Number

N Nitrogen

OC Operational Certificate

ORP Oxidation-reduction Potential
QA/QC Quality Assurance/Quality Control
PAH Polycyclic Aromatic Hydrocarbon

RDF Refuse Disposal Facility
RPD Relative Percent Difference

SD Standard Deviation

SHA Sperling Hansen Associates

STN ID Climate Station ID
TDS Total Dissolved Solids
TOC Total Organic Carbon
UEL Upper Explosive Limit
US GPM US Gallons Per Minute
VOC Volatile Organic Compound
WRA Water Resource Atlas

WTN Well Tag Number

WWAL Western Water Associates Ltd.

1.0 INTRODUCTION

The Columbia Shuswap Regional District (CSRD) retained Ecoscape Environmental Consultants Ltd. (Ecoscape) to reassess recommendations made in the 2018 Hydrogeological Characterization Report, Golden Refuse and Disposal Facility (RDF, the Site) completed by Western Water Associated Ltd. (WWAL).

The Site has operated as a natural attenuation landfill since the early 1970s. The operating permit was transferred to the CSRD in the late 1970s, and the Site now operates under Operational Certificate (OC) 17006, issued by Ministry of Environment and Climate Change Strategy (ENV) on May 5, 2003, and most recently amended on June 30, 2021. A copy of the OC is provided in Appendix A.

This report does not constitute a 5-year updated Hydrogeological Characterization Report (HCR). HCRs, as stipulated by ENV's *Landfill Criteria for Municipal Solid Waste* (ENV, 2016) require more technical data and assessment than what is presented in this study. A 5-year update of the 2018 HCR will be submitted to ENV in 2023.

2.0 OBJECTIVE AND WORK SCOPE

We understand that ENV has requested the CSRD provide an update of hydrogeochemical data collected at onsite and near-site monitoring wells since 2018 (particularly monitoring wells MW18-10 and MW18-11) to help decide whether additional down-gradient monitor wells are necessary. This request was based on recommendations number 3 and 4 in the 2018 HCR, which stated the following:

R3 Continued Sampling of New Monitoring Wells

Continue to monitor newly added monitoring wells MW18-10 and MW18-11, located at the south property boundary and southwest corner of the site, respectively. MW18-10 was only sampled three times in 2018 and additional sampling at this location should occur prior to making further decisions about drilling. At MW18-11, only development water was collected during drilling of the monitoring well in 2018. If the land owner agrees, add Well ID 22653 to the annual monitoring program.

Prior to determining an off-site location to explore for drilling, 2-years more years of water level and aquifer geochemical data should be gathered. Variation in groundwater flow direction within the bedrock aquifer should be determined and the trend of chloride and nitrate concentration overtime should be assessed. Therefore, the site would continue to be operated as a monitored natural attenuation site for at least the next two-years.

R4 Potential Off-Site Migration of Landfill Leachate within the Bedrock Aquifer

Exploring contaminant migration within the bedrock aquifers where the bedrock surface potentially lies deep below sand and gravel deposits, like what sits above the Town of Golden, can require over 400 feet of casing to even reach the bedrock surface. This sort of exploration for contamination within a bedrock aquifer can be costly and there is always potential of intercepting unaffected fracture zones. Hence the recommendation to assess water quality over the next two-years prior to initiation another extensive drilling program. Now that groundwater flow direction within the bedrock aquifer has been established, we have a better sense of where contaminant migration within the bedrock facture zones could potentially be occurring. As was noted above, fracture flow within bedrock can be unpredictable.

After 2-years of further data collection from the monitoring network, if further exploration of the bedrock aquifer contamination downgradient of the site is deemed appropriate, the CSRD should secure a location hydraulically downgradient of the site. At this point in time, we recommend drilling at Pine Road and Golden Donald Upper Road, about 20 m southwest of MW18-10 (at 51°18′22.24″ N / 116°57′14/61″ W). Permission to drill can take some time if drilling is planned to occur on Ministry of Transportation right of way.

Further exploration within the valley bottom aquifer should only be pursued if a contaminant plume is identified within the bedrock aquifer at the above recommended drilling location. Based on concentrations of chloride and nitrate at Well ID 22653 we do not believe there is perceivable impact of landfill leachate associated parameters (i.e chloride and nitrate) within the valley bottom aquifer.

The objective of this report is to respond to the CSRD's above-referenced request, by providing an update on groundwater quality data collected over the past 2 years, summarizing hydrogeological and geochemical data collected at and near the Site to date, and providing recommendations to address potential offsite migration of leachate-impacted groundwater. In meeting this objective, Ecoscape undertook the following tasks:

- Reviewed the 2018 HCR;
- Entered historical groundwater quality data collected from onsite and near-site monitoring wells into a database (tabulated) and compared the data to applicable federal and provincial guidelines and standards to determine if exceedances were observed;
- Analyzed temporal and spatial groundwater quality trends to evaluate the potential for landfill leachate impacts on groundwater quality;
- Prepared geological cross-sections showing the lithology and structural features at and near the Site to better conceptualize local hydrostratigraphy;

- Identified the potential presence/absence of human and ecological receptors to leachate impacted groundwater; and,
- Prepared this report.

3.0 SITE DESCRIPTION

The Site is located approximately 2 km northeast and upslope of the Town of Golden(the Town) city centre (Figure 1). A Site description is provided in Table 1.

Table 1: Site Description						
Topic	Details					
Civic Address	350 Golden-Donald Upper Road, Golden, BC					
Legal Description	Subdivision 12 of Section 18, Township 27, Range 21, West of the 5 th					
	Meridian, Kootenay District					
Registered Site Owner The Province of British Columbia						
Latitude and Longitude	51° 18' 31.0" N and 116° 57' 15.1" W					
(of Site centre)						
Approximate Site Area	17 hectares					
Current Land Use	Natural Attenuation Landfill					
Site Elevation	Approximately 925 m above sea level					

The Site is mainly surrounded by undeveloped, forested land to the north, west and south with several rural residences to the east on Hietala Road. The nearest privately-owned residence is within 100 m of the landfill boundary to the east at a higher elevation of 964 m above sea level (m asl). The nearest residence downslope of the landfill is situated approximately 220 m southwest, at an elevation of 915 m asl.

The Mountain View Cemetery is situated at 216 Golden Donald Upper Rd, approximately 210 m south and hydraulically cross- to downgradient of the Site. Potential contaminants of concern associated with cemeteries include nitrate, ammonia, chemical oxygen demand, and select metals, which may have been released into the underlying aquifers near the Site. This potential should be considered when interpreting groundwater geochemistry in the area.

4.0 HISTORICAL AND CURRENT GROUNDWATER MONITORING PROGRAM

Kala Groundwater Consulting Ltd. (Kala) drilled and installed four (4) monitoring wells (MW95-01 through MW95-04) in 1995 to depths ranging from 18.3 to 30.5 m bgs (Figure 2). No groundwater was encountered during drilling, and these wells have since been decommissioned.

Three (3) on-site monitoring wells were installed in 2009 by Summit Environmental: MW09-6S (shallow), MW09-6D (deep), and MW09-7 to replace decommissioned wells

MW95-4 and MW95-3, respectively. MW09-7 has remained dry since installation and has thus never been sampled. Nested wells MW09-6S and MW09-6D are situated near the western Site boundary north of the site access. MW09-6S and MW09-6D repeatedly showed similar water chemistry, and MW09-6D sampling was discontinued in 2011 due to redundancy. It was sampled again in 2018 and 2020.

Monitoring well MW10-8 was installed by WWAL in 2010, approximately 150 m northwest and cross-gradient of the Site to evaluate potential offsite leachate migration. MW10-8 was not sampled in 2016 or 2017 but has been sampled consistently since.

Two (2) additional on-site wells, referenced in the 2018 HCR, were drilled by WWAL in 2018; MW18-10 and MW18-11. MW18-10 was installed on the southern Site boundary to replace MW95-02 (TH-2), which has been dry since it was installed in 1995. MW18-11 was installed immediately southwest of the Site to provide additional monitoring coverage along the Site boundary.

Domestic well DMW-1b, situated east of the Site, was introduced to the monitoring network in 2011 to replace upgradient monitoring location DMW-1, which was precluded from the monitoring network because filtration systems were installed prior to all the water outlets. DMW-4, situated east of the Site, was introduced to the monitoring network in 2013, and along with DMW-1b, provides background water quality data for the Site. Domestic well DMW-5 (approximately 740 m north of the Site) was introduced to the monitoring program in 2018; however, the well owners opted not to include their well in the 2019 program and subsequent years.

Town Wells #4 and #6 comprise two (2) of the Town's five (5) municipal water supply wells and are situated approximately 1.5 km and 2 km northwest of the Site (Figure 2). Town Well #6 was sampled in spring 2018, but was not sampled in summer or fall 2018 at which time work was completed in attempt to increase the well's yield. It has been sampled twice since spring 2019; however, turbidity levels have remained elevated in the well. As such, the town removed the well's pump in the fall of 2019 and deemed the Town Well #6 inoperable.

The Columbia Diesel well (WTN 116561) was added to the program in 2020 as DMW20-01.

The current monitoring network consists of four (4) groundwater monitoring wells, three (3) domestic supply wells and two (2) Town supply wells, as follows:

- Monitoring wells MW09-6S, -6D, MW10-8, MW18-10 and MW18-11
- Domestic supply wells DMW-1b, DMW-4, and DMW20-01; and
- Town Well #4 and Town Well #6.

Although not part of the monitoring program, samples have been collected and analyzed from the Town supply well MW15-01. This well serves as a sentry well for the Town Well #4, and the Town has permitted the use of its water quality data.

Table 2 below summarizes the monitoring network, and monitoring locations are shown on Figure 2. Well logs for current and past monitoring wells are provided in Appendix B.

Table 2: Summary of Golden RDF Monitoring Network							
Monitoring ID	Location	Rationale	Well Depth (m btoc)	Top of Casing elevation (m asl) ¹	Ground Surface Elevation (m asl) ¹	Lithology	
		Landfill	Monitoring We	lls			
MW09-6S / -6D	West Site boundary, downgradient of the landfill.	Monitor potential offsite migration of leachate to the west	35.3 / 65.9	917.06 / 917.00	916.23	Gravel	
MW10-08	300 m northwest and cross- to upgradient of the landfill	Monitor potential offsite migration of leachate to the northwest	26.3	919.60	919.70 (flush mount)	Bedrock	
MW18-10	South Site boundary, cross- to downgradient of the landfill	Monitor potential offsite migration of leachate to the south	35.6	914.84	914.08	Bedrock	
MW18-11	20 m southwest and downgradient of the Site	Monitor potential offsite migration of leachate to the southwest	146.3	908.53	907.73	Bedrock	
		Private	Domestic Wel	ls			
DMW-1b	Located approximately 200 m east and upgradient of the Site	Monitor background water quality	60	n/a	965²	Bedrock	
DMW-4	130 m east and upgradient of the Site.	Monitor background water quality	120	n/a	970²	Presumably bedrock	
DMW20-01	1.2 km west and downgradient of the Site	Monitor general downgradient impacts	26	n/a	790²	Overburden (Aquifer 456)	
Town of Golden Supply Wells							
Town Well #4	1.5 km northwest and downgradient of the Site	Monitor general downgradient impacts	Unknown	n/a	800²	Unknown – presumably overburden (Aquifer 456)	
Town Well #6	2 km northwest and downgradient of the Site	Monitor general downgradient impacts	Unknown	n/a	Unknown	Unknown – presumably overburden (Aquifer 456)	

Notes:

- 1 = Elevations of ground surface and top of monitoring well casings were surveyed by Ecoscape in 2020 with a vertical accuracy of \pm 0.01 m.
- 2 = Approximate ground surface elevations from Google Earth

5.0 SITE AND NEARBY SURROUNDING AREA ENVIRONMENT

5.1 Climate and Biogeoclimatic Zones

The Site is located within the Engelmann Spruce – Subalpine Fir dry cool woodland (ESSFdkw) forest subzone, where winters are typically long and cold and the summers cool and short (temperatures are above 10°C for only 0 to 2 months of the year) (Meidinger and Pojar, 1991).

Climate normal data from Environment Canada was used to complete this assessment. Based on data collected from the Golden Airport station (STN ID 1173210) between 1981 and 2010 the average annual total precipitation (rain and snow) was 466.8 mm with an average rainfall of 325.2 mm, suggesting the Site climate is relatively dry. The highest precipitation typically occurred between June and August (as rain), and again in November – January (as snow). The daily average temperatures for January and July were -7.9 °C and 17.3 °C, respectively.

5.2 Topography, Drainage and Nearby Watercourses

The portion of the Site east of the active landfill area slopes southeast from a topographic high of approximately 955 m asl, and levels out at approximately 925 m above sea level (m asl) for the remainder of the Site. The nearby surrounding area generally slopes southwest, and surface drainage at and near the Site is expected to mimic topography with flow towards the southwest. During freshet and heavy precipitation events, a gulley near the northeast boundary diverts surface runoff away from the landfill area, and no known surface water drainages lead away from the Site.

An unnamed provincially mapped watercourse traverses the Site from the northeast to the southwest; however, this watercourse is ephemeral, and only contains water during freshet and following heavy precipitation events (WWAL, 2019b). A drainage ditch has been constructed along the southern Site boundary at the toe of the active landfill face to collect and direct this watercourse to high permeability soils at the southwest Site corner, allowing discharge water to seep into the ground (WWAL, 2019b).

Hospital Creek is situated approximately 1.2 km north to northwest of the Site and flows southwest towards the Columbia River. The Kicking Horse River is approximately 1.3 km south to southwest and downslope of the Site, at an elevation of approximately 800 m asl, and flows northwest into the Columbia River. The Columbia River flows northwest, and at its nearest point is approximately 3 km from the Site.

Nearby watercourse locations with respect to the Site are shown on Figure 1.

5.3 Regional and Local Geology and Hydrogeology

According to Geological Survey of Canada (GSC), bedrock beneath the Site comprises metamorphosed limestone, limestone conglomerates and slate of the McKay Group, formed during the Cambrian to Ordovician periods (GSC, 1980). Bedrock is visible in outcrops near the northeast Site corner, and was encountered at the following depths during monitoring well drilling and installation:

- MW09-6D (western Site boundary) –34 m below ground surface (m bgs)
- MW10-08 (northwest of Site) 15 m bgs
- MW18-10 (southern Site boundary) 24 m bgs
- MW18-11 (southwest Site corner) 116 m bgs

Based on this, the underlying bedrock surface steeply dips towards the southwest Site corner. Monitoring well locations are shown on Figure 2.

The Golden area is underlain by thick continuous glacial till blanket (GSC, 2014). Previous subsurface investigations at the Site (Kala, 1995; SHA, 2008; Summit, 2010b and 2011; and WWAL, 2019a) identified dense gravelly sand and silty ablation till along the sloped area to the east, with clean bedded sand and gravel alluvial deposits in the south central and western portions of the Site, and within the trench at the southwest Site corner. Overburden becomes increasingly thick towards the southwest, where the bedrock surface is over 115 m bgs (i.e., at MW18-11). Exposed sediments along the west side of Golden-Donald Road (immediately west of the Site) comprise dense, well-sorted sand and gravel with traces of silt and clay, and intermittent bedding.

Overburden permeability at the Site ranges from low to moderate. Low permeability silt-dominated deposits near the eastern side of the landfill limit surface water infiltration and groundwater recharge while silty sand and gravel located in the south-central section of the landfill is generally moderately permeable (SHA, 2008).

A localized, perched sand and gravel water-bearing unit was identified above the bedrock surface at MW09-6D. Saturated overburden was not encountered at nearby MW10-08, MW18-10 and MW18-11.

The Site and areas upslope of the Site are underlain by a poorly defined, but locally important bedrock aquifer. This aquifer is intercepted by monitoring wells MW09-06D, MW10-08, MW18-10, and MW18-11 and nearby domestic supply wells to the north, northeast and east. This bedrock aquifer is not mapped in the BC ENV's Water Resources Atlas (WRA).

According to the WRA, sand and gravel Aquifer 456 IIB was mapped approximately 50 m southwest of the Site, extending along the east side of the Columbia River and generally spanning the Town (Figure 1). The aquifer was mapped as unconfined to semi-confined, and was classified as highly productive, moderately vulnerable to contamination from surface sources and under moderate demand from local groundwater users. Based on available well records, the geometric mean static water level was 4.8 m bgs at the time of drilling (ENV, 2021).

Aquifer 456 IIB is likely recharged via mountain block recharge from surrounding upland areas, in which groundwater infiltrates bedrock, migrates downward, and then flows laterally through bedrock fractures (i.e., the unmapped bedrock aquifer below and near the Site) into the overburden deposits occurring along the Columbia River valley; however, some flows may also occur above and along the overburden-bedrock interface (e.g., MW09-6S). Based on the above, regional groundwater flow direction is expected to be laterally from the valley walls towards the valley centre, and then parallel to the Kicking Horse and Columbia Rivers, towards the west and northwest. Localized groundwater flow gradients contrary to that described above may be induced by well pumping and variability in the permeability and orientation of sand and gravel deposits and bedrock fractures.

5.3.1 Water Levels and Groundwater Flow Direction

Ecoscape manually measured static water levels within each monitoring well on March 24, May 20, August 24 and November 3, 2020. Ecoscape also installed electronic data loggers in the near-Site monitoring wells on May 20, 2020, to help better understand groundwater fluctuation at the Site.

Typical of most bedrock aquifers, seasonal groundwater level fluctuations recorded and measured at MW09-6S, MW09-6D, MW10-08 and MW18-10 were minimal (<0.5 m). Water levels at MW18-11 fluctuated by 0.8 m between March 2021 and March 2021, with the highest groundwater elevation recorded during the spring.

Ecoscape surveyed monitoring well elevations to a ± 0.01 m vertical accuracy in June 2020 to facilitate groundwater elevation and flow direction measurements at the Site. Groundwater elevations are generally highest at upgradient well MW10-08, and, following topography, decrease towards the southwest with lower groundwater elevations at MW09-6D, -6S, and MW18-10, followed by the lowest groundwater elevations observed at MW18-11 situated at the southwest corner of the landfill. Groundwater levels in MW18-11 were similar to those measured in the valley-bottom sand and gravel Aquifer 456. Based on this, groundwater flow through the unmapped bedrock aquifer below the Site is towards the southwest and Kicking Horse River, with an estimated hydraulic gradient of 0.5 m/m near the landfill. As discussed in Section 5.3, groundwater flow through Aquifer 456 is likely towards the west and northwest. Based on valley-bottom topography, the hydraulic gradient in Aquifer 456 is likely an order of magnitude less that that measured in the bedrock aquifer.

Elevations of the piezometric surface were consistently higher at MW09-6S compared to MW09-6D, indicating a downward hydraulic gradient between the perched sand and gravel water-bearing unit and unmapped bedrock aquifer at this location.

Water levels recorded in 2020 are summarized and plotted in Appendix C. Historical water levels measured between 2009 and 2019 are provided in Appendix D.

5.4 Hydraulic Conductivity

On May 19, 2020, Ecoscape performed single-well response tests (i.e., slug tests) at monitoring wells MW09-6S, -6D, MW10-08 and MW18-11 to obtain horizontal saturated hydraulic conductivity values (K), which are a measurement of the ability for water to flow through sediments or bedrock fractures.

Rising and/or falling head tests were conducted by inserting and/or removing a solid PVC slug of known volume into the monitoring wells and monitoring recovery response. MW18-11, which is outfitted with a built-in pump, was tested by drawing down the water to the pump intake and measuring the recovery. Manual water level measurements were collected during each test using an electric water tape, and electronic data loggers were installed in each well to record water levels at a 1 second interval. The level logger malfunctioned during the test completed at MW09-6D; however, manual measurements provide a reasonable estimate of the well's response during the slug test.

Water level response data was analyzed using the Hvorslev (1951) method and estimated K values are summarized in Table 3 below.

Table 3: Es	Table 3: Estimated K Values Based on Single Well Hydraulic Conductivity Testing						
Monitoring Well	Aquifer Material	Geometric Mean K (m/sec)	Geometric Mean K (m/day)				
MW09-6S	Sand and Gravel	3.98 x 10 ⁻⁵	0.057				
MW09-6D	Bedrock	2.58 x 10 ⁻⁸	3.71 x 10 ⁻⁵				
MW10-08	Bedrock	9.21 x 10 ⁻⁸	1.33 x 10 ⁻⁴				
MW18-11	Bedrock	5.85 x 10 ⁻⁷	8.42 x 10 ⁻⁴				

As expected, the estimated K-value for the perched sand and gravel unit at MW09-6S was several orders of magnitude higher than those measured in the bedrock aquifer and estimates of K in bedrock were similar between the three (3) remaining wells. Importantly, estimated K-values were consistent with published K-values for sand and gravel and bedrock (Freeze and Cherry, 1979).

WWAL conducted hydraulic testing at bedrock monitoring well MW18-10 in 2018 and estimated K to be 2 x 10^{-6} m/sec. This estimate is slightly higher than estimated K-values values for remaining bedrock monitoring wells, validating the complexity of groundwater flow through bedrock aquifers, which is highly sensitive to factors such as fracture aperture, orientation, and density.

The single well response test results are summarized and plotted in Appendix E.

5.5 Discharge and Mass Flux Estimates

The 2018 HCR provided a reasonable estimate of contaminant loading from the bedrock aquifer underlying the Site into downgradient ENV-mapped sand and gravel Aquifer 456.

Specifically, based on available groundwater quality data, WWAL estimated that nitrate and chloride flowing through the bedrock aquifer below the Site represents less than 1% of that expected to flow through Aquifer 456, indicating additional non-landfill related chloride and nitrate sources are likely present in Aquifer 456.

This potential is supported by groundwater quality documented at DMW20-01 (WTN 116561 / Well ID 22653) in 2018 and 2020. DMW20-01 is situated hydraulically upgradient of, and closer to the Site than MW15-01 and Town Well #4; however, nitrate and chloride concentrations in samples collected from DMW20-01 have been at or near ambient conditions and are consistently lower than those documented in downgradient MW15-10 and Town Well #4.

Ongoing BC Contaminated Sites Regulation (CSR) Schedule 2 activities, including but not limited to welding and machine shops (C.6), appliance, equipment or engine repair (E.1), road salt storage (Activity E.7), petroleum product storage in above ground or underground tanks (Activity F.7), automotive, truck or other motor vehicle repair, salvage or wrecking (Activity G.2), and wood, pulp and paper products and related industries and activities (Activity I), have been observed near and upgradient of the Town supply wells and the Columbia Diesel well (DMW20-01). In our opinion, these potentially contaminating activities are more likely to be the cause of slightly elevated nitrate and chloride at Town Well #4 and MW15-01 than landfill leachate.

6.0 GROUNDWATER MONITORING PROGRAM RESULTS

The following section provides a short summary of the 2020 groundwater monitoring program results. Detailed methods and findings are included in the 2020 Annual Environmental Monitoring Report (Ecoscape, 2021).

6.1 Site Observations

Monitoring well locations were readily accessible and in good condition in 2020. All wells exhibited reasonably good recharge rates and provided sufficient water to sample.

In May 2019, Mr. Glen Furey of Kicking Horse Water Services installed a permanent pump in the newly drilled MW18-11 to facilitate sampling. According to Mr. Furey, MW18-11 was not properly developed after it was drilled and installed in 2018, and the December 2018 sample was collected from a slurry of drill cuttings. The purpose of well development was to purge the well of residual fines and materials left in the well following drilling, and to restore natural groundwater flow and chemistry in and around the well. Based on this, the 2018 sample collected from MW18-11 was likely not representative of actual groundwater conditions near the well.

Ecoscape endeavoured to develop MW18-11 during the 2019 and 2020 sampling events; however, the well routinely ran dry after approximately one (1) well volume of water was purged. Water samples were collected after the well recovered to half a well volume, and we expect any residual fines and drilling-related materials to be removed from the well with continued purging during future sampling events.

Ecoscape staff did not observe signs of stressed vegetation, leachate breakout or ponding water at or near any of the monitoring locations during the 2020 sampling events.

6.2 2020 Analytical Results Relative to Applicable Standards and Guidelines

Ecoscape collected groundwater samples on March 24, May 20, August 24, and November 3, 2020.

During each sampling event, personnel collected samples from wells with sufficient groundwater for sampling and submitted them to Caro in Kelowna, BC for chemical analysis of the following parameters:

- Total Alkalinity (total as CaCO3);
- Anions (chloride, fluoride and sulfate);
- Electrical conductivity and pH;
- Dissolved Metals;
- Total Hardness (as CaCO3);
- Nutrients (Nitrate (as N), Nitrite (as N), and Ammonia (as N));
- Total Dissolved Solids (TDS);
- Turbidity;
- Volatile Organic Compounds (VOCs);

- Light and Heavy Extractable Petroleum Hydrocarbons (LEPH and HEPH) (May only);
 and
- Polycyclic Aromatic Hydrocarbons (PAH) (May only).

In addition, Ecoscape recorded pH, temperature, DO, ORP and specific conductance in the field.

The following standards and guidelines were applied to groundwater analytical data in order to protect current and potential future nearby domestic water supply sources:

- Guidelines for Canadian Drinking Water Quality Maximum Acceptable Concentration (health-based guideline) (GCDWQ MAC) and Aesthetic Objective (based on aesthetic considerations) (GCDWQ AO); and
- BC CSR Drinking Water (CSR DW) numerical standards.

Contrary to previous annual monitoring reports, Ecoscape only applied the *Guidelines for Canadian Drinking Water Quality* (GCDWQ) to domestic wells as the GCDWQ do not apply to groundwater samples collected from monitoring wells.

2020 groundwater chemistry results are provided in detail in Appendix C following the text, with exceedances from the quarterly sampling events summarized in Table 4 below.

Table 4: Summary of 2020 Water Quality Exceedances					
Monitoring Location	Guideline or Standard	Exceeding Parameter			
DMW-4	CSR DW	Lithium (dissolved), Strontium (dissolved)			
DIVIVV-4	GCDWQ AO	Total dissolved solids			
	CSR DW	Arsenic (dissolved) Lithium (dissolved)			
DMW-1b	GCDWQ AO	Iron (dissolved), Total dissolved solids			
	GCDWQ MAC	Arsenic (dissolved)			
MW09-6S /-6D	CSR DW	Lithium (dissolved), Sodium(dissolved), Chloride, Nitrate (as N), Sulfate			
MW10-8	CSR DW	Lithium (dissolved), Sodium(dissolved), Chloride, Tungsten (dissolved),			
MW18-10	CSR DW	Lithium(dissolved), Sodium(dissolved), Chloride, Nitrate (as N)			
MW18-11	CSR DW	Lithium (dissolved), Arsenic (dissolved)			
Town Well #4	GCDWQ AO	Total dissolved solids			

All other parameters analyzed by the laboratory were found at concentrations less than applicable guidelines and standards for the Site.

Dissolved lithium exceeded the BC CSR DW standard of 0.008 mg/L in samples from nearly all monitoring locations in 2020. ENV Protocol 9 stipulates a background lithium concentration of 0.096 mg/L in the Thompson-Okanagan region. While the Site is not within this mapped region, it is in close proximity. Lithium concentrations measured on and near the Site are below this value and are likely naturally elevated in the area given nearly ubiquitous exceedances of the CSR DW standard.

Background Water Quality

Background groundwater quality at the Site is represented by samples collected from domestic wells DMW-1b and DMW-4.

Consistent with previous years, dissolved arsenic concentrations exceeded the GCDWQ MAC guideline and CSR DW standard of 0.01 mg/L in all 2020 samples. Dissolved arsenic concentrations are generally orders of magnitude lower at remaining monitoring locations.

Dissolved strontium concentrations in samples from DMW-4 exceeded the CSR DW standard of 2.5 mg/L in 2020. Dissolved strontium has historically exceeded water quality criteria at this location.

Dissolved lithium exceeded the CSR DW standard of 0.008 mg/L in all 2020 samples collected from both DMW-1b and DMW-4, with maximum concentrations of 0.0254 mg/L and 0.0532 mg/L in May 2020, respectively. Given nearly monitoring network-wide exceedances, and a BC ENV background concentration of 0.096 mg/L in other regions of the province, it is likely that dissolved lithium is naturally elevated in the area.

Dissolved iron concentrations were detected above GCDWQ AO guideline of 0.3 mg/L in all 2020 samples from DMW-1b, which may be attributable to erosion and weathering of soil and minerals near the well.

Finally, total dissolved solids concentrations (TDS) exceeded the GCDWQ AO concentration of 500 mg/L in all 2020 samples from domestic wells DMW-1b and DMW-4. Samples from DMW-4 had TDS concentrations ranging from 727 mg/L (May) to 804 mg/L (August), while samples from DMW-1b had TDS concentrations ranging from 712 mg/L (May) to 739 mg/L (August).

Based on the above, elevated arsenic, iron, lithium, strontium and TDS concentrations likely occur naturally in groundwater at and near the Site, and are not necessarily attributable to ongoing landfilling activities.

Onsite and Near Site Monitoring Wells

Monitoring wells MW09-6S, -6D, MW18-10 and MW18-11 are situated on or immediately adjacent to the Site, cross- to downgradient of the landfill, and are thus used to monitor potential offsite migration of leachate-impacted groundwater.

Similar to 2019, the following parameters exceeded applicable standards on and immediately adjacent to the Site in 2020:

- chloride;
- dissolved sodium;
- sulfate;
- nitrate;
- dissolved lithium; and
- dissolved arsenic.

As discussed above dissolved lithium and arsenic may be naturally occurring in the area, based on measured background groundwater chemistry.

Downgradient wells MW09-6S and -6D continued to exhibit the greatest number of exceedances compared to remaining monitoring locations, suggesting ongoing leachate impacts at the western Site boundary. Chloride, nitrate, sulfate, dissolved lithium, and dissolved sodium concentrations exceeded provincial standards in 2020, with sulfate in samples from MW09-6S and -6D being the highest observed concentrations on and near the Site. Nitrate in samples from MW09-6S and -6D were also the highest observed on Site, until November 2020 when nitrate in the sample from MW18-10 rose to 67.9 mg/L (from 24.4 mg/L in August 2020), above the MW09-6S and -6D sample concentrations of 34.2 mg/L and 34.6 mg/L, respectively. MW09-6D (bedrock) was screened 30 m deeper than -6S (overburden-bedrock interface), which indicated leachate may have migrated 30+ m into bedrock at this location.

Groundwater samples from cross- to downgradient monitoring well MW18-10 exceeded applicable standards for chloride, nitrate, dissolved lithium and dissolved sodium concentrations, while dissolved lithium and dissolved arsenic concentrations (likely naturally occurring) exceeded in samples from downgradient monitoring well MW18-11.

Offsite Monitoring Wells

Monitoring well MW10-08, DMW20-01, and Town Wells #4 and #6 are situated well beyond the Site boundary.

Groundwater samples from cross- to upgradient monitoring well MW10-08 exceeded applicable standards for chloride (Figure 5), dissolved lithium, dissolved sodium (Figure 5), and dissolved tungsten during three or more sampling events, with chloride and sodium concentrations being the highest measured concentrations at any well in 2020. Dissolved tungsten concentrations have only been elevated in samples from MW10-08 since 2018, and samples from remaining monitoring locations have never shown a dissolved tungsten concentration above water quality criteria. Dissolved tungsten concentrations appear to have decreased in samples from MW10-08, exceeding the CSR standard of 0.003 mg/L in fall 2018 with a concentration of 0.006 mg/L, and decreasing to 0.0052 mg/L in August 2020, and below the standard in November 2020 at 0.0018 mg/L.

Samples from Town Well #4 were found to exceed the GCDWQ AO total dissolved solids (TDS) guideline of 500 mg/L during all four sampling events in 2020. Concentrations ranged from a high of 607 mg/L in March 2020, reducing to near guideline at 559 mg/L in November 2020. Ecoscape understands that there may have been maintenance and repair work completed on the well's pump in 2020, which could have temporarily increased TDS concentrations via disturbance. With further pumping of this well it is expected that the TDS concentrations will likely decrease.

Concentrations of remaining analyzed parameters were less than applicable guidelines and standards in groundwater collected from MW10-08, and Town Wells #4 and #6 in 2020.

Importantly, domestic monitoring well DMW20-01, added to the monitoring program in 2020 to monitor general downgradient impacts, had no exceedances of applicable guidelines and standards in its 2020 samples.

6.3 Mann Kendall Analysis of Water Quality Data from 2002 to 2020

Water quality trend analyses to date have generally been limited to a visual, qualitative review of historical time versus concentration plots. For reference, Ecoscape plotted timeseries graphs of landfill leachate indicator parameters nitrate, chloride, sodium, sulphate, dissolved iron, dissolved manganese, dissolved boron, total alkalinity, hardness, and electrical conductivity at wells MW09-6S, MW09-6D, MW10-08, MW18-10, MW18-11, DMW-1b, DMW-4, Town Well #4, Town Well #6. These plots display changes in concentration over time between 2002 and 2020, and are shown in Appendix F.

Leachate indicator parameter concentrations have been consistently highest in samples collected from MW09-6S and -6D. Concentrations have also been elevated in samples from MW18-10, MW18-11 and MW10-08, but to a lesser degree than MW09-6S, and -6D, with the exception of sodium and chloride being highest in samples from MW10-08.

However, the visual review of graphs as a standalone process can result in human bias, often times made worse by the use of graph scales which affect visual interpretation. As such, we assessed the statistical significance of trends to determine whether changes over

time had occurred, particularly given that decision-making regarding further groundwater exploration downslope of the Site will heavily rely on water quality data collected over the past several years.

Ecoscape conducted Mann-Kendall trend analyses of all available groundwater quality data (2002 – 2020) for leachate indicator parameters nitrate, chloride, sodium, sulphate, dissolved iron, dissolved manganese, dissolved boron, total alkalinity, hardness, and electrical conductivity at wells MW09-6S, MW09-6D, MW10-08, MW18-10, MW18-11, DMW-1b, DMW-4, Town Well #4, Town Well #6. Mann-Kendall is a non-parametric regression analysis that is robust because it is easy to meet the assumptions needed for an accurate analysis and this test yields a result that is easy to interpret as either increasing, decreasing, or not changing (i.e., stable). The test produces a Tau-value, which gives the direction of the data (positive value = increasing; negative value = decreasing) and a p-value, which indicates whether the trend is statistically significant (p-value < 0.05). Tests were performed using the "Kendall" package version 2.2 in R software (McLeod, 2011).

Table 5 summarizes parameters and locations for which the seasonal Mann-Kendall analyses identified a statistically significant trend. Remaining parameters were considered stable (p-value > 0.05). Water quality measures that had significant trends over time are graphed with locally weighted scatterplot smoothing (LOWESS) trend lines in Appendix G.

Table 5: Summary of Mann-Kendal Analyses (α = 0.05) and Water Quality Trends						
Well ID Analyte		Kendall's Tau	p-value	Trend		
	Alkalinity	-0.344	0.00957	\		
DMW-1b	Boron, dissolved	0.547	0.000295	↑		
	Nitrate (as N)	0.547	0.000274	↑		
	Alkalinity,	0.429	0.0375	↑		
DMW-4	Nitrate (as N)	-0.314	0.0469	\downarrow		
	Sulfate	-0.399	0.0103	\downarrow		
	Boron, dissolved	0.556	0.0476	↑		
MW09-6D	Chloride	-0.556	0.0476	\downarrow		
	Electrical Conductivity	-0.648	0.0211	\downarrow		
	Alkalinity	0.640	0.00000119	↑		
	Boron, dissolved	0.565	0.00000286	↑		
MW09-6S	Chloride	-0.744	0.0000000136	\downarrow		
1010003-03	Electrical Conductivity	-0.605	0.000000576	\		
	Manganese, dissolved	-0.326	0.00697	\		
	Nitrate (as N)	-0.696	0.0000000242	\downarrow		

Table 5: Summary of Mann-Kendal Analyses (α = 0.05) and Water Quality Trends						
Well ID Analyte		Kendall's Tau	p-value	Trend		
	Sulfate	-0.288	0.0193	\downarrow		
	Chloride	-0.437	0.00481	\downarrow		
MW10-8	Iron, dissolved	-0.684	0.0000275	\downarrow		
10100 10-8	Manganese, dissolved	-0.706	0.00000492	\downarrow		
	Nitrate (as N)	0.625	0.0000548	↑		
	Chloride	0.644	0.0123	↑		
MW18-10	Electrical Conductivity	0.539	0.0389	↑		
	Nitrate (as N)	0.733	0.00421	↑		
MW18-11	Electrical Conductivity	0.643	0.0416	↑		
INIAN 10-11	Manganese, dissolved	-0.857	0.00443	\		
	Alkalinity,	0.526	0.0000393	↑		
	Boron, dissolved	0.254	0.0456	↑		
	Chloride	0.512	0.00000632	↑		
	Electrical Conductivity	0.526	0.000037	↑		
Town Well	Hardness	0.611	0.0286	↑		
#4	Hardness, dissolved	0.336	0.01720000000	↑		
	Iron, dissolved	-0.580	0.00002710000	\		
	Manganese, dissolved	-0.334	0.01560000000	\downarrow		
	Nitrate (as N)	0.418	0.00025100000	↑		
	Sulfate	0.278	0.01520000000	↑		
	Alkalinity	0.632	0.00051900000	↑		
	Chloride	0.794	0.00001050000	↑		
Town Well #6	Electrical Conductivity	0.647	0.00033900000	↑		
-	Nitrate (as N)	0.524	0.0039000000	↑		
	Sulfate	0.667	0.00024000000	↑		

Notes: \downarrow = decreasing \uparrow = increasing

The landfill leachate plume generally appears to be stable or shrinking along the west Site boundary based on primarily stable (i.e., no detectable trends) and statistically significant decreasing concentrations of leachate indicator parameters at MW09-6S and -6D; however, this may change with ongoing landfill activities. Similarly, electrical conductivity was the

only parameter that demonstrated an increasing trend at MW18-11, while remaining parameters have been stable or decreasing since we started sampling the well in 2019.

On the contrary, concentrations of key leachate indicator parameters chloride, nitrate and electrical conductivity appear to be trending upwards at MW18-10, situated at the south Site boundary. Therefore, there is the ongoing concern that leachate-impacted groundwater is migrating offsite.

Leachate indicator parameters are also increasing at the Town Wells; however, concentrations are quite low and are likely not associated with landfill activities for reasons described in Section 5.5, 7.0 and 8.0.

7.0 PIPER DIAGRAM

A Piper diagram is a useful tool for characterizing groundwater chemistry and serves as a visual aid in differentiating between distinct water chemistry signatures and how these compare across monitoring locations. A Piper diagram shows relative percent of anions and cations in two ternary plots, which are then projected onto a central diamond plot. The major ions include Na⁺, Ca⁺, Mg⁺, K⁺, HCO₃⁻, CO₃²⁻, SO₄⁻ and Cl⁻, which typically account for the vast majority of the total dissolved solids present in natural groundwater. This central diamond plot is where monitoring locations can be visually grouped into distinct hydrogeochemical categories commonly referred to as facies. We produced a Piper plot using the average results from the 2020 sampling data and present it in Appendix G.

Potable water sources including Town Wells #4 and #6, and domestic wells DMW-1b, DMW-4, and DMW20-01 plotted close to one another in the magnesium bicarbonate type. Monitoring wells MW18-10 and MW18-11 (at southern boundary of the Site) also plotted as magnesium bicarbonate type, however slightly further from the potable water sources. Downgradient well MW18-10 was almost on the border of the mixed-type which included monitoring wells MW09-6S and -6D (known to be impacted by leachate), indicating it was potentially impacted by landfill activity. MW18-11 was more offset from this mixed-type zone, suggesting it may have had little to no impact from landfill leachate. The isotope analysis discussed in Section 8 provided additional detail regarding groundwater chemistry at MW18-11. Upgradient well MW10-08 plotted on the border of the mixed type and sodium chloride type. Chloride and sodium were consistently elevated at this location since 2009, and since it was somewhat further on the Piper diagram from impacted wells MW09-6S and -6D (which plotted right on top of each other), we suspect the source of ions was not leachate related (and related to possibly road salt).

8.0 ISOTOPE ANALYSES

While the Piper diagram provides us with a visual of groundwater chemistry signatures based on chemistry alone, the isotope analysis provides more insight into the source of

groundwater recharge age and degree of leachate-related contamination at monitored locations.

Ecoscape submitted groundwater samples collected in August 2020 for isotope analysis: Oxygen-18 (¹⁸O), Chlorine-37 (³⁷Cl), deuterium (²H), and tritium (³H). ¹⁸O and ²H are indicators of groundwater origin, ³H is a leachate indicator parameter, and ³⁷Cl is useful in elucidating chloride sources. This concept is discussed in more detail below.

When expressed as ratios between two isotopes of a given element, the delta symbol is used. For example, $\delta^{18}O$ is calculated based on the ratio between the more common Oxygen-16 isotope and less common Oxygen-18 isotope. $\delta^{18}O$ and $\delta^{2}H$ are useful in differentiating between different water source-types: as these elements pass through the hydrologic cycle, they undergo unique fractionation through hydrologic processes such as precipitation and evaporation, wherein the characteristics of the environment for each process (such as moisture content, vapour pressure, humidity, temperature, and altitude) influence the fractionation process. In shallow groundwater regimes, $\delta^{18}O$ and $\delta^{2}H$ serve as tracers because their concentrations are determined by their unique fractionation developed during precipitation and by the amount of evaporation that occurs before the water penetrates the subsurface (Freeze and Cherry, 1979). Thus, different isotopic ratios are found in different water sources, making $\delta^{18}O$ and $\delta^{2}H$ useful tracers to determine source waters (University of Arizona, SAHRA).

Hydrogen has two stable isotopes, ¹H and ²H (deuterium), and one radioactive isotope, ³H (tritium). Large concentrations of tritium were created in the 1950s and 1960s due to atmospheric testing of nuclear weapons, which resulted in tritium entering groundwater systems via recharge due to the infiltration of precipitation. As such, groundwater with concentrations of tritium higher than 5 to 10 tritium units, is modern (or bomb tritium) water (Freeze and Cherry, 1979). Thus, tritium concentrations can be used to roughly age groundwater as pre- or post-1954. Tritium concentrations are also often elevated in municipal solid waste leachate, largely owing to gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains (Mutch and Mahoney, 2008). Tritium is useful for studying leachate impacts as it is not significantly affected by reactions in the environment other than radioactive decay (Freeze and Cherry, 1979).

Samples for the isotope analysis were taken August 24 and 25, 2020 and results are presented in Table 6 below. DUP A is a duplicate of the sample from MW09-6S.

Table 6: Isotope Analysis Results							
Analyte	Oxygen- 18 δ ¹⁸ Ο	Chlorine-37 δ ³⁷ Cl	Deuterium δ²H	Tritium δ³H	Tritium δ³H		
Units	per mil¹		per mil	TU ²	pCi/L		
DMW-1b	-19.88	0.31	-154.7	3.2	10.31		
DMW-4	-20.15	0.11	-156.6	1.4	4.51		
DMW20-01	-19.85	-0.16	-150.4	4.2	13.53		
Town Well #4	-19.92	0.45	-152.5	1.9	6.12		
Town Well #6	-19.77	0.22	-152.0	4.8	15.46		
MW10-08	-19.23	0.43	-148.6	3.4	10.95		
MW09-6D	-18.94	0.02	-150.1	157.6	507.63		
MW09-6S	-19.04	0.34	-150.1	31.7	102.11		
DUP A	-18.95	-0.20	-150.4	31.7	102.11		
MW18-10	-19.22	0.02	-148.3	70.6	227.40		
MW18-11	-20.72	0.20	-160.9	15.8	50.89		

Notes:

The oxygen-18 and deuterium results across all sampling locations indicated that all monitored locations were recharged by the same groundwater system, validating the conceptual understanding that the unmapped bedrock aquifer below the Site discharges to the valley-bottom sand and gravel Aquifer 456 IIB.

Potable water supply wells including the three (3) domestic wells and two (2) town wells all had low tritium concentrations, ranging from 1 to 5 TU. These tritium results were consistent with the measured low concentrations of leachate-indicator parameters at these wells, and indicated that they are not impacted by landfill activity.

The highest concentrations of tritium were found at MW09-6D at 157.6 TU. This well is thought to be the most leachate-impacted monitoring well along with MW09-06S. For the most part, groundwater chemistry at MW09-6S has been nearly identical to that measured in MW09-6D; however, tritium at MW09-6S was notably lower (31.7 TU). As discussed, MW09-6D was screened approximately 30 m below MW09-6S. As such, the elevated tritium in MW09-6D may have resulted from older groundwater that has not migrated through the flow system as quickly as the shallower groundwater, or deeper groundwater is more impacted by leachate. The tritium concentrations also infer the leachate plume has migrated vertically downwards and has exited the landfill, consistent with the downward hydraulic gradient measured between the nested wells.

MW18-10 had a relatively high tritium concentration of 70.6 TU, which was congruent with its position on the Piper plot (Figure 9) as on the border of the mixed type (where leachate-impacted wells were found) and magnesium bicarbonate (potable water sources) facies. MW18-10 was likely somewhat impacted by landfill leachate, though not as much as

^{1 =} per mil is ‰ , or per thousand

^{2 =} Tritium Units. 1 TU = 1 molecule of ³H per 10¹⁸ molecules of ¹H

MW09-6D. This was consistent with most other leachate-associated parameters, as highlighted in Figures 5 through 8. Tritium at MW18-11 was slightly elevated (15.8 TU) above background, suggesting it could be mildly impacted by landfill leachate, but not as much as MW09-6D and MW18-10.

Importantly, tritium concentrations were relatively low at MW10-08, which supported the notion that elevated chloride, sodium and electrical conductivity values at this well are not attributable to fracture-controlled leachate migration, but rather road salting.

Tritium concentrations were at or near background at the Town Wells and DMW20-01, indicating no landfill leachate impacts at these locations.

No obvious spatial trends in chlorine-37 results were observed. For example, similar concentrations were observed at background well DMW-1b (0.31) and downgradient well MW09-06S (0.34).

9.0 DISCUSSION OF LOCAL HYDROSTRATIGRAPHIC CONDITIONS AND CONCEPTUAL MODEL

A conceptual model involves collecting various lithology data, static water level data, and surface water data to assess the extent and depth of aquifer(s) and aquitard(s), and the groundwater flow direction below and near the Site.

Ecoscape used information presented in the onsite and near-site monitoring well logs, drillers logs provided in the WRA, ENV aquifer mapping, regional geological mapping, and surface elevation provided by Google Earth to generate cross-sections A-A' and B-B' (Figures 3 and 4, and shown in plan on Figure 2). These cross-sections conceptually illustrate hydrostratigraphy near the Site with respect to the Town, the Columbia River and the Kicking Horse River. These cross-sections, along with the information used to assemble them, indicate:

- The Site is underlain by a poorly defined, but locally important bedrock aquifer. This aquifer is intersected by monitoring wells MW09-06D, MW10-08, MW18-10, and MW18-11 and nearby domestic supply wells to the north, northeast and east.
- The bedrock aquifer below and near the Site comprises mudstone, siltstone, and shale of the McKay Group. These sedimentary rock-types are often highly fractured. Well depths for bedrock wells within 1 km of the Site are highly variable, ranging from approximately 30 to 180 m bgs. This indicates that groundwater flows through complex network of fractures, in which the presence, depth and number of water-bearing fractures may vary from one location to the next.
- Based on surveyed static water levels in on- and near-site bedrock monitoring wells, regional groundwater flow in the bedrock aquifer likely mimics topography, with groundwater flow towards the southwest from topographically elevated recharge areas.

- Single-well response testing conducted at monitoring wells MW09-6D, MW10-08, MW18-10 and MW18-11 indicated that bedrock hydraulic conductivity below and near the Site ranges from 2 x 10⁻⁶ m/sec to 2 x 10⁻⁸ m/sec. These estimates are consistent with industry-accepted hydraulic conductivity values for limestone (10⁻⁶ to 10⁻⁹ m/sec) (Freeze and Cherry, 1979).
- The unmapped bedrock aquifer is overlain by dense gravelly sand and silty ablation till throughout the east half of the Site, with clean bedded sand and gravel alluvial deposits in the south central and western portions of the Site, and within the trench at the southwest Site corner. A thin till layer overlying bedrock was noted in well logs for most nearby domestic supply wells. Overburden thickness becomes increasingly thick towards the southwest end of the Site, where overburden is over 115 m thick (i.e., at MW18-11).
- Overburden is generally unsaturated at, and near the Site and no sand and gravel aquifers are known to underlie the Site; however, some localized pockets of perched groundwater may occur in overburden such as that observed in MW09-6S.
- Elevations of the piezometric surface were consistently higher at MW09-6S compared to MW09-6D, indicating a downward hydraulic gradient between the perched sand and gravel water-bearing unit and unmapped bedrock aquifer at this location.
- Sand and gravel Aquifer 456 IIB was mapped approximately 50 m southwest of the Site, extending along the east side of the Columbia River and generally spanning the Town. The aquifer seems to lap up the steep bedrock surface identified near MW18-11, and is likely recharged via mountain block recharge from surrounding upland areas, in which groundwater infiltrates bedrock, migrates downward, and then flows laterally through bedrock fractures into the overburden deposits occurring along the Columbia River valley; however, some flows may also occur above and along the overburden-bedrock interface. The Kicking Horse and Columbia Rivers also likely provide recharge to Aquifer 456.
- The oxygen-18 and deuterium results across all sampling locations indicated that all
 monitored locations were recharged by the same groundwater system, validating
 the conceptual understanding that the unmapped bedrock aquifer below the Site
 discharges to the valley-bottom sand and gravel Aquifer 456.
- Groundwater elevation in bedrock monitoring well MW18-11, which was likely
 installed just north of Aquifer 456, is similar to those documented in wells screened
 in Aquifer 456. Static water level in Aquifer 456 is consistent with the Columbia River
 and Kicking Horse River elevations, indicating the aquifer is hydraulically connected
 to these waterbodies.
- The Kicking Horse River likely represents a regional groundwater divide, and as such, only wells between the Site and the river have the potential to be hydraulically connected to groundwater the flows beneath the landfill.

10.0 ASSESSMENT OF POTENTIAL RECEPTORS

The two primary receptors to consider when assessing potential impacts from leachate impacted groundwater are drinking water users, and aquatic habitat.

10.1 Drinking Water Users

We understand that many of the wells mapped within the northern portion of the Town (i.e., north of the Kicking Horse River) have been decommissioned and replaced with municipal service from the Town wells. The Town's Manager of Operations, Chris Cochran, A.Sc.T. is not aware of any residential properties drawing well water apart from the Town's municipal system. Some residential properties have private wells which remain unused or are used for irrigating (pers. comm., 2021).

The Town sources its water supply from the Aquifer 456, at the confluence of the Kicking Horse River and Columbia River. The municipal water supply is obtained from five (5) wells at locations shown on Figure 2. Golden Associates Ltd. (Golder) completed a *Groundwater at Risk of Containing Pathogens* (GARP) study of the five wells (Golder, 2018). The Golden Landfill was considered a potential source of viral contamination; however, it is not located within the estimated capture zones for each supply well, and is situated more than 300 m from the wells. Based on the study, no GARP hazards were considered to be present, and the Town's water supply wells were considered to be at low risk of containing pathogens, based on, location of likely or known viral sources, deep well intake depths (>15 m), and the notion that Aquifer 456 was not considered highly vulnerable at the time of the assessment.

The estimated 10-year time-of-travel capture zones for Town Wells 4 and 6 are situated approximately 830 m and 170 m southwest and downgradient of the Site, respectively. Remaining Town wells are beyond the Kicking Horse River, which represents a groundwater divide, and are thus not expected to be impacted by leachate migration.

Based on this, Town Wells 4 and 6 represent potential drinking water receptors in the area. Given the estimated groundwater travel times, and that the Golden landfill has been operating since the 1970s, we would expect that leachate impacted groundwater would have migrated to portions of the aquifer occupied by these wells if natural attenuation was not occurring. However, water quality in these wells has been monitored since 2002 and 2013, respectively, with no signs of leachate impacts (e.g., nitrate concentrations are typically less than 20% of the 10 mg/L CSR DW standard, and chloride concentrations have been less than half of the 250 mg/L CSR DW standard). With that being said, good water quality in the Town Wells thus far does not rule out the potential for future impacts.

Monitoring well MW15-1 and domestic well DMW20-01 serve as sentry wells for Town Well 4 and should continue to be monitored. We recommend a that sentry well be established within the 5 year capture zone or the northwest portion of the 10 year capture zone for Town Well 6.

10.2 Aquatic Habitat

Hospital Creek is situated approximately 1.2 km north to northwest of the Site and flows southwest towards the Columbia River. The Kicking Horse River is approximately 1.3 km south to southwest and downslope of the Site, at an elevation of approximately 800 m asl, and flows northwest into the Columbia River. The Columbia River flows northwest, and at its nearest point is approximately 3 km from the Site.

As part of the 2018 HCS, WWAL collected water quality samples from the Kicking Horse River and Hospital Creek. No exceedances of the BC *Approved Water Quality Guidelines* for freshwater aquatic life were noted.

Based on their distance from the Site, and 2018 water quality samples results, nearby waterbodies are not expected to be impacted by landfill operations.

11.0 SUMMARY AND CONCLUSIONS

Ecoscape reassessed recommendations made in the 2018 Hydrogeological Characterization of the Golden Refuse Disposal Facility (WWAL 2018). Based on our review and analysis of available hydrogeochemical data, the following conclusions are made:

- The Site is underlain by a poorly defined, but locally important bedrock aquifer;
- Sand and gravel Aquifer 456 IIB was mapped by ENV approximately 50 m southwest
 of the Site, and is likely recharged via mountain block recharge from the bedrock
 aquifer below the Site; however, some flows may also occur above and along the
 overburden-bedrock interface (e.g. MW09-6S);
- Based on groundwater quality data collected between 2002 and 2020, concentrations of leachate indicator parameters have been consistently elevated in samples from MW09-6D and -6S and to a lesser degree MW18-10 compared to other monitoring locations, suggesting leachate-impacted groundwater at and beyond the west and south Site boundaries. Samples from these three (3) monitoring wells also had elevated concentrations of tritium, which is an isotope indicative of landfill leachate impacts;
- Based on groundwater quality data collected thus far, elevated arsenic, iron, lithium, and strontium concentrations likely occur naturally in groundwater at and near the Site, and are not necessarily attributable to ongoing landfilling activities.
- Mann-Kendall trend analysis of groundwater quality data collected from MW09-6S and -6D indicate the landfill leachate plume is generally stable or shrinking along the west Site boundary; however, this may change with ongoing landfill activities.

Similarly, electrical conductivity was the only parameter that demonstrated an increasing trend at MW18-11, while remaining parameters have been stable or decreasing since we started sampling the well in 2019.

On the contrary, the Mann-Kendall trend analysis indicated that chloride, nitrate and electrical conductivity are trending upwards at MW18-10 (situated at the south Site boundary). Therefore, there is the ongoing concern that leachate-impacted groundwater is migrating offsite.

The highest concentrations of tritium were found at MW09-6D at 157.6 TU. This well is thought to be the most leachate-impacted monitoring well along with MW09-06S.
 MW09-6D is screened approximately 30 m below MW09-6S, which indicates that the leachate plume has migrated vertically downwards, consistent with the downward hydraulic gradient measured between the nested wells;

Tritium concentrations were relatively low at MW10-08, which suggests that elevated chloride, sodium and electrical conductivity values at this well are not attributable to fracture-controlled leachate migration, but rather road salting or some other source.

- Most leachate indicator parameter concentrations at MW18-11 were at or near background levels; however, tritium concentrations were slightly elevated above background, which means leachate impacts at this well cannot be ruled out;
- Similar ¹⁸O and deuterium isotope results across all sampling locations indicated that all monitored locations were recharged by the same groundwater system. This validated the conceptual understanding that the unmapped bedrock aquifer below the Site discharges to the valley-bottom sand and gravel Aquifer 456 IIB;
- Drinking water users and aquatic habitat are the two primary receptors to consider when assessing potential impacts from leachate impacted groundwater.
 - Town Wells 4 and 6 represent key potential drinking water receptors in the area.
 - As part of the 2018 HCS, WWAL collected water quality samples from the Kicking Horse River and Hospital Creek. No exceedances of the BC Approved Water Quality Guidelines for freshwater aquatic life were noted. Based on their distance from the Site, and 2018 water quality samples results, nearby waterbodies are not expected to be impacted by landfill operations.
- In general, detailed groundwater level monitoring, isotope analysis, Mann-Kendall trend analysis, and updated geological cross-sections provide us with a better conceptual understanding of the local hydrogeological regime and the potential transport and fate of leachate-impacted groundwater at and near the Site.

However, given the inherently complex fracture-controlled groundwater flow system below the Site, and the limited monitoring well network, some data gaps remain.

12.0 RECOMMENDATIONS

Based on the hydrogeological assessment results and conclusions, the following recommendations are provided for discussion with ENV:

- Monitoring well MW15-1 and domestic well DMW20-01 serve as sentry wells for Town Well 4 and should continue to be monitored.
- Isotope analyses conducted in 2020 helped better understand leachate impacts in groundwater near the Site. Tritium should be analyzed during one or more future sampling events to help substantiate the inferences made from the 2020 isotope results.
- Consistent with Sections 57 and 60.1 of CSR, owners of parcels west and south of the Site, and the BC ENV, should be notified of potential offsite migration of leachate-impacted groundwater. These notices are called Notifications of Likely or Actual (NOMs).
- Options for assessing and delineating potential off-site migration of landfill leachate should be explored. First, a survey of drinking water wells should be conducted in the Granite Drive, Pine Drive, Quartz Crescent, and Deer Ridge Road area to confirm the absence of wells in the area, as communicated by the CSRD and Town of Golden. If previously undocumented domestic wells are encountered, then a monitoring well should be installed at the intersection of Pine Drive and Golden Donald Upper Road (i.e., the location recommended by WWAL in the 2018 HCR) to assess near-Site impacts.
- If no nearby domestic wells are identified during the survey, then delineating groundwater impacts in the bedrock aquifer downgradient of the Site may be unnecessary for the following reasons, in addition to the absence of drinking water receptors:
 - Drilling down to the bedrock aquifer through the substantially thick overlying sand and gravel deposits (as encountered at MW18-11) will be costly.
 - Drilling into the bedrock aquifer may result in penetrating unimpacted fracture zones, possibly exposing them to shallower leachate-impacted groundwater; and
 - Potentially localized groundwater impacts from the nearby Mountain View Cemetery (nitrate, ammonia, chemical oxygen demand, and select metals) may complicate groundwater geochemistry interpretation in the area.

Rather, acknowledging that groundwater from the bedrock aquifer discharges into Aquifer 456, a monitoring well should be installed at a lower elevation area near the Town of Golden Visitor Centre (Figure 2), within Aquifer 456. Installing a monitoring well at this location would be far more economical than the likely 100+ m deep monitoring well that would be required in upslope areas along Granite Drive, Pine Drive, Quartz Crescent, and Deer Ridge Road. Based on the well log for nearby decommissioned well WTN 119318, static water level in the area is approximately 11.6 mbgs. No lithology data was provided in the well log, but the decommissioned well was presumably completed in sand and gravel Aquifer 456. Similar to MW15-1 and DMW20-01, this new monitoring well would serve as a sentry well for Town Well 6.

 A Human Health and Ecological Risk Assessment (HHERA) should be considered if groundwater chemistry in the newly installed monitoring well(s) indicate a potential risk to downgradient drinking water receptors as a result of landfill activities.

13.0 LIMITATIONS

This report has been prepared by Ecoscape Environmental Consultants Ltd. (Ecoscape) for Columbia Shuswap Regional District (CSRD) and is intended for the sole and exclusive use of the CSRD. With the exception of the CSRD, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of Ecoscape.

Nothing in this report is intended to constitute or provide a legal opinion. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions and recommendations in this report may be necessary.

This report has been prepared for specific application to the Site and Site conditions present at the time work was completed. The conclusions and recommendations provided herein are based solely upon our professional judgment and the availability of information pertaining to environmental conditions and historic and present land use at the site with time available to consider data. Ecoscape has relied fully upon information provided or collected by other parties, and does not warranty data collected from third party sources used in this report.

This report has been prepared with the understanding that all available information on the past, present, and proposed conditions of the Site have been disclosed. If additional information becomes available that is inconsistent with the information provided herein Ecoscape should be contacted to reassess the conclusions provided in this report.

14.0 CLOSURE

We trust that this report satisfies your present requirements. Should you have any questions or comments, please contact the undersigned at your convenience.

Respectfully Submitted Ecoscape Environmental Consultants Ltd.,

Written By:

Mike Schutten, M.A.Sc. Groundwater Scientist Direct Line: 778-940-1964 Reviewed By:

Lee Ringham, M.Sc., P.Geo.

Senior Hydrogeologist Chinook Arch Geoscience Inc.

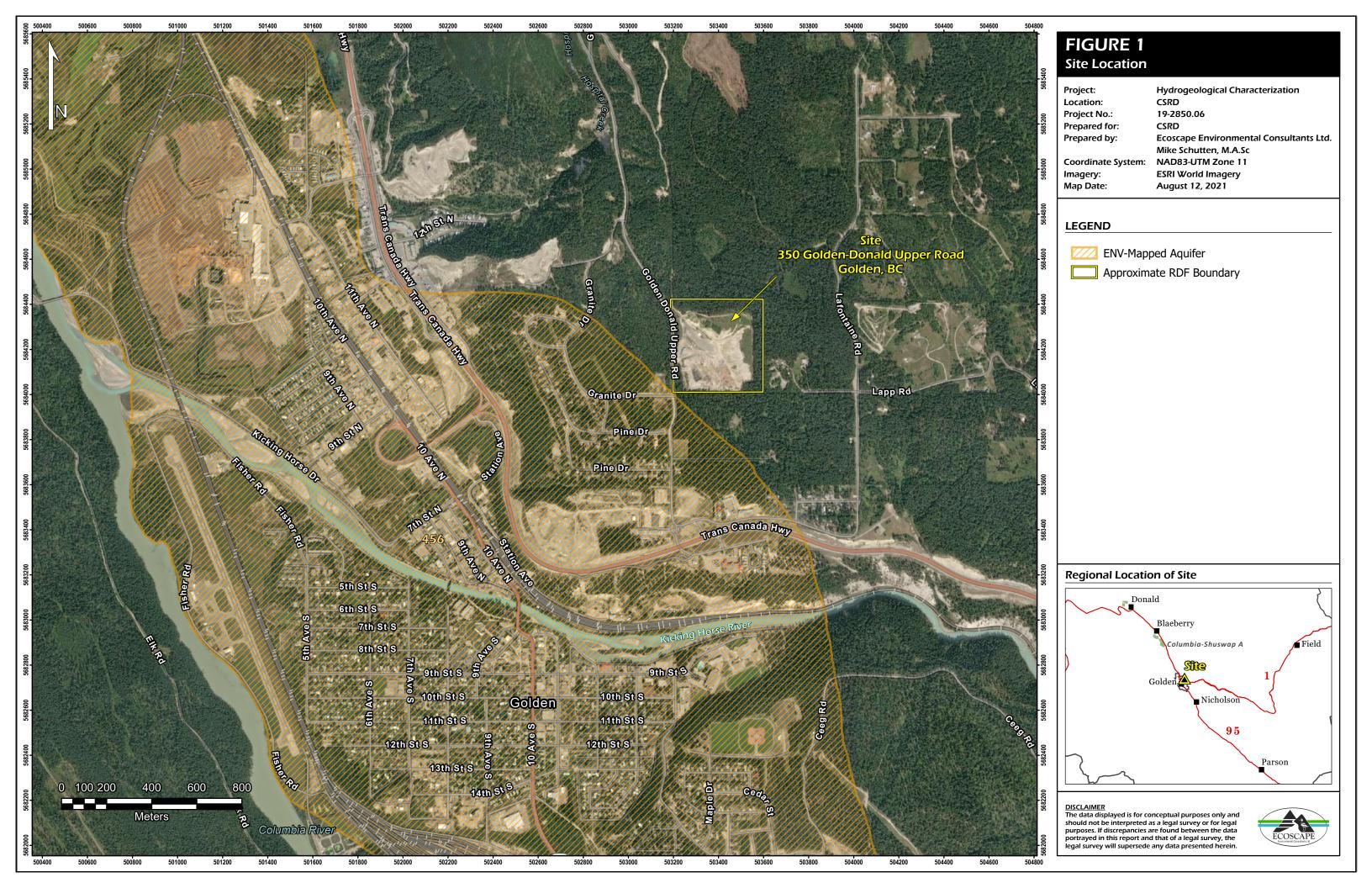
Direct Line: (403) 860-2925

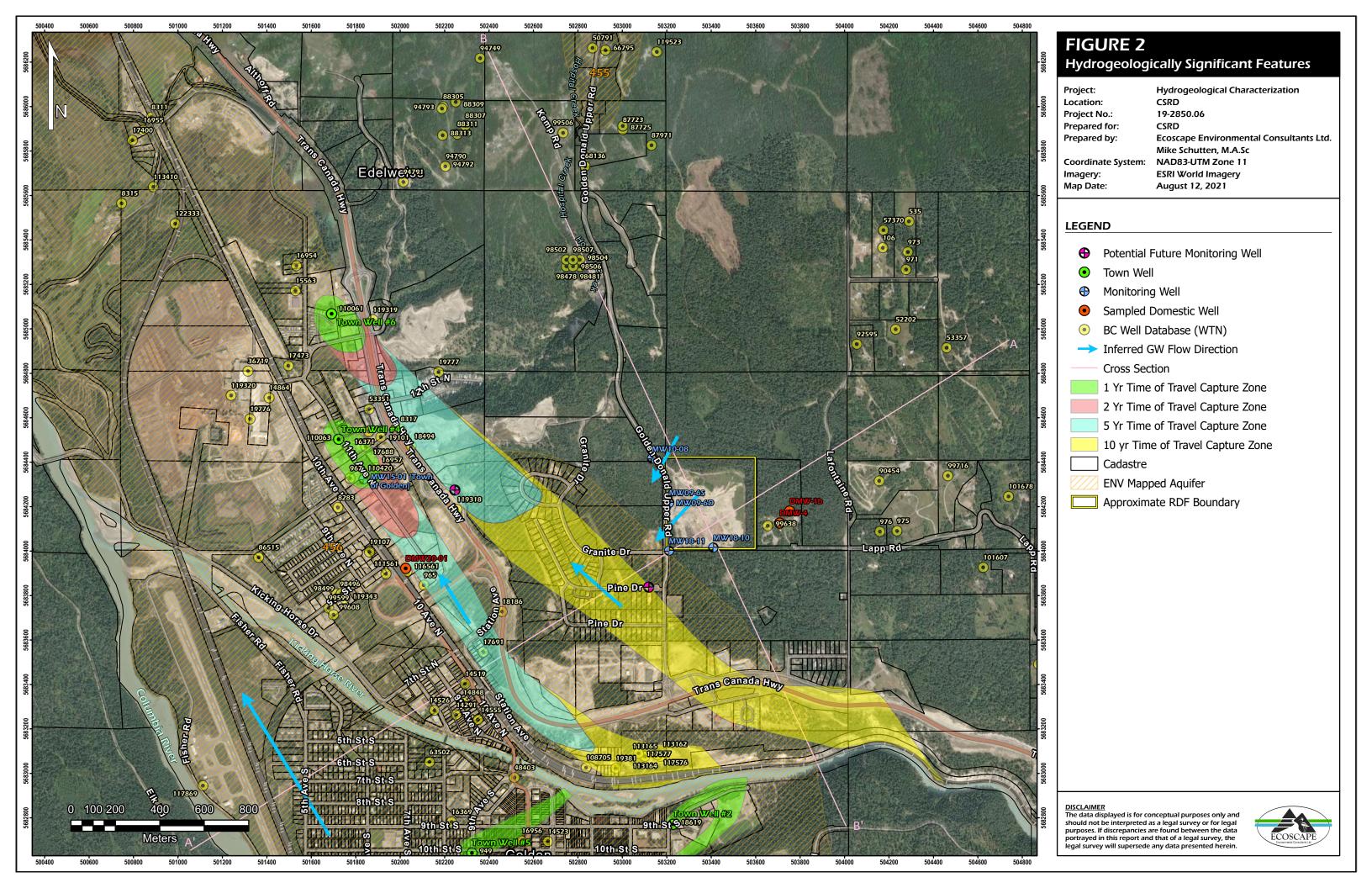
Attachments: Figures

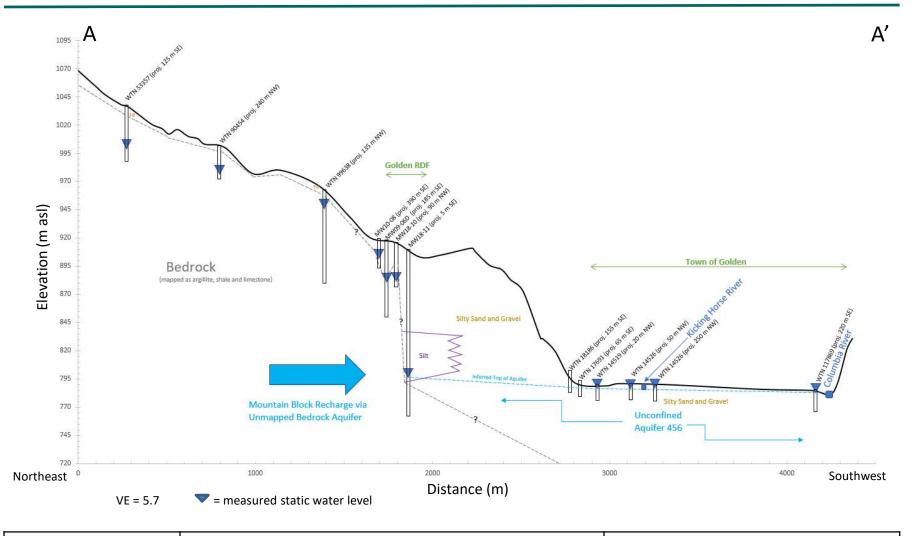
Appendices

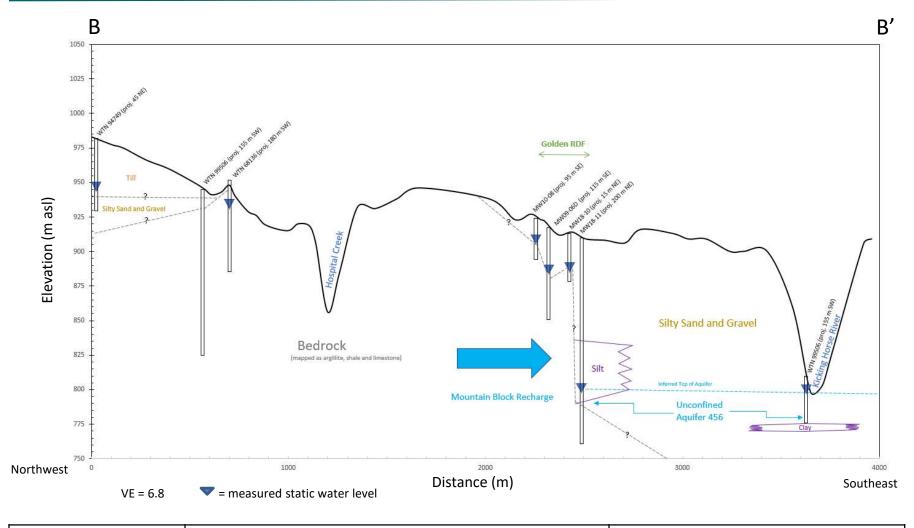
REFERENCES

- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 1997. Contaminated Sites Regulation. Effective April 1, 1997, latest amendment January 24, 2019. B.C. Reg. 13/2019 Queen's Printer Victoria British Columbia. http://www.bclaws.ca/EPLibraries/bclaws new/document/ID/freeside/375 96 00
- British Columbia Ministry of Environment, Lands and Parks (MoE). 1998. Guidelines for Interpreting Water Quality Data Version 1. Prepared for the Land Use Task Force Resources Inventory Committee. https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nr-laws-policy/risc/guidlines for interpreting water quality data.pdf
- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 2012. Operational Certificate MR-17006.
- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 2013. British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples. 2013 Edition. https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-field-sampling-manual
- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 2016. Groundwater Protection Regulation. Effective February 29, 2016, latest amendment June 10, 2016. B.C. Reg. 152/2016 Queen's Printer Victoria British Columbia. http://www.bclaws.ca/civix/document/id/complete/statreg/39 2016
- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 2016. Landfill Criteria for Municipal Solid Waste, Second Edition. June 2016.
- British Columbia Ministry of Environment and Climate Change Strategy (ENV) 2017. Technical Guidance on Contaminated Sites 8– *Groundwater Investigation and Characterization*, effective November 1, 2017.
- British Columbia Ministry of Environment and Climate Change Strategy (ENV) 2019a. Technical Bulletin for Contaminated Sites 3 *Regional Background Concentrations for Select Inorganic Substances in Groundwater*, effective July 31, 2019.
- British Columbia Ministry of Environment and Climate Change Strategy (ENV). 2019b. BC Water Resources Atlas. http://www.env.gov.bc.ca/wsd/data_searches/wrbc/
- British Columbia Ministry of Environment and Climate Change Strategy (ENV) 2021. Protocol 9 for Contaminated Sites *Establishing Local Background Concentrations in Groundwater*, Version 2 effective February 1, 2021.
- Bulc T.G., 2006. Long term performance of a constructed wetland for landfill leachate treatment. Ecol. Eng. 26: 365-374.
- Christensen T.H., P. Kjeldsen, P.L. Bjerg, D.L., Jense, J.B. Christensen, A. Baun, H. Albrechtsen, G. Heron. 2001. Biochemistry of landfill leachate plumes. Applied Geochemistry. 16(659-718).
- Cochran, C. 2021 Personal communication with Mike Schutten of Ecoscape on July 13, 2021.


- Ecoscape Environmental Consultants Ltd. 2020. 2019 Annual Environmental Monitoring Report Golden Refuse Disposal Site, Golden, BC. Report prepared for the CSRD.
- Ecoscape Environmental Consultants Ltd. 2021. 2020 Annual Environmental Monitoring Report Golden Refuse Disposal Site, Golden, BC. Report prepared for the CSRD.
- Environment Canada. 2019. Canadian Climate Normals. Available online: http://climate.weather.gc.ca/climate_normals/index_e.html. Accessed: November 2019.
- Environment Canada. 2018. Water Survey, accessed on-line at: http://www.wsc.ec.gc.ca.
- Freeze, R.A. and Cheery J.A. 1979. Groundwater. Prentice-Hall, New Jersey, 604 p.
- Gade, M.B. 2014. Assessing landfill contamination in Wyoming. Theses ALL. 23. Accessed online at: https://surface.syr.edu/thesis/23
- Geological Survey of Canada (GSC). 1980. Balkwi, H.R., et. al. Geology of Golden West Half. Map No. 1497A. Crown Copyright.
- Geological Survey of Canada (GSC). 2014. Surficial geology of Canada; Geological Survey of Canada, Canadian Geoscience Map 195 (preliminary, Surficial Data Model v. 2.0 conversion of Map 1880A), Scale 1:5 000 000. doi: 10.4095/295462.
- Golder Associates Ltd. (Golder). 2006. Conceptual Model, Preliminary Numerical Model and Contaminant Inventory. Town of Golden, B.C. Aquifer Protection Plan.
- Golder Associates Ltd. (Golder). 2018. Town of Golden, BC. Screening Study for Potential Groundwater at Risk of Pathogens (GARP)
- Golder Associates Ltd. (Golder). 2019a. Golden Landfill Design, Operations and Closure Plan Update. Golden, BC. Prepared for the CSRD.
- Golder Associates Ltd. (Golder). 2019b. Golden Landfill Environmental Monitoring Plan. Golden, BC. Prepared for the CSRD.
- Health Canada. 2019. Guidelines for Canadian Drinking Water Quality Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario. Accessed online at: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html
- Jones, A.G. 1959. Geological Survey of Canada. Geology, Vernon, Kamloops, Osoyoos and Kootenay Districts, British Columbia. Map 1059, scale 1:253,440
- Kala Groundwater Consulting Ltd. (Kala). 1995. Hydrogeological Assessment, Columbia Shuswap Regional District Sanitary Landfill Golden, B.C., Report Prepared for Reid Crother & Partners Ltd. Kelowna BC, Reference No. KG095.-05 7
- Massey, N.W.D., MacIntyre, D.G., Desjardin, P.J., and Cooney, R. T. 2005. Geology of British Columbia. Geological Survey of Canada, Geoscience Map 2005-3, scale 1:1 000 000.
- Meidinger, D. and J. Pojar. 1991. Ecosystems of British Columbia. Ministry of Forests. Victoria, BC. 330pp.




- Mutch. R.D and J.D Mahony. 2008. A study of tritium in municipal solid waste leachate and gas. Fusion Science and Technology
- Piteau and Associates Engineering Ltd, 1990. Preliminary Hydrogeological and Geotechnical Study. Prepared for the CSRD.
- Meidinger, D. and J. Pojar. 1991. Ecosystems of British Columbia. Ministry of Forests. Victoria, BC. 330pp.
- Sperling Hansen Associates (SHA). 2008. Golden Landfill Water Quality Report 2007. Prepared for CSRD. Reference No. SHA PRJ8007.
- University of Arizona, SAHRA Dept. of Hydrology and Water Resources. Accessed online at: http://web.sahra.arizona.edu/programs/isotopes/oxygen.html
- Western Water Associates Ltd. (WWAL). 2019. 2018 Hydrogeological Assessment of the Golden Landfill (OC 17006) at Golden, B.C. Report 14-024-21, prepared for CSRD April 2019.


FIGURES

ECOSCAPE	NE to SW Conceptual Schematic Cross-section	Project: Golden RDF Hydrogeological Reassessmen			
Environmental Consultants Ltd.		Project No: 19-2850.06			
Source: Google Earth and BC WRA	Client: CSRD	Figure 3			

ECOSCAPE	NW to SE Conceptual Schematic Cross-section	Project: Golden RDF Hydrogeological Reassessment
Environmental Consultants Ltd.		Project No: 19-2850.06
Source: Google Earth and BC WRA	Client: CSRD	Figure 4

APPENDIX A OPERATIONAL CERTIFICATE

June 30, 2021 Tracking Number: 392781
Authorization Number: 17006

REGISTERED MAIL

Columbia Shuswap Regional District Box 978 781 Marine Park Drive NE Salmon Arm, BC V1E 4P1

Dear Operational Certificate Holder:

Enclosed is Amended Operational Certificate 17006 issued under the provisions of the *Environmental Management Act*. Your attention is respectfully directed to the terms and conditions outlined in the operational certificate. An annual fee will be determined according to the Permit Fees Regulation.

This operational certificate does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority rests with the operational certificate holder. It is also the responsibility of the operational certificate holder to ensure that all activities conducted under this authorization are carried out with regard to the rights of third parties, and comply with other applicable legislation that may be in force.

This decision may be appealed to the Environmental Appeal Board in accordance with Part 8 of the *Environmental Management Act*. An appeal must be delivered within 30 days from the date that notice of this decision is given. For further information, please contact the Environmental Appeal Board at (250) 387-3464.

Southern Interior Region - Kootenay Telephone: (250) 354-6333 Facsimile: (250) 354-6332 Administration of this operational certificate will be carried out by staff from the Environmental Protection Division's Regional Operations Branch. Documents pertinent to the operational certificate are to be submitted by email or electronic transfer to the director, in accordance with the ministry Data & Report Submissions website at: http://www2.gov.bc.ca/gov/content/environment/waste-management/waste-discharge-authorization/data-and-report-submissions, or as further instructed.

If you have any questions or concerns, please contact Authorizations - South at Authorizations.South@gov.bc.ca.

Yours truly,

Carol Danyluk, P.Eng.

Months

for Director, Environmental Management Act

Authorizations - South Region

MINISTRY OF ENVIRONMENT AND CLIMATE CHANGE STRATEGY

OPERATIONAL CERTIFICATE

17006

Under the Provisions of the Environmental Management Act

Columbia Shuswap Regional District

Box 978 781 Marine Park Drive NE Salmon Arm, BC V1E 4P1

is authorized to manage waste and recyclable material from the Columbia Shuswap Regional District and environs at the Facility located near Golden, British Columbia, subject to the conditions listed below. Contravention of any of these conditions is a violation of the *Environmental Management Act* and may result in prosecution.

This Operational Certificate supersedes all previous versions of the Operational Certificate 17006 issued under the authority of the *Environmental Management Act*.

1. AUTHORIZED DISCHARGE REQUIREMENTS

1.1 Landfill

This section applies to the Landfill known as the GOLDEN LANDFILL. The site reference number for this discharge is E246600.

1.1.1 The maximum quantity of waste discharges must not exceed 7,050 tonnes per calendar year.

Date issued: Date amended: May 5, 2003 June 30, 2021

(most recent)

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

Authorizations - South

Page 1 of 20 Operational Certificate Number: 17006

- 1.1.2 The characteristics of the waste discharge to the Landfill must be:
 - (a) municipal solid waste,
 - (b) controlled waste consisting solely of animal carcasses, with special handling and control measures, as specified in the most recent Design, Operations and Closure Plan (DOCP), or,
 - (c) other waste as authorized in writing by the director,
 - (d) soil in which the concentrations of all substances are less than the lowest applicable industrial land use standard specified for those substances in
 - (i) the generic numerical soil standards,
 - (ii) the matrix numerical soil standards, or
 - (iii) a director's interim standard for soil,

referred to in section 41(1)(a) of the Contaminated Sites Regulation, B.C. Reg. 375/96,

but does not include:

- (i) hazardous waste except as authorized pursuant to the Hazardous Waste Regulation, and,
- (ii) waste and/or recyclable material prohibited in writing by the director.
- 1.1.3 The waste discharge is authorized to the landfill footprint of the Landfill approximately located as shown on Site Plan A.
- 1.1.4 The authorized works are a landfill footprint with a maximum area of 16 ha, final cover, and related appurtenances, approximately located as shown on Site Plan A.
- 1.1.5 The operational certificate holder must not discharge under this authorization unless the authorized works are complete and fully operational (excluding final cover in active landfilling areas), as per the most recent Design and Operations and Closure Plan, acknowledged under Section 2.4.

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

1.2 **Stormwater Management Works**

This section applies to the to the management of stormwater from the Landfill.

- 1.2.1 The operational certificate holder must manage stormwater from the Landfill with the authorized works.
- 1.2.2 The authorized works are berms, french drains, ditches, perimeter road, perimeter ditches, culverts, sediment traps, stormwater pond, and related appurtenances, as specified in the most recent Design, Operations and Closure Plan (DOCP).
- 1.2.3 The operational certificate holder must not discharge under this authorization unless the authorized works are complete and fully operational.

1.3 Facility Entrance

This section applies to the Facility Entrance.

- 1.3.1 The authorized works are sign(s), gate, weigh scale, scale hut, waste and recyclable material drop-off and storage facilities, and related appurtenances approximately located as shown on Site Plan A.
- 1.3.2 The operational certificate holder must not discharge under this authorization unless the authorized works are complete and fully operational.

1.4 **Location of Facility**

This section applies to the location of the Facility.

1.4.1 The legal description of the location of the Landfill and Stormwater Management Works is Subdivision 12 of Section 18, Township 27, Range 21, West of the 5th Meridian, Kootenay District.

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

2. <u>DESIGN AND PERFORMANCE REQUIREMENTS</u>

2.1 Glossary

Capitalized terms referred to in this authorization are defined in the Glossary below. Other terms used in this authorization have the same meaning as those defined in the *Environmental Management Act*, applicable regulations, and the Landfill Criteria;

"Attractant" means food or food waste, compost, carcass or part of an animal, fish, or other meat, or other waste or garbage, that could attract bears, birds, rodents, insects, vectors or wildlife, but does not include grass, leaves, weeds, branches and woodwaste;

"Electric Enclosure" means a bear-proof electric fence and electric gate(s), that surround the Facility;

"Facility" means the Golden landfill including all facilities and works on the Facility Site including the Landfill, Stormwater Management Works, Facility Entrance, and Electric Enclosure;

"Facility Entrance" means sign(s), gate, weigh scale, scale hut, waste and recyclable material drop-off and storage facilities;

"Facility Site" means the location of the Facility of this operational certificate;

"Facility Site Boundary" means the perimeter boundaries of the Facility Site;

"Landfill" means the authorized discharge site in section 1.1.4 of this operational certificate;

"Landfill Criteria" means the Landfill Criteria for Municipal Solid Waste Second Edition June 2016, as amended or replaced from time to time;

"Province" means Her Majesty the Queen in right of British Columbia;

"Regulatory Document" means any document that the operational certificate holder is required to cause to be prepared, prepare or submit to the director or the Province, pursuant to: (i) this authorization; (ii) any regulation made under the *Environmental Management Act* that regulates the Facility

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

Authorizations - South

described in this authorization or the discharge of waste from that Facility; or (iii) any order issued under the *Environmental Management Act* directed against the operational certificate holder that is related to the Facility described in this authorization or the discharge of waste from that Facility;

"Significant Works" means the Landfill, and Stormwater Management Works;

"Stormwater" means runoff from rainfall and snow melt.

"Stormwater Management Works" means the authorized works in section 1.2.2 of this operational certificate.

2.2 **General Provisions**

Where this Authorization provides that the director may require an action to be carried out, the operational certificate holder must carry out the action in accordance with the requirements of the director.

2.3 <u>Use of Qualified Professional(s)</u>

The operational certificate holder must cause a Qualified Professional to:

- (a) Design and inspect the construction of the Facility,
- (b) Certify documents related to the Facility including plans, specifications, drawings, construction reports, assessments, reviews, investigations, studies, surveys, programs, reports and as-built record drawings, and,
- (c) Submit a completed Declaration of Competency and a Conflict of Interest Disclosure Statement with each document.

2.4 <u>Design, Operation, and Closure Plan (DOCP)</u>

- (a) Receipt of the DOCP dated January 17, 2020, by Golder Associates Ltd., is acknowledged.
- (b) The operational certificate holder must cause a Qualified Professional to certify and submit an updated DOCP for the Facility to the director, as necessary to keep the DOCP up to date, on or before December 31, 2025, and at least once every five years thereafter.

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

- (c) The updated DOCP must comply with the requirements of this operational certificate, and include the information specified in all the items listed in the Landfill Criteria Section 10.3 Design, Operations and Closure Plan, for the Facility, and, if a Water Quality Improvement Plan (WQIP) is required pursuant to section 3.5 of this operational certificate, conform with the most recent version of the WQIP.
- (d) The operational certificate holder must carry out the most recent DOCP and design, construct, operate, inspect, maintain, monitor, and close the Facility, in compliance with most recent DOCP and this operational certificate.

2.4.1 Stormwater Management Works

The Operational Certificate Holder must provide an Implementation Schedule prepared by a Qualified Professional to the director for the design and implementation of the stormwater management works identified in the January 17, 2020 DOCP, Section 5.2 – Surface Water Management. The Implementation Schedule must be provided to the director at least 30 days prior to the commencement of construction of works or by August 31, 2021, whichever comes first.

The Operational Certificate Holder must then carry out the Implementation Schedule for the surface water management works and report on implementation progress in the Annual Report required under Section 5.1 until fully implemented.

2.5 Construction Report(s)

- (a) The operational certificate holder must cause a Qualified Professional to:
 - (i) carry out inspections before and during the construction or modification of Significant Works, and,
 - (ii) certify construction report(s), on or before 30 days after the completion of construction or modification of Significant Works.
- (b) The construction report(s) must demonstrate that the Significant Works have been constructed in accordance with this operational certificate and the most recent DOCP, describe any technical concerns that arose from the inspections and testing and how they were addressed, and include as-built record drawings of the constructed Significant Works, all the inspection and testing reports and results including geologic inspection report, quality

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

control and quality assurance testing, soil test data including field and laboratory data, as described in the Landfill Criteria section 10.2 Construction Report(s).

2.6 **Final Cover**

The operational certificate holder must ensure that:

- (a) For final cover with a synthetic barrier layer:
 - (i) final cover slope grades for the Landfill are between 4% and 33%, and.
 - (ii) The final cover system includes from bottom to top a barrier layer consisting of a double sided textured geomembrane of minimum 1.0 mm thickness, or a geosynthetic clay liner, with hydraulic conductivity less than or equal to 1 x 10-7 cm/s, a drainage layer consisting of a non-woven geotextile or sand layer, a common fill layer of minimum 450 mm thickness, a topsoil layer of minimum 150 mm thickness, and vegetative cover.
- (b) For final cover with a soil barrier layer:
 - (i) Final cover slope grades for the Landfill are between 10% and 33%, and,
 - (ii) The final cover system includes from bottom to top a soil barrier layer of minimum 600 mm thickness and hydraulic conductivity of less than or equal to 1 x 10-7 cm/s, a topsoil layer of minimum 150 mm thickness, and vegetative cover.

2.7 **Buffer Zone**

No new waste must be landfilled within 50 meters of the landfill site boundary.

2.7.1 Screening

The 30 meters closest to the landfill site boundary must be reserved for natural or landscaped screening (berm or vegetative screen).

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

2.8 Additional Requirements

The director may require the operational certificate holder to:

- (a) Cause a Qualified Professional to certify and submit to the director additional, amended or improved documents of the Facility including plans, specifications, drawings, construction reports, assessments, reviews, investigations, studies, surveys, programs, reports and as-built record drawings.
- (b) Carry out actions in accordance with the additional, amended or improved documents submitted, and additional actions as specified.
- (c) Repair, alter, remove, improve or add to existing facilities and works, or construct new facilities and works, at the Facility.

3. OPERATING AND PERFORMANCE REQUIREMENTS

3.1 <u>Multiple and/or Spare Works and Auxiliary Power Facilities</u>

The operational certificate holder must provide and install multiple and/or spare works and auxiliary power facilities to ensure that the Facility is complete and fully operational as specified in this operational certificate, including during maintenance, breakdowns and electrical power outages.

3.2 **Maintenance of the Facility**

- (a) The operational certificate holder must cause persons that are qualified and trained, to operate, regularly inspect, and maintain the Facility, in good working order. If components of the Facility have a manufacturer's recommended maintenance schedule, then those components must, at a minimum, be maintained in accordance with that schedule.
- (b) The operational certificate holder must prepare documents of the qualification and training of the persons operating, inspecting and maintaining the Facility, and of Facility inspections, operation and maintenance.

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

3.3 Facility Manager and Operator Certification

- (a) The operational certificate holder must ensure that at least one person responsible for the management of the Facility is certified, and maintains certification, by The Solid Waste Association of North America (SWANA) as a Manager of Landfill Operations, and at least one person responsible for the operation of the Facility has, within the preceding five years, successfully completed the SWANA Landfill Operations Basics course, on or before March 31, 2021, and at all times thereafter.
- (b) The operational certificate holder must prepare documents of the SWANA certification and training of the person(s) responsible for the management and operation of the Facility.

3.4 Electric Enclosure

- (a) The operational certificate holder must not allow a bear to access Attractants at the Facility or to enter the Electric Enclosure.
- (b) The operational certificate holder must ensure that the Electric Enclosure are fully operational at all times bears may be present including April 15 November 30 or otherwise specified by the director, except during temporary short-term periods during daylight, for maintenance, safety or operational reasons. If snow is present during the required operational period, any electrified strands above snow line must be isolated from the remainder of the system and energised.
- (c) The operational certificate holder must operate the Electric Enclosure with a minimum voltage of 6,000 volts. The operational certificate holder must inspect the entire perimeter of the Electric Enclosure once per month including for evidence of bear activity (e.g. diggings, scat, etc.) and damage, and measure the voltage of the Electric Enclosure at a minimum of one point each day the Facility is open. If any measurements show a voltage of less than 6,000 volts, the operational certificate holder must immediately investigate the cause of the low voltage and immediately correct any issues that affect operation of the Electric Enclosure in accordance with the requirements of this authorization.
- (d) The operational certificate holder must ensure that all gates are closed when the Facility is un-attended. The operational certificate holder may leave

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

- a gate open while the Facility is continuously attended provided the gate is checked periodically for bear activity.
- (e) The operational certificate holder must immediately report the presence of a bear within the Electric Enclosure, or any bear access to Attractants at the Facility, to the Conservation Officer Service, and immediately correct same.
- (f) The operational certificate holder must prepare documents that demonstrate compliance with the preceding sub-sections including inspection logs, evidence of bear activity (e.g. diggings, scat, etc.), damage, voltage measurements, issues, causes, corrective actions, the presence of a bear within the Electric Enclosure, bear access to Attractants at the Facility, reports to the Conservation Officer Service.

3.5 Water Quality Improvement Plan (WQIP)

3.5.1 Groundwater

The operational certificate holder must include a WQIP in the Annual Operations and Monitoring Report required under section 5.4 of this operational certificate if the concentration of any substance in groundwater migrating from the Facility Site Boundary to a neighbouring site is greater than:

- (a) the lowest Contaminated Sites Regulation Generic Numerical Water Standard, for the applicable water use(s), for that substance, or,
- (b) if the local background concentration is greater than (a), the local background concentration of that substance.
- 3.5.1.1 The operational certificate holder must ensure that a Qualified Professional determines if the concentration of any substance in groundwater migrating from the Facility Site Boundary to a neighbouring site is greater than described in 3.5.1 (a) or (b).
- 3.5.1.2 The operational certificate holder must ensure that a Qualified Professional determines the applicable water use(s) in accordance with the latest approved version of Protocol 21 for Contaminated Sites, Water Use Determination.
- 3.5.1.3 If 3.5.1 (b) applies, the operational certificate must ensure that a Qualified Professional determines the local background

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

concentration of substance(s) in accordance with the latest approved version of Protocol 9 for Contaminated Sites, Determining Background Groundwater Quality or another method recommended by a Qualified Professional.

3.5.2 Stormwater and Surface Water

The operational certificate holder must include a WQIP in the Annual Operations and Monitoring Report required under section 5.4 of this operational certificate if the concentration of any substance in the stormwater or the surface water flowing from the Facility Site Boundary to a neighbouring site is of worse quality than:

- (a) the applicable long-term average, short-term maximum, maximum allowable concentration, maximum acceptable concentration, or aesthetic objective, specified in the British Columbia Approved and Working Water Quality Guidelines, for the applicable water use(s), for that substance, or,
- (b) if the local background concentration is of worse quality than (a), the local background concentration of that substance.
- 3.5.2.1 The operational certificate holder must ensure that a Qualified Professional determines if the concentration of any substance in the stormwater or the surface water flowing from the Facility Site Boundary to a neighbouring site is of worse quality than described in 3.5.2 (a) or (b).
- 3.5.2.2 The operational certificate holder must ensure that a Qualified Professional determines the applicable water use(s) and the applicable long-term average, short-term maximum, maximum allowable concentration, maximum acceptable concentration, and aesthetic objective, specified in the British Columbia Approved and Working Water Quality Guidelines, for the applicable water use(s), for substances.
- 3.5.2.3 If 3.5.2 (b) applies, the operational certificate holder must ensure that a Qualified Professional determines the local background concentration of substance(s).

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

Authorizations - South

3.5.3 Plan and Implementation Schedule

A WQIP must include a plan, details and implementation schedule to:

- (a) investigate and determine the cause(s) of the water quality exceedances,
- (b) investigate and determine the locations of the water quality exceedances at and beyond the Facility Site Boundary,
- (c) assess and determine the environmental and human health impacts at and beyond the Facility Site Boundary,
- (d) determine and carry out actions to improve water quality at and beyond the Facility Site Boundary,
- (e) specify and carry out an environmental monitoring plan at and beyond the Facility Site Boundary, and,
- (f) notify affected neighbouring site owners including a description of the WQIP.

3.5.4 Implementation

The operational certificate holder must implement the most recent WQIP.

3.6 Water Quality Standards

The operational certificate holder must ensure that groundwater migrating from the Facility Site Boundary to a neighbouring site, and stormwater and surface water flowing from the Facility Site Boundary to a neighbouring site, do not cause pollution, or adverse effects on human health, on a neighbouring site.

3.7 Nuisance

The operational certificate holder must ensure that the Facility does not cause a nuisance including with regard to birds, rodents, insects, odour, noise, dust, litter, vector and wildlife attraction.

3.7.1 Litter, Birds, and Wildlife

Litter fencing must be set up around the active face when waste is being deposited such that the spread of litter is minimized.

Daily cover must be adequate to prevent wildlife from accessing waste near the active face, after the landfill operating hours. Intermediate cover, of at

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

least 300 mm thickness, which may include the 150 mm required daily cover thickness, should be installed in areas not actively being filled to discourage wildlife from accessing the waste.

Records of litter collection efforts including photographs, must be kept on site for the past 2 years of operation. A summary of the collection efforts must also be included in the Annual Report required in Section 5.1.

The Operational Certificate holder must cause a Qualified Professional to conduct and certify an assessment of the issue of wildlife habituation within the landfill site boundary and litter dispersion at this landfill by August 31, 2021. The OC holder must carry out mitigating measures to address wildlife habituation and litter dispersion, assess their effectiveness and report on findings and ongoing recommendations, as applicable, in the Annual Report required in Section 5.4.

3.8 **Complaints**

The operational certificate holder must prepare documents of complaints with regard to matters relevant to this operational certificate, including environmental, bear, and nuisance complaints. These documents must include the source and nature of the complaint, actions, responses, and corresponding dates and times.

3.9 **Regulatory Documents**

- (a) The operational certificate holder must retain all Regulatory Documents.
- (b) The operational certificate holder must retain all Regulatory Documents for the last seven years at the Facility and such documents must be available for immediate inspection at the Facility by a director or an officer.
- (c) If requested by a director or an officer, the operational certificate holder must submit the requested Regulatory Documents to the director or officer within 14 days of the request.

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

4. MONITORING REQUIREMENTS

4.1 **Monitoring and Sampling Facilities**

The operational certificate holder must install and maintain, measurement, monitoring and sampling facilities for waste, leachate, effluent, groundwater, stormwater, surface water and landfill gas, in compliance with, and including at locations specified in, the most recent DOCP and WQIP.

4.2 Monitoring and Sampling

The operational certificate holder must carry out measurement, monitoring and sampling of waste, leachate, effluent, groundwater, stormwater, surface water and landfill gas, in compliance with, and including at frequencies and for substances specified in, the most recent DOCP and WQIP.

4.3 **Sampling Procedures**

The operational certificate holder must carry out sampling in accordance with the procedures described in the "British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples, 2013 Edition (Permittee)" or most recent edition, or by alternative procedures as authorized by the director. A copy of the above manual is available on the Ministry web page at https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance.

4.4 Analytical Procedures

The operational certificate holder must carry out analyses in accordance with procedures described in the "British Columbia Laboratory Manual (2015 Permittee Edition)", or the most recent edition or by alternative procedures as authorized by the director. A copy of the above manual is available on the Ministry web page at

https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance.

4.5 **Quality Assurance**

(a) The operational certificate holder must obtain from the analytical laboratory(ies) their precision, accuracy and blank data for each sample set

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

submitted by the operational certificate holder and an evaluation of the data acceptability, based on criteria set by such laboratory.

- (b) The operational certificate holder must prepare and submit for analysis by the analytical laboratory(ies) a duplicate sample for each parameter sampled at each monitoring site and each monitoring period.
- (c) The operational certificate holder must submit samples to analytical laboratory(ies) that meet the definition of a qualified laboratory under the Environmental Data Quality Assurance Regulation.

4.6 **Data Uploading**

The operational certificate holder must cause the analytical laboratory(ies) to upload monitoring and analytical data required by this operational certificate, to the Ministry's Environmental Monitoring System (EMS) database, on or before 30 days after the data is available, or as further instructed by the director.

5. <u>REPORTING REQUIREMENTS</u>

5.1 **Electronic Reporting**

The operational certificate holder must submit all data required to be submitted under this section by email to the Ministry's Routine Environmental Reporting Submission Mailbox (RERSM) at Envauthorizationsreporting@gov.bc.ca or as otherwise instructed by the director. For guidelines on how to properly name the files and email subject lines or for more information visit the Ministry website: Envauthorization/data-and-report-submissions/routine-environmental-reporting-submission-mailbox.

5.2 Non-compliance Notification

The operational certificate holder must immediately notify the director by email at EnvironmentalCompliance@gov.bc.ca, or as otherwise instructed by the director of any non-compliance with the requirements of this Authorization and must immediately take remedial action to remedy any effects of such non-compliance.

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

Potential non-compliances include but are not limited to fires, or detection of surfacing leachate on the property.

5.3 **Non-compliance Reporting**

The operational certificate holder must, within 30 days of any non-compliance event, submit to the director a written report that includes, but is not necessarily limited to, the following:

- (a) all relevant test results obtained by the operational certificate holder related to the non-compliance,
- (b) an explanation of the most probable cause(s) of the non-compliance, and
- (c) a description of remedial action planned and/or taken by the operational certificate holder to prevent similar non-compliance(s) in the future.

The operational certificate holder must submit all non-compliance reporting required to be submitted under this section by email to the Ministry's Compliance Reporting Submission Mailbox (CRSM) at EnvironmentalCompliance@gov.bc.ca or as otherwise instructed by the director. For guidelines on how to report a non-compliance or for more information visit the Ministry website:

http://www2.gov.bc.ca/gov/content/environment/waste-management/waste-discharge-authorization/data-and-report-submissions/non-compliance-reporting-mailbox.

5.4 Annual Operations and Monitoring Report

- (a) The operational certificate holder must cause a Qualified Professional to certify and submit an Annual Operations and Monitoring Report, for the preceding calendar year, to the director on or before March 31 of each year.
- (b) The Annual Operations and Monitoring Report must include the following information:

Operations Report:

- (i) Tonnages and categories of waste and recyclable material received at the Facility, and how they were managed,
- (ii) Tonnages and categories of waste discharged to the Landfill,
- (iii) Remaining volume and life of the Landfill;

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

Authorizations - South

- (iv) Summary of DOCP implementation;
- (v) Summary of screening/revegetation efforts;
- (vi) Summary of construction report(s);
- (vii) Summary of Electric Enclosure inspection logs, issues, causes, corrective actions, and reports to the Conservation Officer Service;
- (viii) Summary of complaints and nuisances;
- (ix) Summary of non-compliance notifications and non-compliance reporting;
- (x) For the next calendar year, summary of planned DOCP implementation and construction of Significant Works,

Environmental Monitoring Plan Report:

- (xi) Site plan(s), sampling locations, stormwater and surface water flow paths, groundwater elevations, gradients and flow directions;
- (xii) Measurement, monitoring and sampling facilities, locations, frequencies, substances, sampling and analytical procedures, quality assurance and quality control;
- (xiii) Data including laboratory analysis and quality assurance and quality control results;
- (xiv) Data tabulation, trend analysis, graphs, diagrams, and interpretation;
- (xv) Discussion and determinations required by section 3.5 of this operational certificate,
- (xvi) Discussion and determination of compliance with section 3.6 of this operational certificate,
- (xvii) Discussion and determination of compliance with section 3.7 of this operational certificate,
- (xviii) Results, conclusions, recommendations and changes to the environmental monitoring plan.

Water Quality Improvement Plan (WQIP):

(xviii) If required by section 3.5 of this operational certificate, a WQIP, and implementation status, results, and a copy of any notification(s) to affected neighbouring site owner(s).

Date issued:
Date amended:
(most recent)

May 5, 2003 June 30, 2021

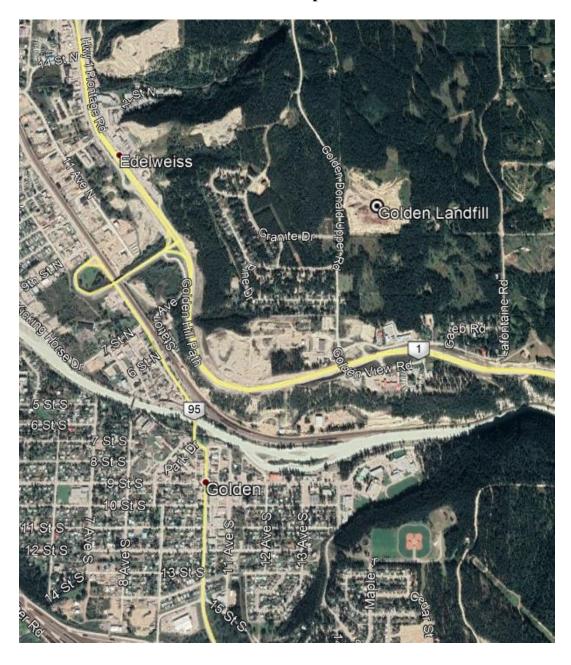
Carol Danyluk, P.Eng.

for Director, Environmental Management Act

5.5 **Publication of Documents**

The Ministry of Environment and Climate Change Strategy publishes Regulatory Documents on its website for the purpose of research, public education and to provide transparency in the administration of environmental laws. The operational certificate holder acknowledges that the Province may publish any Regulatory Documents submitted by the operational certificate holder, excluding information that would be exempted from disclosure if the document was disclosed pursuant to a request under section 5 of the *Freedom of Information and Protection of Privacy Act*, and the operational certificate holder consents to such publication by the Province.

Date issued:
Date amended:
(most recent)

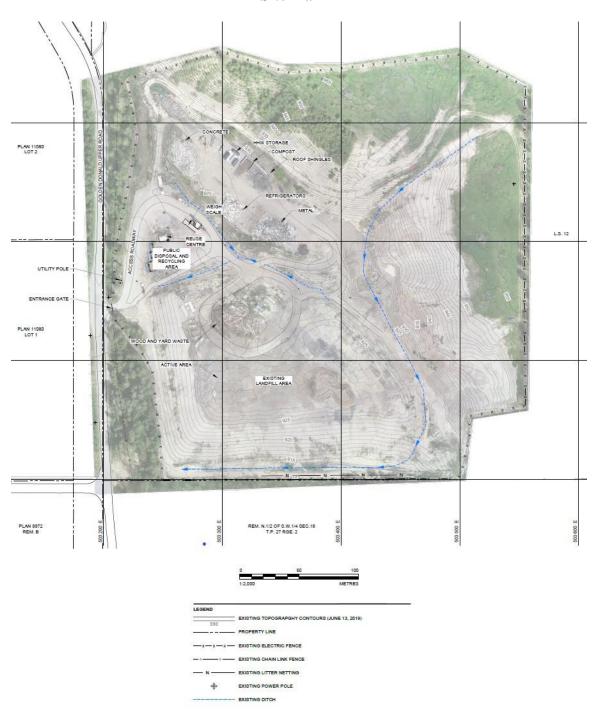

May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

Authorizations - South

Area Map


Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

Authorizations - South

Site Plan A

Date issued: Date amended: (most recent) May 5, 2003 June 30, 2021

Carol Danyluk, P.Eng.

for Director, Environmental Management Act

Authorizations - South

APPENDIX B WELL LOGS

	MAJOR	DIVISIÓN	GROUP SYMBOL	GRAPH SYMBO			TYPIC	AL (DESCR	IPTIO	N		CLA		TORY ATION	ł
	35.7	CLEAN GRAVELS	cw Oo o		RED	ELL GRADED GRAVELS, LITTLE OR NO				$C_U = \frac{D_{60}}{D_{10}} > 4 C_C = \frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to}$				= 1 to 3		
LARGER THAN 200 SIEVE; GRAVELS GRAVELS GRANE THAN MAIR COASS GRANE LARGE THAN 40 4 SIEVE	VELS MALF COA PGER THA SIEVE	(LITTLE OR NO FINES)	GP	0000	POO SAN	RLY GRA	ADED G	RAVELS, TLE OR	AND GO	AVEL-		N	OT MEE	TING REMENT	·	
	GRA GRAINS CA	DIRTY GRAVELS	GM		YELLOW	SILTY	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES			CONTENT OF FINES		BELO	RBERG & DW "A" LESS THA	LINE OR		
NNED SC	. 3	(WITH SOME FINES)	сс		YELLOW	CLA	CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES				12%	DS 🗀	ATTE	RBERG (I VE "A" NORE TH	IMITS. LINE AN 7	
COARSE.GRAINED	75	CLEAN SANDS	sw		RED	WEL	GRADI	O SAN	DS, GRA	VELLY S	ANDS,	$c_0 = \frac{c_0}{c_0}$	10 >6	C¢ ≈ D	(D ₃₀) ²	= 1 fa ;
THAN HALF	VDS HALF FO MILER THIS SIEVE	(LITTLE OR NO TINES)	SP		RED	POO FINE	RLY GR. S	ADED S	ANDS,	ITTLE C	R NO		N	OT MEE		
1 3HOMI	SANDS MORE THAN HALF KNE GRAINS SMALLER THAN	DIRTY SANDS	5M		YELLOW	SILTY	SAND	SANDS, SAND-SILT MIXTURES				CONTE		ATTERBERG LIMITS BELOW "A" LINE P.I. LESS THAN 4		
-/-		(WITH SOME FINES)	şc		YELLOW	CLAY MIXT	CLAYEY SANDS, SAND-CLAY					EXCEE 12%		ATTERBERG LIMITS ABOVE "A" LINE P.I. MORE THAN 7		
_	SITS SION A" INE MEGICISIE OPGANG CONTENT	W ₁ < 50 %	ML		GREEN	ROC	RGANIC SILTS AND VERY FINE SANDS, K FLOUR, SILTY SANDS OF SLIGHT STICITY					CLASSIFICATION				
200 SIEVE)	2 8 2 8 2	w ₁ > 50%	мн		BLUE	MAC	INORGANIC SILTS, MICACEOUS OR DIATO- MACEOUS, FINE SANDY OR SILTY SOILS					IS BASEO UPON PEASTICITY CHART (See Dalow)				
PINE-GRAINED SOILS HALF BY WEIGHT PASSES 200	NE ON HEART	W _L < 30%	Cl		GREEN	GRA	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS, LEAN CLAYS									
SRAINED BY YESCH	CLAYS ABOVE "L" LINE ON PLASTICITY CHART ATGLIGIETY OPGANIC	30% < W _L < 50%	ÇI		GREEN. BLUE	INOR CITY,	INORGANIC CLAYS OF MEDIUM PLASTI- CITY, SILTY CLAYS									
FINE-C	A80 ACCI	W _L > 50%	СН		BLUE		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS				ICITY,					
(MORC TH	ORGANIC SILS & CLAYS SCLOW AT 11MC	W _L < 50%	Oι		GREEN	GANIC SILTS AND ORGANIC SILTY YS OF LOW PLASTICITY					WHENEVER THE NATURE OF THE FINE CONTENT HAS NOT BEEN DETERMINED, IT IS DESIGNATED BY THE LETTER "F", E.G.					
	CRC SELOW SPECIAL SPEC	W _L > 50%	ко		BLUE	ORG	ORGANIC CLAYS OF HIGH PLASTICITY				SF IS A MIXTURE OF SAND WITH SILT OR CLAY					
	HIGHLY OR	GANIC SOILS	P1		ORANGE	PEAT	ANO O	HER HI	GHLY OI	RGANIC	SOILS	STRONG FIBROUS	COLOR	OR OD	OR, AN	OFTEN
		SPECIAL	SYMBOL	.S			\$0		PRAS	TICITY O) NA87			СН		
		BEOROCK {Undifferentiated}		VOLCAN	IC ASH		40-	so	ILS PAS	FOR		EVE		H ^E		
		SOIL COM	PONENTS	**************************************			S S				Cı				МН	
FR	ACTION	U S STANDARD SIEVE SIZE	PERCE	FINING RA	WEIGHT OF		PLASTICITY II		cı					ОН		
3R AVI	EI .	PASSING RETAINED	PERCE	NT	DESCRIPT	ŌR	P. P.					Ot				
	course fine	76 mm 19 mm 19 mm No 4	50 -	- 1	and		4		725I.	<u></u>	ML 0	10 50	6	0 7	0 8	90
AND	cograe medium	4.75 mm 2.00 mm 2.00 mm 4254 m	. 35 - 20 -		som e little				SIZES M	ENTION		LIMIT IN	ıl			
10	fine non plastic)	425 m 754/m 754/m	IO ~ 1 trace				2. 80 G	OUPS :	ARE GIVI	N COM	BINED G	SSESSING ROUP SYA WITH CL	ABOLS.	E.G. GW	-GC IS A	WELL
CLAY	(plastic)	·					17	%				**********	~ · pm			
		OVERSIZE I	MATERIAL										•			
	nded or eubro	behaus	Not round	ted.				Kals	Gro	und	vato	r Con	erilti	na I	44	

	Testhole Log - TH95-01
Depth (m)	Soil Description
0-5.8	Silt-and fine sand, little gravel fine to coarse, iso. cobbles, non-plastic, dense, yellow/brown, moss
5.8-6.71	Silt-and sand fine to medium, some gravel fine to coarse, non-plastic, dense, yetlow/brown, mois
6.71-8.54	Sitt-and fine sand, trace coarse sand, trace gravel, fine to coarse, iso. cobbles, non-plastic, gre/brown, hard, moist.
8.54-11.3	Silt-and fine sand, trace gravel, fine to coarse, non-plastic, iso. cobbles, grey, hard, moist.
11.3-14.9	Silt-some fine sand, trace gravel, fine to coarse, occ. cobbles, non-plastic, red/brown, hard, damp.
14.9-18.9	cray and sin, trace time sand, trace time gravel iso coppler love to more starting and single sand, trace time sand, trace ti
	End of TH95-01 at 18.9m - No groundwater seepage - Monitoring Well installed

	Testhole Log - TH95-02
Depth (m)	Soil Description
0-9.76	Saud-fine and silt, some gravel fine to coarse, occ. cobbles, dense, light brown, damp. Upper 0.3m
9.76-12.8	Sand-afine and silt, some gravel fine to coarse, iso. cobbles, dense, red/brown, moist.
12.8-15.5	Sand-fine, some silt, some gravel fine to coarse, occ. cobbles, dense, red/brown, moist.
15,5-16.5	Silt-some fine sand, trace gravel, fine to coarse, non-plastic, iso, grey/brown, cobbles, stiff, moist.
16.5-20.1	Silt-little fine sand, trace clay, trace gravel, fine to coarse, occ. cobbles, non-plastic, red/brown, hard, damp.
20.1-22.9	Silt - some sand, fine to coarse, trace gravel fine to coarse, iso. cobbles, grey, very hard, non-plastic End of TH95-02 at 22.9m - No groundwater seepage - Monitoring Well installed

	Testhole Log - TH95-03
Depth (m)	Soil Description
0-8.54	Silt-some fine sand, some gravel, fine to coarse, iso. cobbles, non-plastic, red/brown, dense, damp
8.54-11.3	Silt-and fine sand trace gravel fine to come and all silts and fine sand trace gravel fine to come and all silts.
11,3-15,5	Silt-and fine sand, trace gravel, fine to coarse, non-plastic, iso. cobbles, grey, hard, moist
	Silt-some fine sand, trace gravel, fine to coarse, non-plastic, grey/brown, hard, moist
F-15 20.5	Band-Inic and Sill, Some graver line to coarse, occ. cobbles, dense, light brown, down
	End of TH95-03at 18.3m - No groundwater seepage -Monitoring Well installed

<u> </u>	Testhole Log TH95-04
Depth (m)	the contract of the contract o
0-3,35	Silt-and fine sand, trace gravel fine to coarse, occ. cobbles, non-plastic, dense, yellow/brown, damp.
3.35-5.49	Gravel-fine to coarse, and silt, trace sand fine to coarse, occ. cobbles, light brown, moist.
5.49-11.0	Silt-and fine sand, trace coarse sand, trace gravel, fine to coarse, iso. cobbles, non-plastic, gre/brown, hard, moist.
11.0-12.8	Sand-fine to medium, and gravel, fine to coarse, iso. cobbles, trace silt, dense, red/brown, moist.
12.8-17.7	Sand- fine to medium, and silt, little gravel fine to coarse, iso. cobbles, brown, hard, moist.
17.7-30.48	Sand - fine and silt, trace gravel, fine to coarse, brown, hard, moist.
	End of TH95-04 at 26.2m - No groundwater seepage - Monitoring Well installed

Depth (m)	Testhole Log - TH95-05 Soil Description
0-1.3	Silt-and fine sand, little gravel fine to coarse, iso. cobbles, non- plastic, dense, yellow/brown, moist.
1.3-3.1	Waste-municipal debris, paper, tin plastics, mixed with soil, damp.
3.1-3.4	Sand-fine to medium, some silt, little gravel, fine to coarse, compact, brown, moist.
3.4-5.1	Waste-municipal debris, paper, tin plastics, mixed with soil, damp.
5.1-5.4	Sand-fine to medium, some silt, little gravel, fine to coarse, compact, brown, moist,
5.4-6.2	Waste-municipal debris, paper, tin plastics, mixed with soil, damp.
6.2-7.1	Sand-fine to medium, some silt, little gravel, fine to coarse, compact, brown, moist.
	End of TH5 at 7.1m no groundwater-temporary installation

TESTHOLE LOG

	RCP		ROJECT: Hydrogeologial		ESTHOLE:	BH95-02	
	Golden Landfill		ssessment - Golden BC		ROJECT NO		KE95-057
DRILL RIG:	Becker Hammer	18	URF ELV: 914.0m ASL	C	O-ORDINAT		
DEPTH (m) INDEX:			SOIL DESCRIPTION	SAMPLES			COMPLETION DETAILS
Grass	0 20 40 60 80 100 120 1	40		Γ	Donth (m)	N	Criston 1 On
	0-9.76		Sand-fine and silt, some gravel fine		Depth (m)	IN	Stickup 1,2m
2.0 912			to coarse, occ. cobbles, dense, light brown, damp. <i>Upper 0.3m fill</i>		ARI 1.5		50mm dia. Solid pipe
- - - 4.0 910					AR2 3.0		Bentonite Grout
					AR3 4.5		
8.0 908 					AR4 6.0 D1 6.5/6.95	50	Top 6.0m
10.0 904	9.76-12.8		Sand-fine and silt, some gravel fine to coarse, iso. cobbles, dense,		AR5 7.5		Sand —
12.0 902			grey, moist.		AR6 10.0		
- - -	12.8-15.5		Sand-fine, some silt, some gravel		AR7 11.5		
14.0 900			fine to coarse, occ. cobbles. dense, red/brown, moist.		AR8 13.0 D2 13.5/13.9 AR9 14.0	50	0.010" slotted pipe
16.0 898	15.5-16.5		Silt-some fine sand, trace gravel, fine to coarse, non-plastic, iso. grey/brown, cobbles, stiff, moist.		AR10 15,0		
	16.5-20.1		Silt-little fine sand, trace clay, trace gravel, fine to coarse, occ. cobbles, non-plastic, red/brown, hard, damp		AR11 16.5		
20.0 894			·		AR12 18.0		
	20.1-22.9		Silt - some sand, fine to coarse, trace gravel fine to coarse, iso cobbles, grey, very hard, non-plastic, moist.		D3 20/20.45 8	30	
22.0 892			End of TH95-01 at 18.9m - No			- 1	Well base
repared by: Paul	Blackett		groundwater seepage Well installed viewed by:	E:			22.9m
	h: no groundwater		rehole Depth: 22.9m below surface	Fig Dat			

TESTHOLE LOG .

CLIENT:	RCP	PI	ROJECT: Hydrogeologial	1	ESTHOLE:	<u></u>	BH95-03
	Golden Landfill	A:	ssessment - Golden BC		ROJECT NO):	KE95-057
DRILL RIG:	Becker Hammer	St	JRF ELV: 908.5m ASL.		O-ORDINA		
DEPTH (m) ELV. (m)	WEINARE 76	Plot	SOIL DESCRIPTION	Lab Test	SAMPL	ES	COMPLETION DETAILS
Gravel	0 3 10 15 20			T	Depth (m)	N	Stickup 1.2m
	0-8.54		Sitt-some fine sand, some gravel, fine to coarse, iso. cobbles, non- plastic, red/brown, dense, damp		ARI 1.5		50mm dia. Solid pipe
					AR2 3.0 D1 3.5/3.95	50	Bentonite Grout
6.0 902.5					AR3 4.5		Top 6,0m
8.0 900.2					AR4 6.0 D2 6.5/6.95	50	
10.0 898.2	8.54-11.3		Silt-and fine sand, trace gravel, fine to coarse, non-plastic, iso. cobbles, grey, hard, moist.		AR5 7.5		Sand -
12.0 896.2	11.3-15.5		Silt-some fine sand, trace gravel, fine to coarse, non-plastic, grey/brown, hard, moist		AR7 11.5		
14.0 894.2					AR8 13.0 D3 13.5/13.9 AR9 14.0	50	0.010" slotted
<u>16.0</u> 892.2	15.5-18.3		Sand-fine and silt, some gravel fine to coarse, occ. cobbles, dense, light brown, damp.		AR10 15.0 D4 16/16,45 AR11 16.5	75	
18.0 890.2	<u> </u>		Poil office of the second		AR12 18.0		18.3m
888.2 		14	End of TH95-01 at 18.3m - No groundwater seepoge Monitoring Well installed				
Personal P	TOT t	<u>_</u>	· · · · · · · · · · · · · · · · · · ·				
Prepared by: Paul			iewed by:		ure: 3		
Groundwater Dep	th: no groundwater	por	ehole Depth: 18.3m below surface	Dat	e: 10/9/95		

TESTHOLE LOG

	RCP	PROJECT: Hydrogeologial	Т	ESTHOLE:		BH95-04
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Golden Landfill	Assessment - Golden BC		ROJECT NO		KE95-057
DRILL RIG	Becker Hammer	SURF ELV: 916.9m ASL.	C	O-ORDINA	TES:	
DEPTH (m) ELV. (m)	INDEX: METHANE %	SOIL DESCRIPTION	Lab Test	SAMPLI	ES	COMPLETION DETAILS
Grass	0 3 10 15 20		Т	Depth (m)	N	Stickep 1.2m
2.0 914.9	0-3.35	Silt-and fine sand, trace gravel fine to coarse, occ. cobbles, non-plastic, dense, yellow/brown, damp.		AR1 1.5		50mm dia. Solid pipe
4.0 912.9	3.35-5.49	Gravel-fine to coarse, and silt, trace sand fine to coarse, occ. cobbles, light brown, moist.		D! 3.5/3.95	35	Grout & backfill
- 6.0 910.9 - 8.0 908.9	5.49-11.0	Sit-and fine sand, trace coarse sand, trace gravel, fine to coarse, iso. cobbles, non-plastic, grey/brown, hard, moist.		AR4 6.0 D2 6.5/6.95 AR5 7.5	50	
10.0 906.9 12.0 904.9	11.0-12.8	Sand-fine to medium, and gravel, fine to coarse, iso. cobbles, trace silt, dense, red/brown, moist.		AR6 10.0 D3 10/10.45	45	Sand
14.0 902.9	12.8-17.7	Sand- fine to medium, and silt, little gravel fine to coarse, iso. cobbles, brown, hard, moist.		AR8 13.0 D2 13.5/13.9 AR9 14.0	50	0.010" slotted pipe
<u>16.0</u> 900.2	,			AR10 15.0 D4 15/15.45 AR11 16.5	70	
18.0 898.2		Sand - hine and silt, trace gravel, fine to coarse, brown, hard, moist.	- 1	AR12 18.0 AR13 22.0		
20.0 896.2	,.	End of TH95-01 at 30.48m - No	,	AR 14 25.0		Top 20.0m
30.0 894,2		groundwater seepage Monitoring Well installed		AR 16 30.0		Bot 30.5m
Prepared by: Paul	Blackett	Reviewed by:	Figu			DOI 30.3II
Groundwater Dept	h; no groundwater	Borehole Depth: 30.5m below surface		e: 10/9/95		
	•					

Symbol Legend

Common Symbols Silty Sand Clayey Sand Sand Sandy Silt Sand and Gravel Sandy Silty Clay Silty Sand and Gravel Limestone **Well Symbols** Pipe and Screen NONE None Double Walled Pipe Sealed Pipe Fine Screen Coarse Screen Slotted Screen Slotted Screen **Top Fittings** Cap Flush-mounted Cap Reducer Pipe Break **Bottom Fittings** Cone None Сар Screw-on Cap Packing and Backfill NONE None Bentonite Sand

Project No: 7130-010.01

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH3

Well I.D.: TH-3 (well closure)

Location on site: on Golden-Donald Upper Rd

Northing/ Easting/ Elevation: 0

	su	BSURFACE PROFILE		SAMPL	E.		
Depth	Symbol	Description	Type	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks
a ft m		Ground Surface				<u>-</u> -	
10		End of Borehole				TH-3 was replaced by MW-7. TH-3 was decommissioned according to the Groundwater Protection Regulation. The surface casing was removed, the 2" piezometer was cut approximately 4" below ground surface and bentonite chips were poured into the casing. Bentonite was poured around the outer annulus of the piezometer to bring the hole to ground surface.	

Contractor: JR Drilling

Operator(s): Jerry

Drill Method:

Ground conditions: bare

Date: April 20, 2009

Time:

Temperature: 10 degC

Sheet: 1 of 1

Project No: 7130-010.01

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH4

Well I.D.: TH-4 (well closure)

Location on site: near weight scale

Northing/ Easting/ Elevation: 0

	S		BSURFACE PROFILE	SAMPLE						
Atron	indea.	Symbol	Description	Type	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks		
o ft	m a		Ground Surface							
10	_ 10		End of Borehole				TH-4 was replaced by MW-6S. TH-4 was decommissioned according to the Groundwater Protection Regulation. The surface casing was removed, the 2" piezometer was cut approximately 4" below ground surface and bentonite chips were poured into the casing. Bentonite was poured around the outer annulus of the piezometer to bring the hole to ground surface.			
110										

Contractor: JR Drilling

Operator(s): Jerry

Drill Method:

Ground conditions: bare

Date: April 20, 2009

Time:

Temperature: 10 degC

Project No: 7130-010.01

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH-6 (6")

Well I.D.: MW-6S, MW-6D, GP-6S, GP-6D

Location on site: near weight scale (replaces TH4)

Northing/ Easting/ Elevation: 0

	SI	JBSURFACE PROFILE		SAMPL	.E		
Depth	Symbol	Description	Type	I.D.	Flag for analysis	Well Details	Well Completion Details / Remarks
0 ft m 0 10		Light brown, GRAVEL, w. sand, loose, dry Light brown, SILT w/ sand, trace gravel, loose, dry Grey, GRAVEL w/ sand and silt, loose, dry Grey, GRAVEL w/ sand and silt, loose, dry Note: larger gravel than above Light brown, (f.) SAND w/ silt and trace gravel, dense, moist Grey, (m.) SAND, w/ silt and gravel, dense, moist Grey, cemented GRAVEL, dense, dry Yellow, SILT w/ some angular gravel and mc. sand, dense, moist Black, Limestone bedrock				Configuration: Two groundwater monitoring wells (each 2" diameter) Two gas monitoring probes (each 1" diameter) Schedule 40 PVC Gas piezos. are threaded 20/40 sand pack around each monitoring well Screen Assembly: No. 10 slot PVC MW6D Screened in bedrock Screened btw 59.76 m (196 ft) and 65.85 (216 ft) bgs MW6S Screened in surficial deposits (overburden) Screened btw 31.40 m (103 ft) and 34.45 m (113 ft) bgs GP6D Screened btw 12.20 m (40 ft) and 16.77 m (55 ft) bgs GP6S Screened btw 7.93 m (26 ft) and 9.45 m (31 ft) bgs	### 33.17 m April 22/09 MW-65 —
220_		End of Borehole				Casing height =	

Contractor: JR Drilling Central Ltd.

Operator(s): Jerry Opper

Drill Method: Dual Air Rotary

Ground conditions: bare

Date: April 20, 2009

Time:

Temperature: 10 degC

Project No: 7130-010.01

Client: CSRD

Location: Golden, BC

Logged by/ Checked by: BRM/ MG

Test Hole / Borehole I.D.: TH-7 (6")

Well I.D.: MW-7, GP-7S, GP-7D (replaces TH3)

Location on site: Golden-Donald Upper Rd.

Northing/ Easting/ Elevation: 0

	SI	JBSURFACE PROFILE		SAMPL	.E				
Depth	Symbol	Description	Type	I.D.	Flag for analysis	Welf Details	Well Completion Details / Remarks		
0 fim 0 10 10 10 10 10 10 10 10 10 10 10 10 1		Grey, SILT and clay, dense, moist Grey, SILT, dense, moist Light brown, SILT w/ (f.) sand and gravel, loose, moist, fining upwards Grey, cemented GRAVEL w/ sand and silt, dense, damp Grey, SILT trace sand, dense, moist Grey, GRAVEL w/ (m.) sand and silt, dense, moist Grey, GRAVEL w/ (m.) sand and silt, dense, moist Grey, (fm.) SAND w/ silt, dense, moist, coarsening upward Grey, cemented GRAVEL, dense, dry Grey, (f.) angular GRAVEL w/ sand and silt, dense, dry, End of Borehole				Configuration: ◆ One groundwater monitoring well (2" diameter) ◆ Two gas monitoring probes (each 1" diameter) ◆ Schedule 40 PVC ◆ Gas probes are threaded ◆ 20/40 sand pack around each monitoring well Screen Assembly: - No. 10 slot PVC MW-7 - Screened in the surficial deposits (overburden) - Screened btw 25.6 m (84 ft) and 31.7 m (104 ft) bgs GP-7D - Screened btw 13.72 m (45 ft) and 15.24 m (50 ft) bgs GP-7S - Screened btw 4.5 m (15 ft) and 6.10 m (20 ft) bgs Casing Height: 1.2 m (3.9 ft)	Solid PVC Bentonite Solid PVC Bentonite MW-7-		
40				Cantroots	152.5				

Contractor: JR Drilling Central Ltd.

Operator(s): Jerry Opper

Drill Method: Dual Air Rotary

Ground conditions: bare

Date: April 23, 2009

Time:

Temperature: 7 deg C

Project No: 2010-8835.010.006

Well I.D.: TH-8

Client: CSRD

First Water: n/a

Location: Golden Landfill

Stabilized Water Level: 14 m btoc

Location on site: 150 m NW of landfill on Golden Donald Upper Road

Ground Elevation: Approx. 915 m asl

Top of Casing Elevation: flush mount

Reviewed by: Tilman Roschinski

Logged by: Bryer Manwell

		Subsurface Geology		
Depth	tide O Description		Well Details and Notes	Well Construction
-1 _ft m		Ground Surface		
24		SAND AND GRAVEL Sand and gravel, trace fines, light brown. CLAYEY TILL Clay matrix, some gravel, trace sand, dense, wet. REGOLITH	Flush mount casing, well sealed with j-plug	i Cot 7 2010 bentonite grout Flush mount casing

Contractor: Target Drilling Inc.

Drill Method: Coring

Boring Diameter/ Depth: 6 in / 27.3 m

Operator(s):

Date: Oct 5-7 2010

Project No: 2010-8835.010.006

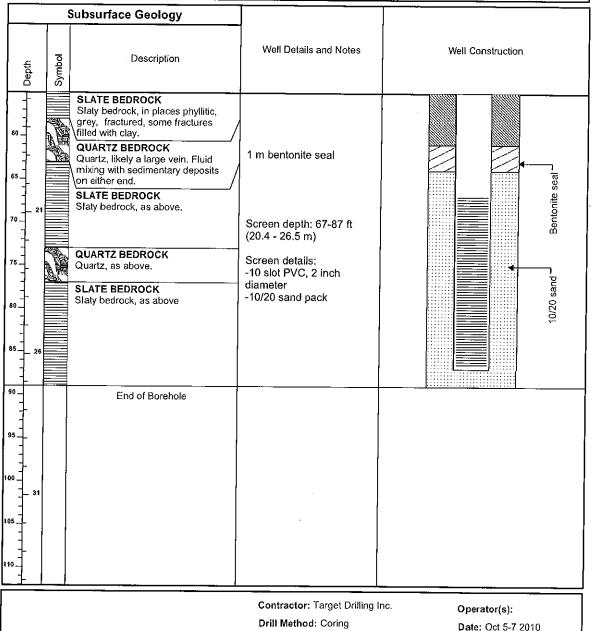
Location on site: 150 m NW of landfill on Golden Donald Upper Road

Well I.D.: TH-8

Client: CSRD

First Water: n/a

Location: Golden Landfill


Stabilized Water Level: 14 m btoc

Ground Elevation: Approx. 915 m asl

Top of Casing Elevation: flush mount

Reviewed by: Tilman Roschinski

Logged by: Bryer Manwell

Boring Diameter/ Depth: 6 in / 27.3 m

Project No: 2010-8835.010.006

Location on site: 5 m SE of landfill

Well I.D.: BH9

Client: CSRD

First Water: n/a

Location: Golden Landfill

Stabilized Water Level: n/a

Ground Elevation: Approx. 928 m asi

Top of Casing Elevation: 0

Reviewed by: Tilman Roschinski

Logged by: Bryer Manwell

L			Subsurface Geology		
	Depth	Symbol	Description	Well Details and Notes	Well Construction
	ft m _a		Ground Surface		
10 15 20 25 30 40 45 50			SILT Silt, occasional cobbles, dry to moist, yellowish-grey.	No well installed.	Natural slough
55_	-		End of Borehole		

Contractor: Target Drilling Inc.

Drill Method: Coring

Boring Diameter/ Depth: 6 in

Operator(s):

Date: Oct 8 2010

Monitoring Well ID: MW18-10

Project Number: 14-024-21

Client: CSRD

Project: Golden RDF Additional Drilling

Location: Golden, BC

Depth Below Ground Surface		Lithology	Well Construction	Well Completion Details
ft m 0 - 0		Ground Surface Topsoil Sand and gravel, medium grained sand, sub angular gravel, moderately to poorly sorted, brown, dry.		Lockable steel wellcap with a 0.81 m (32") stick up 8" Steel casing from 0.81m (3 ft) above ground surface (ags) to 35.65 m (117 ft) below ground surface (bgs). Bentonite fill from 0 m (0 ft) to 6.1 m
30				(20 ft) bgs, 10.7 m (35 ft) to 11.3 m (37 ft) bgs, 15.2 m (50 ft) to 15.8 m (52 ft) bgs 19.8 m (65 ft) to 20.4 m (67 ft) bgs and from 24.7 m (81 ft) to 25.3 m (83 ft) bgs. Natural fill from 6.1 m (20 ft) to 10.7 m (35 ft) bgs, 11.3 m (37 ft) to 15.2 m (50 ft) bgs, 15.8 m (52 ft) to 19.8 m (65 ft)
45-	0 0 0 0	Sand and gravel, medium to coarse grained sand, sub angular gravel, grey, dry. Sand and gravel, medium grained sand, sub angular gravel, moderately sorted, brown, moist at 58 ft.	×× ××	bgs and from 20.4 m (67 ft) to 24.7 m (81 ft) bgs.
60 -		Sand and gravel, with silt, fine to medium grained sand, sub angular gravel, moderately sorted, grey, moist.	XX XX	
90-	252 253 254 254 254 254	Bedrock, grey, mapped as argillite, shale and limestone, dry.		Sand pack with 10 filter sand from 25.3 m (83 ft) to 35 m (115 ft) bgs.
105-				Water Level 28.53 m (94 ft) bgs June 25, 2018. 3 m (10 ft) length of threaded 10 slot screen from 32 m (105 ft) bgs to 35.1 m (115 ft) bgs. 0.3 m (1 ft) length sandpack from 35.4 m (116 ft) bgs to 35.7 m (117 ft) bgs.
	<u>'/__'</u>			(. 10 tt) 593 to 55.7 til (117 tt) bys.

Coordinates: 503411.92 m E 5684049.84 m N 11 U

Static Water Level: 28.53 m June 26, 2018

Ground Elevation: 919 m above sea level (asl)

Total Borehole Depth: 35.65 m (117 ft) bgs

Drawn By: RA

Checked By: BRM

Drilling Contractor: JR Drilling

Drilling Method: Dual Air Rotary

Date of Completion: June 25, 2018

Logged By: RA

Monitoring Well ID: MW18-11

Project Number: 14-024-21

Client: CSRD

Project: Golden RDF

Location: Golden, BC

Coordinates: 503205.13 m E 5684006.34 m N 11 U Static Water Level: 114 m (374 ft) December 6, 2018

Ground Elevation: 915 m above sea level (masl)

Total Borehole Depth: 115.8 m (380 ft)

Drawn By: RA

Checked By: BRM

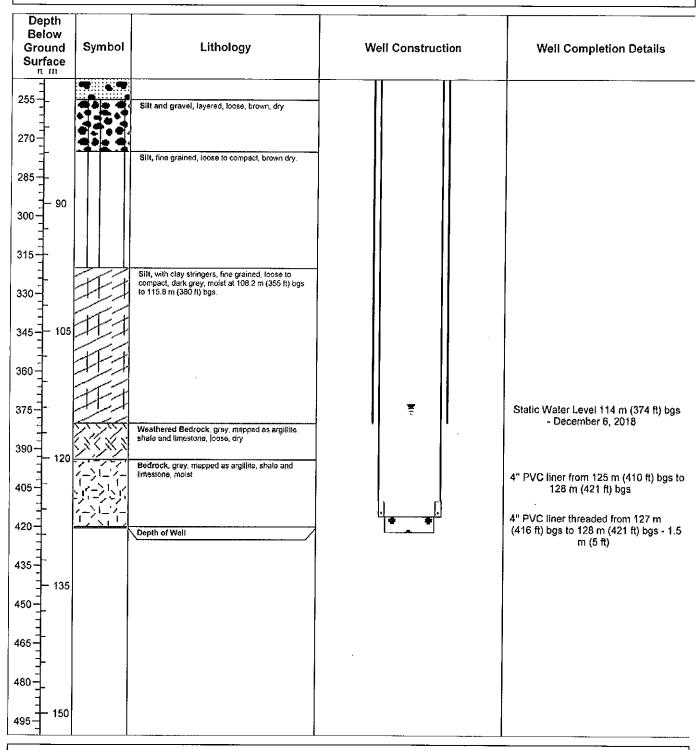
Drilling Contractor: JR Drilling Kamloops

Drilling Method: Dual Air Rotary

Date of Completion: December 3 - 6, 2018

Logged By: RA/BRM

Monitoring Well ID: MW18-11


Project Number: 14-024-21

Client: CSRD

Project: Golden RDF

Location: Golden, BC

Coordinates: 503205.13 m E 5684006.34 m N 11 U

Static Water Level: 114 m (374 ft) December 6, 2018

Ground Elevation: 915 m above sea level (masl)

Total Borehole Depth: 115.8 m (380 ft)

Drawn By: RA

Checked By: BRM

Drilling Contractor: JR Drilling Kamloops

Drilling Method: Dual Air Rotary

Date of Completion: December 3 - 6, 2018

Logged By: RA/BRM

Report 1 - Detailed Well Record

```
Construction Date: 2000-10-25 00:00:00.0
 Well Tag Number: 99638
                                                Driller: Owen's Drilling Ltd.
                                                Well Identification Plate Number:
 Owner: KATS CONTRACTING
                                                Plate Attached By:
                                                Where Plate Attached:
 Address: 532 HIETALA ROAD
                                                PRODUCTION DATA AT TIME OF DRILLING:
Well Yield: 6 (Driller's Estimate) U.S. Gallons per Minute
 Area: GOLDEN
                                                Development Method: Air lifting
 WELL LOCATION:
                                                Pump Test Info Flag: N
Artesian Flow:
 KOOTENAY Land District
 District Lot: Plan: Lot:
Township: 27 Section: 18 Range: 21
                                                Artesian Pressure (ft):
                                                Static Level: 50 feet
 Indian Reserve: Meridian: W5M Block: A
                                                WATER QUALITY:
 Island:
                                                Character:
BCGS Number (NAD 27); 082N036121 Well:
                                                Colour;
                                                Odour:
Well Disinfected: N
 Class of Well: Water supply
Subclass of Well: Domestic
                                                EMS ID:
Orientation of Well: Vertical
                                                Water Chemistry Info Flag: N
Field Chemistry Info Flag:
Status of Well: New
Well Use: Private Domestic
                                                Site Info (SEAM);
Observation Well Number:
Observation Well Status:
                                               Water Utility:
Construction Method:
                                               Water Supply System Name:
Water Supply System Well Name:
Diameter: inches
Casing drive shoe: Y N
Well Depth: 276 feet
Elevation: feet (ASL)
                                                SURFACE SEAL:
                                               Flag: N
Final Casing Stick Up: 6 inches
                                                Material:
Well Cap Type: PLASTIC CAP
Bedrock Depth: 18 feet
                                               Method:
                                               Depth (ft):
Lithology Info Flag: N
                                               Thickness (in):
File Info Flag: N
Sieve Info Flag: N
                                               Liner from
                                                                  To:
                                                                              feet
Screen Info Flag: N
                                               WELL CLOSURE INFORMATION:
                                               Reason For Closure:
Site Info Details:
                                               Method of Closure:
Closure Sealant Material:
Other Info Flag:
Other Info Details:
                                               Closure Backfill Material:
                                               Details of Closure:
Screen from
                        to feet
                                               Type
                                                                        Slot Size
Casing from
                        to feet
                                                Diameter
                                                                        Material
                                                                                                Drive Shoe
                                                                        Steel
                        276
                                                5.88
                                                                        Open hole
GENERAL REMARKS:
 260' OF PVC LINER. BOTTOM 40' PERFORATED. SHOE: 1X6" CARBIDE BOTTON. RECOMMENDED PUMP TYPE: SUB
LITHOLOGY INFORMATION:
         0 to
18 to
From
                   18 Ft.
                              CLAY, GRAVEL, COBBLES
                             BEDROCK, BROKEN

2 Gallons per Minute (U.S./Imperial)
From
                   36 Ft.
         36 to
                  150 Ft.
                                                                            bedrock
From
        150 to
                  257 Ft.
                              2 Gallons per Minute (U.S./Imperial)
                                                                            bedrock
                  276 Ft.
From
                              1 Gallons per Minute (U.S./Imperial)
```

- Return to Main
- Return to Search Options
- · Return to Search Criteria

Information Disclaimer

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

	-		
0	Well	Construction	Report
			roport

☐ Well Closure Report

Stamp company name/address/

Ministry Well ID Plate Number: 426 25
Ministry Well Tag Number: //656 (
Confirmation/alternative specs. attached
Original well construction report attached

Well Location: Address: Street no 2/1 Street name // CLULIN Town	ttached
Mailing address: Town Goldell Prov. S Postal Well Location: Address: Street no. 9 / 1 Street name / 1 aux n Town	obreviations.
Well Location: Address: Street no 2// Street name // aux n Town	
	Code FORIA
or PID: 27463 37/and Description of well location (attach sketch, if nec.):	ectanas
NAD 83: Zone: (see note 2) uTM Northing: m or Latitude (see note 3): 57 / 8 UTM Easting: m Longitude: //6 58. 252	
(see note 2) Wethod of drilling: air rotary cable tool mud rotary auger driving ietting excavating other (specify):	
Orientation of well: Avertical horizontal Ground elevation: 2570 ft (asl) Method (see note 4):	
Class of well (see note 5): Sub-class of well:	
Water supply wells; indicate intended water use: 🗆 private domestic 🗀 water supply system 🗀 irrigation 🖾 commercial or industrial 🗀 other (specify):	
Lithologic description (see notes 7-14) or closure description (see notes 15 and 16) Water-bearing	
From To Relative (ft (bgl)) ft (bgl) Hardness Colour Material Description (Use recommended terms on reverse. List in order of decreasing amount, if applicable) (USgpm) Cobservations (e.g., fractive well sorted, silty wash),	
0 41 m BR CORSE GHOVAL + Sound	Territoria de
41 73 B) BR. Call 18 and 1	BAINBELL
73.82 5 BR. Sint graval + sand	
3) 84 5 gry Fint Sand + clay Blue	
8488 GRY FINE Sund + clay "	
Casing details Screen details	
From To Dia Casing Material / Open Hole Thickness Drive ft (bgl) in Casing Material / Open Hole Thickness Drive ft (bgl) ft (bgl) in Type (see note 18)	Slot Size
9 26 8 57862 261 B 83 73 8 90 inch Rist	
P.'P.	
Surface seal: Type: BLD7g 276 Depth: 15 ft Intake: Screen Open bottom Uncased hole	
Surface seal: Type: B 2 7 7 2 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2	
Backfill: Type: Depth: ft Screen material: Stainless steel Plastic Other (spec	57.
Liner: ☐ PVC ☐ Other (specify): Screen opening: ☐ Continuous slot ☐ Stotted ☐ Perforated	pipe
Diameter: in Thickness: in Screen bottom: Pail Plug Plate Other (specify): From: ft (bgt) To: ft (bgt) Perforated: From: ft (bgt) To: ft (bgt) Filter pack: From: ft To: ft Thickness:	in
From: ft (bgl) To: ft (bgl) Perforated: From: ft (bgl) To: ft (bgl) Filter pack: From: it (bgl) To: it (bgl) To: ft (bgl)	
Developed by: Final well completion data:	The second
Air lifting Surging Serving Remains Remains Total depth drilled: 8 9 ft Finished well depth:	
an inting in solding in running in banning	ft (bgl) USgpm
Other (specify): Total duration: hrs Final stick up: 33 in Depth to bedrock:	
☐ Other (specify): Total duration: hrs Final stick up: 3 in Depth to bedrock: SWL:	ft
Other (specify): Total duration: hrs	
Other (specify): Total duration: hrs	ft
Other (specify): Total duration: hrs Notes: SWL: If (btoc) Estimated well yield: Artesian flow: USgpm, or Artesian pressure: Type of well cap: Well disinfecte Where well ID plate is attached: Well closure information:	ft
Other (specify): Total duration: hrs Notes: SWL: If (btoc) Estimated well yield: Artesian flow: USgpm, or Artesian pressure: Type of well cap: Well disinfecte Where well ID plate is attached: Well closure information: Reason for closure: Reason	ft
Other (specify): Total duration: hrs Notes: SWL:	ft
Other (specify): Total duration: hrs Notes: SWL:	ft
Other (specify): Total duration: hrs Notes: Total duration: hrs Notes: Well yield estimated by:	ft
Other (specify):	ft: Yes No
□ Other (specify): Total duration: hrs Notes: Well yield estimated by: □ Pumping □ All lifting □ Bailing □ Other (specify): Type of well cap: Well disinfecte Rate: □ SUSgpm Duration: hrs SWL before test: □ It (btoc) Pumping water level: ft (btoc) Obvious water quality characteristics: Method of closure: Method of closure: Method of closure: Poured □ Pumped Sealant material: Details of closure (see note 17): Well driller (print clearly): Name (first, last) (see note 19): □ All print of particular in Depth to bedrock: SWL: □ It (btoc) Estimated well yield: Artesian flow: USgpm, or Artesian pressure: Type of well cap: Well disinfecte Well closure information: Reason for closure: □ Poured □ Pumped Sealant material: Details of closure (see note 17):	ft: Yes No

Landfill Gas Probe GP20-01D

PROJECT NUMBER 19-2850.03 PROJECT NAME Golden CSRD Landfill **CLIENT** CSRD

ADDRESS 350 Golden Donald Upper Road, Golden, BC

DRILLING DATE July 21, 2020 CONTRACTOR On The Mark Locates Ltd. EQUIPMENT MODEL Truck Mounted Auger Rig CHECKED BY LMM BORING METHOD ODEX

FIELD SCREENING METHOD LOGGED BY KT

							I			_		
Depth (m)	USCS Classification	Soil Description	Graphic Log		Sample ID	Sample Type	PID (ppmv)	Analysed	% Recovery	Water Level	Well Diagra	
- - - - 1	SC/GC	Brown, w>PL, CLAYEY GRAVEL, some to sandy, inferred cobbles and boulders, cohesive, hard. (TILL-LIKE)		SA1		SS		Z				ntonite
- - - 2				SA2		SS		N				tings ntonite al
- - 3 -				SA3		SS		N			Cut	tings
- - - 4 -												
_ _ 5	CL	Light brown, w <pl, and="" clay,="" cohesive,="" gravel="" hard.<="" sand,="" silty="" some="" td="" very=""><td></td><td>SA4</td><td></td><td>SS</td><td></td><td>Ν</td><td></td><td></td><td>Ber Sea</td><td>ntonite al</td></pl,>		SA4		SS		Ν			Ber Sea	ntonite al
- - - - - - - - - 7		WEATHERED BEDROCK.										
- 8 - 9 - 10		BEDROCK.									Pipe	nm Ited PVC e and er Sand
- - - 11 - - - - 12											-Cut	tings
- - - - 13		End of Soil Vapour Probe. is bore log is intended for environmental not geo										Page 1 of '

Landfill Gas Probe GP20-01S

PROJECT NUMBER 19-2850.03 PROJECT NAME Golden CSRD Landfill **CLIENT** CSRD

ADDRESS 350 Golden Donald Upper Road, Golden, BC

DRILLING DATE July 22, 2020 CONTRACTOR On The Mark Locates Ltd. EQUIPMENT MODEL Truck Mounted Auger Rig CHECKED BY LMM

FIELD SCREENING METHOD LOGGED BY KT

BORING METHOD ODEX

			Ī		ı	1				I
Depth (m)	USCS Classification	Soil Description	Graphic Log	Sample ID	Sample Type	PID (ppmv)	Analysed	% Recovery	Water Level	Well Diagram
- 0.5 - 1 - 1.5 - 2.5 - 3.5 - 3.5	SC/GC	Brown, w>PL, CLAYEY GRAVEL, some to sandy, inferred cobbles and boulders, cohesive, hard. (TILL-LIKE)								Bentonite Bentonite Bentonite
4.5 	CL	Light Brown, w <pl, and="" bedrock.<="" clay,="" cohesive,="" gravel="" hard.="" sand,="" silty="" some="" td="" very="" weathered=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25mm Slotted PVC Pipe and Filter Sand</td></pl,>								25mm Slotted PVC Pipe and Filter Sand
- 7.5 - 8 - 8.5		End of Soil Vapour Probe. is bore log is intended for environmental not geo								Page 1 of

Landfill Gas Probe GP20-02D

PROJECT NUMBER 19-2850.03 PROJECT NAME Golden CSRD Landfill **CLIENT** CSRD

ADDRESS 350 Golden Donald Upper Road, Golden, BC

DRILLING DATE July 22, 2020 CONTRACTOR On The Mark Locates Ltd. EQUIPMENT MODEL Truck Mounted Auger Rig CHECKED BY LMM

FIELD SCREENING METHOD LOGGED BY KT

BORING METHOD ODEX

				I			ı				1	
Depth (m)	USCS Classification	Soil Description	Graphic Log		Sample ID	Sample Type	PID (ppmv)	Analysed	% Recovery	Water Level	w	e ll Diagram
	√OL _/ GC	Dark brown, W <pl, clayey="" organic="" rootlets.<="" silt,="" td=""><td>9, 2</td><td>SA1</td><td></td><td>SS</td><td></td><td>N</td><td></td><td></td><td>: ^ : .</td><td>- Stick Up</td></pl,>	9, 2	SA1		SS		N			: ^ : .	- Stick Up
0.5		Brown, w <pl, and="" boulders,="" clayey="" cobbles="" cohesive,="" gravel,="" hard.<="" inferred="" sand,="" some="" td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		-								
1		grading to										
1.5		Brown, w~PL, gravelly SILTY CLAY, some sand, inferred cobbles and boulders, cohesive.		SA2		SS		N				
_ 2												
2.5												
3			8,00	SA3		SS		N				Bentonite
3.5												Seal
_ _ 4		WEATHERED REDDOOK	, X									
4.5		WEATHERED BEDROCK.										
_ 5												
5.5												
_ _ _ 6												
- - - 6.5												
7												
7.5												
- - - - 8												25mm Slotted PVC
												Pipe and Filter Sand
8.5												
9												
9.5		BEDROCK.									90,00900	 No⊊⁄
10		BEUNOUK.									######################################	င်္ကြီး င်္ကြီး င်္ကြီး Cuttings
_ _ 10.\$											0.0030000 0.00300000 0.0030000000000000	0/03 609 800
		End of Soil Vapour Probe.	toobnica									Page 1 of

Landfill Gas Probe GP20-02S

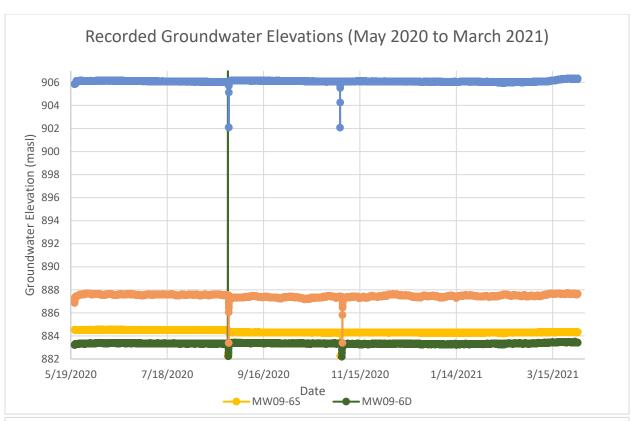
PROJECT NUMBER 19-2850.03 PROJECT NAME Golden CSRD Landfill

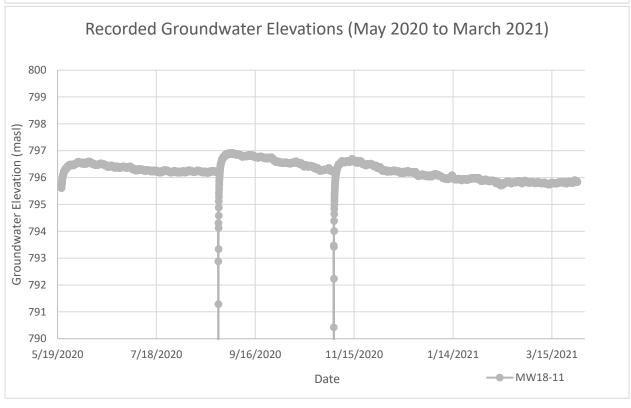
CLIENT CSRD

ADDRESS 350 Golden Donald Upper Road, Golden, BC

DRILLING DATE July 22, 2020

CONTRACTOR On The Mark Locates Ltd. EQUIPMENT MODEL Truck Mounted Auger Rig CHECKED BY LMM


BORING METHOD ODEX


FIELD SCREENING METHOD

LOGGED BY KT

					1	1				
Depth (m)	USCS Classification	Soil Description	Graphic Log	Sample ID	Sample Type	PID (ppmv)	Analysed	% Recovery	Water Level	Well Diagram
	√OL ∠	Dark brown, W <pl, clayey="" organic="" silt,<="" td=""><td>77</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Stick Up</td></pl,>	77							Stick Up
_ 0.5	GC	rootlets. Brown, w <pl, and="" boulders,="" clayey="" cobbles="" cohesive,="" gravel,="" hard.<="" inferred="" sand,="" some="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>								
		grading to	1.							
_ 1 _ _		Brown, w~PL, gravelly SILTY CLAY, some sand, inferred cobbles and boulders, cohesive.								
_ _ 1.5			25							Bentonite
-										Seal
2 2										
_ _ _ 2.5			2.2							
_										
_ _ _ 3			2000							
-			25							
_ _ 3.5										
-			1/8							
- - - 4										
-		WEATHERED BEDROCK.								
- - 4.5										
-										25mm
- - - 5										Slotted PVC
-										Filter Sand
- - - 5.5										
- 0.0										
_ _ 6										
- - - 6.5										
- 0.5										
_		End of Soil Vapour Probe.								
_ 7 _ _										
_										
— 7.5 - -										
D:		is bore log is intended for environmental not geo	l 	l						Page 1 of

APPENDIX C 2020 GROUNDWATER LEVELS AND WATER QUALITY DATA

							ı								ı											
			Sam	npling Location	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4	DMW-4	DMW-4	DMW20-01	DMW20-01	DMW20-01		DUP A	DUP A	DUP A	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S
				Date Sampled	2020-03-24	2020-05-20	2020-08-25	2020-11-03	2020-03-24	2020-05-20	2020-08-25		2020-08-24	2020-11-03			2020-08-24	2020-11-03	2020-03-24	2020-05-20	2020-08-24		2020-03-24		2020-08-24	
				Lab Sample ID Sample Type	0032091-06	0051806-07	0082459-07	20K0317-07	0032091-07	0051806-08	0082459-08	0051806-06	0082459-11	20K0317-10	0032091-09	0051806-10	0082459-10	20K0317-09	0032091-08	0051806-09	0082459-09	20K0317-08	0032091-01	0051806-01	0082459-01	. 20K0317-0:
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW		•			•					•			•	•	•			•		•		-
Field Parameters					Ī																					
Depth to Water	m				-	-	-	-	-	-	-	-	-	-	-	-	-	-	33.71	33.765	34.788	33.862	32.495	32.531	32.535	32.584
Dissolved Oxygen	mg/L				1.86	2	3.29	3.57	3.7	5.15	2.83	10.06	8.87	9.45	-	-	-	-	1.84	3.92	3.6	3.21	1.45	2.26	2.07	3.68
Electrical Conductivity	μS/cm				881	1104	1331	1120	880	1194	1374	538	548	553	-	-	-	-	3000	3960	3911	3871	2955	3944	3864	3837
Elevation of Piezometric Surface	m				-	-	-	-	-	-	•	-	-	-	=	-	-	-	884.565	884.51	883.487	884.413	884.562	884.526	884.522	884.473
Oxidation reduction potential	mV				42.3	110.6	127.1	234	28.9	17.4	101	225.7	177.6	259.3	-	-	-	-	104.9	198.2	149.8	291.7	99	216.9	94	247.7
рН	pH Units				7.58	7.04	7.48	7.02	7.07	7.13	7.36	7.51	7.82	7.6	-	-	-	-	6.93	6.76	6.81	6.72	6.93	6.68	6.76	6.79
Temperature	°C				4.9	9	8.7	6.9	7.8	10.8	10.5	9.8	15.4	8.2	-	-	-	-	9.9	10.9	11	10.3	11.5	12.1	12.1	11.7
Anions																										
Chloride	mg/L	1	250	250	9.49	8.79	9.13	8.98	50.5	40.5	42.2	34.4	38.8	34.7	378	399	377	365	399	392	377	366	380	398	379	371
Fluoride	mg/L	1.5	230	1.5	0.72	0.76	0.91	0.47	1.25	1.47	1.35	0.16	0.12	<0.1	0.18	0.15	<0.1	<0.1	0.18	0.15	<0.1	<0.1	0.17	0.16	<0.1	<0.1
Nitrate (as N)	mg/L	10		10	0.334	0.666	0.112	0.489	<0.01	<0.01	<0.01	0.294	0.429	0.403	30.6	39.7	35	34.3	32.7	45	35.6	34.6	30.6	43.4	33.9	34.2
Nitrite (as N)	mg/L	1		1	<0.01	<0.01	<0.01	<0.01	<0.01	0.039	<0.01	0.05	<0.01	<0.01	<0.01	0.381	<0.01	<0.01	0.012	0.455	<0.01	<0.01	<0.01	0.48	<0.01	<0.01
Sulfate	mg/L		500	500	232	213	251	224	110	127	128	24.6	25.1	25	690	624	633	643	690	615	634	642	688	611	637	636
		-		-			-		-					-	-			-					-			-
Dissolved Metals		<u> </u>	I			T	T		I:					l	1	T		l		T	l	1	l		I	Т.
Aluminum, dissolved	mg/L			9.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.481	<0.005
Antimony, dissolved	mg/L	0.006		0.006	<0.0002	<0.0002	<0.0002	0.00025	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00036	0.00029	0.00034	0.00029	<0.0002	<0.0002	0.00021	0.00023
Arsenic, dissolved	mg/L	0.01		0.01	0.00121	0.00104	0.00129	0.00117	0.047	0.0533	0.0525	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00073	<0.0005	0.00051	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00073	<0.0005
Barium, dissolved	mg/L	2		1	0.0155	0.0173	0.0158	0.0159	0.0219	0.0245	0.024	0.11	0.11	0.119	0.0458	0.0535	0.0617	0.0466	0.0503	0.0532	0.049	0.0457	0.0456	0.0551	0.0618	0.0509
Beryllium, dissolved	mg/L			0.008	<0.0001	<0.0001	<0.0001	0.00022	0.00013	0.00012	0.00012	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth, dissolved	mg/L	5		5	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001 1.74
Boron, dissolved	mg/L mg/L	0.005		0.005	0.394 0.00001	0.289 <0.00001	0.448	0.352 <0.00001	0.185 <0.00001	0.19 <0.00001	0.145 <0.00001	0.0617 <0.00001	0.0505 <0.00001	0.0534 <0.00001	1.81 <0.00001	1.92 <0.00001	1.97 <0.00001	1.75 <0.00001	1.63 0.000012	1.73 0.000038	1.97 0.000012	1.75 <0.00001	1.55 <0.00001	1.76 <0.00001	1.87 <0.00001	<0.00001
Cadmium, dissolved Calcium, dissolved	mg/L	0.003		0.003	73.5	74.6	69.2	81.3	70.7	72.7	66.7	48.5	48.3	55.7	158	158	164	171	155	158	154	170	153	161	159	167
Chromium, dissolved	mg/L	0.05			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00094	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00091	<0.0005
Cobalt, dissolved	mg/L	0.03		0.02*	0.00069	0.00093	0.00068	0.00076	<0.0003	0.00029	<0.0003	<0.0003	0.00011	0.00015	0.00157	0.0016	0.0019	0.00165	0.0018	0.00179	0.00189	0.00178	0.00154	0.00157	0.00178	0.0017
Copper, dissolved	mg/L	2	1	1.5	0.00384	0.0212	0.00484	0.0109	<0.0004	<0.0004	<0.0004	<0.0004	0.00189	0.00052	0.00243	0.00242	0.00272	0.00225	0.00261	0.00298	0.0024	0.0022	0.0022	0.00247	0.00279	0.00262
Iron, dissolved	mg/L		0.3	6.5	<0.01	<0.01	0.014	<0.01	0.394	0.669	0.776	0.103	<0.01	<0.01	<0.01	<0.01	0.767	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	0.636	<0.01
Lead, dissolved	mg/L	0.005		0.01	<0.0002	0.00023	0.00047	0.00021	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00086	0.00024	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00087	<0.0002
Lithium, dissolved	mg/L			0.008	0.0532	0.0397	0.0529	0.045	0.0254	0.0248	0.0245	0.00137	0.00123	0.0017	0.04	0.0426	0.0415	0.0401	0.04	0.0428	0.0416	0.0404	0.0401	0.0449	0.0405	0.0404
Magnesium, dissolved	mg/L				91.2	88	100	95.8	102	109	114	28.1	30.3	30.3	258	256	274	269	257	249	271	263	255	254	268	268
Manganese, dissolved	mg/L	0.12	0.02	1.5	0.00377	0.00261	0.00352	0.00276	0.00448	0.0153	0.00574	0.0194	0.0087	0.0101	0.0789	0.0693	0.11	0.0961	0.113	0.108	0.109	0.111	0.0789	0.0685	0.103	0.0968
Mercury, dissolved	mg/L	0.001		0.001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Molybdenum, dissolved	mg/L			0.25	0.00058	0.00087	0.00053	0.00073	0.00035	0.00027	0.00025	0.00073	0.00077	0.00075	0.00036	0.00028	0.00023	0.00032	0.00034	0.00036	0.00032	0.0003	0.00032	0.00033	0.00018	0.00034
Nickel, dissolved	mg/L			0.08	0.00169	0.0014	0.00124	0.00154	0.00197	0.00182	0.00181	<0.0004	0.00052	<0.0004	0.0117	0.0114	0.0129	0.0125	0.0121	0.0121	0.0131	0.0129	0.0111	0.0114	0.0125	0.0125
Phosphorus, dissolved	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Potassium, dissolved	mg/L				8.87	6.87	8.94	8.64	4.79	4.82	4.71	1.01	1.09	1.23	162	177	165	169	166	173	169	168	159	175	161	168
Selenium, dissolved	mg/L	0.05		0.01	<0.0005	0.00058	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silicon, dissolved	mg/L				7.2	7.9	6.5	6.5	8.2	8.8	7.5	4	3.1	3.5	12.5	14.1	13.2	11.6	12.2	13.5	12	11.6	12	13.8	12.5	11.8
Silver, dissolved	mg/L		_	0.02	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Sodium, dissolved	mg/L		200	200	48.3	33.5	50.1	41.8	28	25.3	27.4	17.9	20.9	21.1	271	265	282	287	278	268	294	286	266	263	275	286
Strontium, dissolved	mg/L	7		2.5	4.95	3.96	5.33	4.76	1.73	1.75	1.82	0.329	0.343	0.342	1.58	1.67	1.73	1.57	1.54	1.6	1.68	1.57	1.52	1.69	1.67	1.59
Sulfur, dissolved	mg/L				85.7	76.8	93.6	82.7	43	48.1	51.3	8.1	10.5	8.6	253	234	256	234	252	224	253	227	246	231	248	234
Tellurium, dissolved	mg/L				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Thailium, dissolved	mg/L				<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	0.000055	0.000035	0.00006	0.000049	0.000055	0.000041	0.000063	0.000055	0.000055	0.000037	0.000057	0.000054
Thorium, dissolved	mg/L			2.5	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00035	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00032	<0.0001
Tin, dissolved	mg/L			2.5	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00021	0.00021	<0.0002	0.00063	0.00039	0.00095	<0.0002	<0.0002	0.00021	0.00023	<0.0002
Titanium, dissolved	mg/L			0.003	<0.005	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	<0.005	<0.005 <0.001	<0.005	<0.005 <0.001	<0.005	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	0.0304	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	<0.005	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	0.0318	<0.005 <0.001
Tungsten, dissolved Uranium, dissolved	mg/L mg/L	0.02		0.003	<0.001 0.000917	0.00155	0.000947	0.00146	<0.001 0.000086	0.000161	<0.001 0.000101	0.000648	<0.001 0.000669	0.000721	0.00721	0.00691	<0.001 0.00698	0.00757	0.00728	0.00718	<0.001 0.00723	0.00759	0.00725	0.00737	<0.001 0.00687	0.00755
·	mg/L	0.02		0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00721	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00759	<0.001	<0.001	<0.001	<0.00755
Vanadium, dissolved Zinc, dissolved	mg/L		5	3	0.0282	0.0262	0.001	0.0245	<0.001	0.0065	<0.001	<0.001	0.0102	<0.001	<0.001	<0.001	<0.001	<0.001	0.0062	0.0089	0.0049	<0.001	<0.001	<0.001	<0.001	<0.001
Zirconium, dissolved	mg/L		,	-	0.00057	0.0262	0.00064	0.00245	0.00173	0.0065	0.00143	<0.004	<0.0001	<0.004	0.00016	0.00014	0.00052	0.00015	0.0062	0.0089	0.0049	0.0004	0.00015	0.00016	0.00051	0.00016
En contain, dissolved	I IIIg/ L	1	I		0.00037	0.00047	0.00004	0.00032	0.001/3	0.00133	0.00143	\U.UUU1	~U.UUU1	\U.UUU1	0.00010	0.00014	0.00032	0.00013	0.00013	0.00010	0.00021	0.0001/	0.00013	0.00010	0.00031	1 0.00010

General Parameters

			Com		DMM/ 1h	DMM/ 1h	DMM/ 1h	DMM/ 1h		DAMA/ 4	DAMA/ 4	DN414/20 01	DN414/20 01	DN4)4/20 01	DUDA	DUDA	I DUD A	DUDA	1414/00 CD	1 MANAGO CD	L MANAGO CD	L MANAGO CD	NAVA/00 CC	1 MM/00 CC	L MANAGO CC	
			San	npling Location	DMW-1b	DMW-1b	DMW-1b 2020-08-25	DMW-1b	DMW-4	DMW-4	DMW-4	DMW20-01			DUP A	DUP A	DUP A	DUP A	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	
				Date Sampled	2020-03-24			2020-11-03	2020-03-24	2020-05-20	2020-08-25	2020-05-20	2020-08-24	2020-11-03	2020-03-24	2020-05-20	2020-08-24	2020-11-03	2020-03-24	2020-05-20	2020-08-24	2020-11-03	2020-03-24	2020-05-20	2020-08-24	
				Lab Sample ID Sample Type	0032091-06	0051806-07	0082459-07	20K0317-07	0032091-07	0051806-08	0082459-08	0051806-06	0082459-11	20K0317-10	0032091-09	0051806-10	0082459-10	20K0317-09	0032091-08	0051806-09	0082459-09	20K0317-08	0032091-01	0051806-01	0082459-01	20K0317-01
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW						<u> </u>							<u> </u>				<u> </u>	1				
					•	1		<u> </u>		Т	<u> </u>		1	1	<u> </u>		1	1	1	1	1	Г	ı	T		
Alkalinity, Bicarbonate (as CaCO3)	mg/L				443	431	449	429	500	516	465	233	220	195	965	952	948	954	958	934	947	946	975	944	949	942
Alkalinity, Carbonate (as CaCO3)	mg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Hydroxide (as CaCO3)	mg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Phenolphthalein (as CaCO3)	mg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Total (as CaCO3)	mg/L			+	443	431	449	429	500	516	465	233	220	195	965	952	948	954	958	934	947	946	975	944	949	942
Ammonia, Total (as N)	mg/L				0.721	0.161	0.861	0.481	0.215	0.206	0.223	<0.05	<0.05	<0.05	1.1	1.44	1.77	1.64	1.24	1.53	1.85	1.9	1.32	1.53	1.71	1.61
Bicarbonate (HCO3)	mg/L				540	525	548	523	610	629	567	284	269	238	1180	1160	1160	1160	1170	1140	1160	1150	1190	1150	1160	1150
Carbonate (CO3)	mg/L				<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Electrical Conductivity	μS/cm				1090	1060	1230	1180	1110	1150	1220	530	576	568	3850	3940	4010	4000	3820	3960	4050	4050	3990	3910	3940	3970
Hardness, Total (as CaCO3)	mg/L			_	560	549	586	598	596	630	634	237	246	264	1460	1450	1540	1540	1450	1420	1500	1510	1430	1450	1500	1520
Hydroxide (OH)	mg/L				<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34
Pri Total dissolved solids	pH Units		500		7.9	8.03	7.95	8.08	7.9	8.02	7.98	8.14	8.22 308	8.23 302	7.63 2660	7.8 2550	7.79 2630	7.81	7.65	7.71	7.77	7.89 2460	7.69	7.73 2590	7.71 2730	7.89 2550
Total dissolved solids	mg/L NTU		500	+	784 0.12	727 0.14	0.16	758 0.31	726 4.84	712 4.9	739 8.59	293 5.04	0.74	1.75	35.7	2550	51.3	2520 184	2730 25.2	2500 46.5	2720 5.82	13.2	2630 37.9	19	60.4	170
Turbidity	INTU			1	0.12	0.14	0.10	U.31	1 4.04	1 4.3	0.39	3.04	U.74	1./5	33./	24.8	1 31.3	104	25.2	40.5	J 3.02	15.2	37.9	13	00.4	1 1/0
Volatile Organic Compounds (VOC)																										
1,1-Dichloroethane	μg/L			30	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-Dichloroethylene	μg/L	14		14	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	μg/L			8000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	μg/L			3	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	μg/L			0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dibromoethane	μg/L			0.5	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	μg/L	200	3	200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	μg/L	5		5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloropropane	μg/L			4.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	μg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichloropropene (cis + trans)	μg/L			1.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	μg/L	5	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	μg/L	5		5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	μg/L			100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	μg/L			100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	2		2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	μg/L			80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	μg/L				<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Chloroform	μg/L	100		100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
cis-1,2-Dichloroethylene	μg/L			8	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L			100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	μg/L			F0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichloromethane	μg/L	50	1.0	50	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Ethylbenzene Methyl tert-butyl ether	μg/L	140	1.6	140	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1
· · · · · · · · · · · · · · · · · · ·	μg/L		15	95 800	<1	<1	<1	<1	<1		<1	<1	<1	<1 <1	<1	<1	<1	<1		<1 <1		<1		<1	<1	<1
Styrene Tetrachloroethylene	μg/L μg/L	10		30	<1 <1	<1	<1 <1	<1	<1 <1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1 <1
Tetrachloroethylene Toluene	μg/L μg/L	60	24	60	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	μg/L μg/L	00	24	80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	μg/L μg/L			5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	μg/L			1000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl chloride	μg/L	2		2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes (total)	μg/L	90	20	90	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
		J		, ,,			-	· ·~					· ·~					. ~	· ·-					<u></u>		
Polycyclic Aromatic Hydrocarbons (PAH)		-		1					1	1	1		I	1	1	1	1			ı	1	1	ı	T		
1-Methylnaphthalene	μg/L			5.5	-	<0.1	=	-	-	<0.1	=	<0.1	-	-	=	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-
2-Chloronaphthalene	μg/L			300	-	<0.1	=	-	-	<0.1	=	<0.1	-	-	=	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-
2-Methylnaphthalene	μg/L			15	-	<0.1	-	-	-	<0.1	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	 -
Acenaphthene	μg/L			250	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Acenaphthylene	μg/L			-	-	<0.2	-	-	-	<0.2	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-
Acridine	μg/L				-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-

			Sa	mpling Location	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4	DMW-4	DMW-4	DMW20-01	DMW20-01	DMW20-01	DUP A	DUP A	DUP A	DUP A	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S
				Date Sampled		2020-05-20	2020-08-25	1	2020-03-24	2020-05-20	2020-08-25		2020-08-24		2020-03-24		1	2020-11-03								2020-11-03
				Lab Sample ID			0082459-07	20K0317-07		0051806-08	0082459-08				0032091-09		0082459-10					20K0317-08				20K0317-01
				Sample Type																						
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW																						
	1	1			-	1			1	1	1				<u> </u>				I			<u> </u>	1			
Anthracene	μg/L			1000	-	<0.01	-	-	-	<0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-
Benz(a)anthracene	μg/L			0.07	-	<0.01	-	-	-	<0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-
Benzo(a)pyrene	μg/L	0.04		0.01	-	<0.01	-	-	-	<0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-
Benzo(b+j)fluoranthene	μg/L			0.07	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Benzo(g,h,i)perylene	μg/L				-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Benzo(k)fluoranthene	μg/L				-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Chrysene	μg/L			7	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Dibenz(a,h)anthracene	μg/L			0.01	-	<0.01	-	-	-	<0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-
Fluoranthene	μg/L			150	-	<0.03	-	-	-	<0.03	-	<0.03	-	-	-	<0.03	-	-	-	<0.03	-	-	-	<0.03	-	-
Fluorene	μg/L			150	-	<0.05	=	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Indeno(1,2,3-cd)pyrene	μg/L				-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
Naphthalene	μg/L			80	-	<0.2	-	-	-	<0.2	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-
Phenanthrene	μg/L				-	<0.1	-	-	-	<0.1	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-
Pyrene	μg/L			100	-	<0.02	-	-	-	<0.02	-	<0.02	-	-	-	<0.02	-	-	-	<0.02	-	-	-	<0.02	-	-
Quinoline	μg/L			0.05	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	=	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-
BCMOE Aggregate Hydrocarbons																										
EPHw10-19	μg/L			5000	-	<250	-	-	-	<250	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	<250	-	-
EPHw19-32	μg/L				-	<250	-	-	-	<250	-	<250	-	-	=	<250	-	-	-	<250	-	-	-	<250	-	-
HEPHW	μg/L				-	<250	-	-	-	<250	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	<250	-	-
LEPHw	μg/L			15000	-	<250	-	-	-	<250	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	<250	-	-
VHw (6-10)	μg/L	1			-	<100	<100	-	-	<100	<100	<100	<100	-	-	<100	<100	-	-	<100	<100	-	-	<100	<100	-
VPHw	μg/L				-	<100	<100	-	-	<100	<100	<100	<100	-	-	<100	<100	-	-	<100	<100	-	-	<100	<100	-

						1					1			,	T		ı			ı	ı	
			Sam	pling Location	MW10-8	MW10-8	MW10-8	MW10-8	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #6	Town Well #6
				Date Sampled	2020-03-24	2020-05-20	2020-08-25	2020-11-03	2020-03-25	2020-05-20	2020-08-25	2020-11-03	2020-03-24	2020-05-20	2020-08-24	2020-11-03	2020-03-25	2020-05-20	2020-08-24	2020-11-03	2020-08-24	2020-11-03
				Lab Sample ID	0032091-02	0051806-02	0082459-02	20K0317-02	0032091-03	0051806-03	0082459-03	20K0317-03	0032091-04	0051806-04	0082459-04	20K0317-04	0032091-05	0051806-05	0082459-05	20K0317-05	0082459-06	20K0317-06
				Sample Type														<u> </u>				
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW	1																	
Field Parameters					1																	
Depth to Water	m				13.825	13.757	13.872	13.948	27.905	27.975	28.045	28.059	113.047	112.33	112.212	112.278	-	-	-	-	-	-
Dissolved Oxygen	mg/L				5.92	10.89	9.53	7.45	1.81	4.64	6.7	2.54	2.06	2.63	2.88	2.51	4.4	4.56	4.27	5.81	4.68	2.79
Electrical Conductivity	μS/cm				2177	2635	2739	2794	2195	2446	2637	3174	1165	1436	1556	1533	781	1007	996	996	892	895
Elevation of Piezometric Surface	m				905.773	905.841	905.726	905.65	886.932	886.862	886.792	886.778	795.479	796.196	796.314	796.248	-	-	-	-	-	-
Oxidation reduction potential	mV				-61.6	171.9	168.3	244.1	80.1	164.9	147.9	277.1	-74.3	-89.4	-20.3	106.3	96.2	264.8	179.8	277.4	193.2	237
рН	pH Units				7.5	7.28	7.34	7.01	7.18	7.01	7.11	6.96	7.76	7.17	7.26	7.06	7.45	6.96	7.13	6.97	6.85	6.88
Temperature	°C				6.8	8.8	8.5	7.04	9.7	13.8	13.9	12.9	9.6	9.8	10.4	8.4	8.3	9.4	10.9	8.7	10.4	9
	•																					
Anions						1	Ī	<u> </u>		1	1			1	ı							
Chloride	mg/L		250	250	629	555	597	558	356	342	350	376	113	60.6	71.4	84.1	99	96.5	94	92.5	60.4	60.2
Fluoride	mg/L	1.5		1.5	0.18	0.27	0.2	<0.1	<0.1	0.31	0.14	<0.1	0.77	0.96	0.74	0.49	<0.1	<0.1	0.11	<0.1	<0.1	<0.1
Nitrate (as N)	mg/L	10		10	0.858	1.19	1.01	1.08	40	21.3	24.4	67.9	<0.01	0.022	<0.01	<0.01	1.55	1.5	1.46	1.5	1.26	1.03
Nitrite (as N)	mg/L	1		1	<0.01	0.478	<0.01	<0.01	<0.01	0.388	<0.01	<0.01	<0.01	0.061	<0.01	<0.01	<0.01	0.122	<0.01	<0.01	<0.01	0.012
Sulfate	mg/L		500	500	50.8	44.9	51.4	49.7	71.4	71.1	68.2	78.9	32	116	88.3	105	42.1	43	42.1	40.7	34.2	37.9
Dissolved Metals																						
Aluminum, dissolved	mg/L			9.5	<0.005	<0.005	<0.005	<0.005	<0.005	0.0102	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Antimony, dissolved	mg/L	0.006		0.006	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00021	0.0002	0.00218	<0.0002	0.00139	0.00048	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Arsenic, dissolved	mg/L	0.01		0.01	0.00383	0.00439	0.00518	0.00432	0.00104	0.00107	0.00133	0.0014	0.00599	0.0358	0.011	0.0208	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Barium, dissolved	mg/L	2		1	0.178	0.2	0.196	0.2	0.303	0.277	0.311	0.353	0.0154	0.0338	0.0082	0.0266	0.216	0.218	0.217	0.224	0.191	0.196
Beryllium, dissolved	mg/L			0.008	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00031
Bismuth, dissolved	mg/L				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Boron, dissolved	mg/L	5		5	0.228	0.256	<0.05	<0.05	0.43	0.223	0.401	0.708	0.284	0.325	0.262	0.261	0.0912	0.104	<0.05	<0.05	<0.05	<0.05
Cadmium, dissolved	mg/L	0.005		0.005	0.000011	<0.00001	<0.00001	0.000012	0.000028	0.00002	0.000023	0.000039	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.000011
Calcium, dissolved	mg/L				84	94.2	86.2	102	99	72.7	94.7	122	36.1	59.2	40.3	59.3	93.9	92.2	87.4	104	98.4	116
Chromium, dissolved	mg/L	0.05			0.00059	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00059	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Cobalt, dissolved	mg/L			0.02*	0.0003	<0.0001	<0.0001	<0.0001	0.00473	0.00468	0.00523	0.005	0.00016	0.00048	0.00026	0.00015	<0.0001	<0.0001	<0.0001	<0.0001	0.00021	0.00028
Copper, dissolved	mg/L	2	1	1.5	0.00164	0.00126	0.00119	0.00125	0.00155	0.0011	0.00121	0.00923	<0.0004	<0.0004	<0.0004	<0.0004	0.00216	0.0127	0.00191	0.00301	<0.0004	0.0141
Iron, dissolved	mg/L		0.3	6.5	<0.01	<0.01	<0.01	<0.01	<0.01	0.049	<0.01	<0.01	0.052	2.28	0.151	0.64	<0.01	<0.01	<0.01	<0.01	0.137	0.119
Lead, dissolved	mg/L	0.005		0.01	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00123	<0.0002	0.00021	<0.0002	<0.0002
Lithium, dissolved	mg/L			0.008	0.0185	0.0199	0.0193	0.0202	0.0224	0.015	0.021	0.0249	0.0271	0.0229	0.0234	0.0245	0.00242	0.00193	0.00171	0.00241	0.00133	0.00191
Magnesium, dissolved	mg/L				103	105	118	124	195	149	202	204	143	107	127	130	43.6	40.2	42.8	44	35.5	36
Manganese, dissolved	mg/L	0.12	0.02	1.5	0.00914	0.00098	0.0009	0.00037	0.174	0.149	0.167	0.198	0.0605	0.0301	0.0309	0.0286	<0.0002	<0.0002	<0.0002	<0.0002	0.0287	0.043
Mercury, dissolved	mg/L	0.001		0.001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Molybdenum, dissolved	mg/L			0.25	0.00131	0.00069	0.00063	0.00043	0.00108	0.00076	0.00111	0.00109	0.00193	0.00061	0.00212	0.00098	0.00018	0.00018	0.00018	0.00021	0.00102	0.00116
Nickel, dissolved	mg/L			0.08	0.00105	0.00089	0.00095	0.00136	0.0401	0.0338	0.0434	0.0447	0.0103	0.00474	0.0068	0.00745	<0.0004	<0.0004	<0.0004	<0.0004	0.0008	0.00154
Phosphorus, dissolved	mg/L				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Potassium, dissolved	mg/L		-		5.83	5.77	5.67	6.26	28.9	16.4	27.7	45.4	4.81	7.86	6.46	6.82	1.97	1.87	1.82	2.14	1.18	1.34
Selenium, dissolved	mg/L	0.05		0.01	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Silicon, dissolved	mg/L			0.00	8.9	10.8	9.1	9.1	10.4	7.3	9.7	10.5	4.3	4.7	3.2	3.8	5.4	5.6	4.5	5.2	4.6	5.1
Silver, dissolved	mg/L		200	0.02	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Sodium, dissolved	mg/L	7	200	200	303	296	324	334	185	127	183	239	106	104	112	113	59.4	55.4	57.8	60.4	33.5	34.8
Strontium, dissolved	mg/L	 		2.5	1.18	1.23	1.32	1.33	1.42	1.15	1.56	1.57	0.481	1.02	0.644	0.856	0.481	0.465	0.473	0.487	0.368	0.383
Sulfur, dissolved Tellurium, dissolved	mg/L mg/L				18.8 <0.0005	15.3 <0.0005	21.3 <0.0005	18.4 <0.0005	29.8 <0.0005	20.4 <0.0005	30.7 <0.0005	29.1 <0.0005	<0.0005	41.5 <0.0005	36.2 <0.0005	37.2 <0.0005	17 <0.0005	13.6 <0.0005	15.9 <0.0005	15.3 <0.0005	12.3 <0.0005	14.5 <0.0005
Thallium, dissolved	mg/L mg/L				<0.0005	<0.0005	<0.0005	<0.0005	0.000099	0.00005	0.000103	0.000127	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Thorium, dissolved	mg/L				<0.0001	<0.0001	<0.0001	<0.0002	<0.0001	<0.0001	<0.0001	<0.000127	<0.0001	<0.0001	<0.0001	<0.0001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tin, dissolved	mg/L	-		2.5	0.0003	<0.0001	0.0001	<0.0001	0.0003	0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium, dissolved	mg/L			۷.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Tungsten, dissolved	mg/L			0.003	0.0119	0.0047	0.0052	0.0018	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Uranium, dissolved	mg/L	0.02		0.003	0.00192	0.00229	0.0032	0.0018	0.00399	0.00324	0.00367	0.0044	0.000068	0.000084	0.000055	0.000068	0.00128	0.00128	0.00121	0.00133	0.00141	0.00155
Vanadium, dissolved	mg/L	0.02		0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00128	<0.00121	<0.001	<0.001	<0.001
Zinc, dissolved	mg/L		5	3	0.0055	<0.001	<0.001	<0.001	0.0103	<0.001	<0.001	0.0087	0.0069	0.0132	0.0064	0.001	<0.001	0.0359	0.0044	0.0053	<0.001	<0.001
Zirconium, dissolved	mg/L			,	<0.0033	<0.004	<0.004	<0.004	0.00025	0.00013	0.00022	0.0007	<0.0009	0.00132	0.0004	0.0013	<0.004	<0.0001	<0.0044	<0.0033	<0.004	<0.004
Z. Codiff, dissolved	1116/ L	ı	ı		10.0001	10.0001	10.0001	10.0001	1 0.00023	0.00013	0.00022	1 0.00020	1 10.0001	0.00014	0.00011	0.00010	1 10.0001	1 -0.0001	1 10.0001	1 10.0001	1 10.0001	10.0001
General Parameters																						

						1			1		ı	<u> </u>	1	1				1	1	1	1	
				npling Location	MW10-8	MW10-8	MW10-8	MW10-8	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #6	Town Well #6
				Date Sampled	2020-03-24	2020-05-20	2020-08-25	2020-11-03	2020-03-25	2020-05-20	2020-08-25	2020-11-03	2020-03-24	2020-05-20	2020-08-24	2020-11-03	2020-03-25	2020-05-20	2020-08-24	2020-11-03	2020-08-24	2020-11-03
				Lab Sample ID	0032091-02	0051806-02	0082459-02	20K0317-02	0032091-03	0051806-03	0082459-03	20K0317-03	0032091-04	0051806-04	0082459-04	20K0317-04	0032091-05	0051806-05	0082459-05	20K0317-05	0082459-06	20K0317-06
				Sample Type															<u> </u>			
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW	1																	
Alkalinity, Bicarbonate (as CaCO3)	mg/L				530	511	501	518	806	729	713	856	716	648	648	671	374	365	356	358	358	363
Alkalinity, Carbonate (as CaCO3)	mg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Hydroxide (as CaCO3)	mg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Phenolphthalein (as CaCO3)	mg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Total (as CaCO3)	mg/L				530	511	501	518	806	729	713	856	716	648	648	671	374	365	356	358	358	363
Ammonia, Total (as N)	mg/L				0.099	<0.05	<0.05	0.056	1.44	1.68	1.73	2.6	0.191	0.257	0.447	0.361	<0.02	<0.05	<0.05	<0.05	<0.05	0.117
Bicarbonate (HCO3)	mg/L				646	623	611	632	983	889	870	1040	874	791	790	819	456	446	434	437	437	443
Carbonate (CO3)	mg/L				<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Electrical Conductivity	μS/cm				2700	2590	2830	2880	2770	2420	2560	3240	1460	1390	1460	1580	945	997	1040	1040	917	857
Hardness, Total (as CaCO3)	mg/L				634	669	701	766	1050	796	1070	1150	680	589	624	684	414	396	395	441	392	437
Hydroxide (OH)	mg/L				<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34
рН	pH Units				7.95	7.98	8.05	8.09	7.81	7.9	7.97	7.89	8.25	7.93	8.13	8.06	7.98	7.93	7.98	8.04	7.94	7.93
Total dissolved solids	mg/L		500		1550	1290	1560	1460	1550	1310	1390	1820	850	849	849	899	607	562	579	559	520	507
Turbidity	NTU				41.5	3.48	83.7	230	65.8	73.2	114	172	52.4	112	45.1	37	0.12	<0.1	<0.1	0.23	23.6	171
Volatile Organic Compounds (VOC)		<u> </u>	ı		ļ	ı		I	1		1	ı	1	ı				ı	1	ı	ı	
1,1-Dichloroethane	μg/L			30	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-Dichloroethylene	μg/L	14		14	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	μg/L			8000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	μg/L	-		3	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	μg/L			0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dibromoethane	μg/L		_	0.5	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	μg/L	200	3	200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	μg/L	5		5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloropropane	μg/L			4.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	μg/L				<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichloropropene (cis + trans)	μg/L			1.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	μg/L	5	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	μg/L	5		5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	μg/L	+		100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform Carbon totrachlarida	μg/L	2		2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <0.5
Carbon tetrachloride	μg/L	2		80	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <1	<0.5	<0.5	<1
Chlorophore	μg/L	1		80	<1 <2	<1	<1 <2	<1	<1	<1 <2	<1	<1 <2	<1	<1 <6	<1	<1	<1	<1	<2	<1	<1	<2
Chloroethane	μg/L	100		100		<2		<2	<2		<2		<2	<b< th=""><th><2</th><th><2</th><th><2</th><th><2</th><th></th><th><2</th><th><2</th><th> </th></b<>	<2	<2	<2	<2		<2	<2	
Chloroform cis-1,2-Dichloroethylene	μg/L	100		100	<1	<1 <1	<1	<1 <1	<1	<1	<1	<1	<1		<1 <1	<1	<1	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L μg/L			100	<1 <1	<1	<1 <1	<1	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Dibromomethane				100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichloromethane	μg/L μg/L	50		50	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Ethylbenzene	μg/L μg/L	140	1.6	140	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	μg/L	1 170	15	95	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Styrene	μg/L		1	800	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	μg/L	10		30	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	60	24	60	<1	<1	<1	<1	<1	<1	<1	<1	8.8	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	μg/L	<u> </u>		80	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	μg/L			5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	μg/L			1000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl chloride	μg/L	2		2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes (total)	μg/L	90	20	90	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	, , , ,				İ			•											•			
Polycyclic Aromatic Hydrocarbons (PAH)															,							
1-Methylnaphthalene	μg/L			5.5	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-
2-Chloronaphthalene	μg/L			300	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-
2-Methylnaphthalene	μg/L			15	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-
Acenaphthene	μg/L			250	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Acenaphthylene	μg/L				-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	=	<0.2	-	-	-	-
Acridine	μg/L				-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-

			Can	npling Location	MW10-8	MW10-8	MW10-8	MW10-8	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well #6	Town Well #6
			Sail	Date Sampled		2020-05-20					2020-08-25	2020-11-03	2020-03-24	2020-05-20		2020-11-03	2020-03-25	2020-05-20	2020-08-24	2020-11-03	2020-08-24	2020-11-03
				•	l			1											1			
				Lab Sample ID	0032091-02	0051806-02	0082459-02	20K0317-02	0032091-03	0051806-03	0082459-03	20K0317-03	0032091-04	0051806-04	0082459-04	20K0317-04	0032091-05	0051806-05	0082459-05	20K0317-05	0082459-06	20K0317-06
Aughte	11-24	CODUMO 1410	000040	Sample Type																		
Analyte	Unit	GCDWQ MAC	GCDWQ AO	CSR DW	1																	
Anthracene	μg/L			1000	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	-
Benz(a)anthracene	μg/L			0.07	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	-
Benzo(a)pyrene	μg/L	0.04		0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	-
Benzo(b+j)fluoranthene	μg/L			0.07	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Benzo(g,h,i)perylene	μg/L				-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Benzo(k)fluoranthene	μg/L				-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Chrysene	μg/L			7	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Dibenz(a,h)anthracene	μg/L			0.01	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	<0.01	-	-	-	-
Fluoranthene	μg/L			150	-	<0.03	-	-	-	<0.03	-	-	-	<0.03	-	1	1	<0.03	-	-	-	-
Fluorene	μg/L			150	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Indeno(1,2,3-cd)pyrene	μg/L				-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Naphthalene	μg/L			80	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	-	-
Phenanthrene	μg/L				-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-
Pyrene	μg/L			100	-	<0.02	-	-	-	<0.02	-	-	-	<0.02	-	-	-	<0.02	-	-	-	-
Quinoline	μg/L			0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
BCMOE Aggregate Hydrocarbo	ons																					
EPHw10-19	μg/L			5000	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	-
EPHw19-32	μg/L				-	<250	-	-	-	<250	-	-	-	313	-	-	-	<250	-	-	-	-
HEPHw	μg/L				-	<250	-	-	-	<250	-	-	-	313	-	-	-	<250	-	-	-	-
LEPHw	μg/L			15000	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	<250	-	-	-	-
VHw (6-10)	μg/L				-	<100	<100	-	-	<100	<100	-	-	<100	<100	-	-	<100	<100	-	<100	-
VPHw	μg/L				-	<100	<100	-	-	<100	<100	-	-	<100	<100	-	-	<100	<100	-	<100	-

> Greater than reported upper detection limit
- Not Sampled
No Guideline or Standard
* Province-wide Interim Background Concentration per ENV Protocol 9
GCDWQ AO Guidelines for Canadian Drinking Water Quality - Aesthetic Objectives
GCDWQ MAC Guidelines for Canadian Drinking Water Quality - Maximum Acceptable Concentrations
CSR DW BC Contaminated Sites Regulation, Schedule 3.2 Generic Numerical Water Standards for Drinking Water
40 Highlighted Value Exceeds GCDWQ MAC
40 Red text Value Exceeds GCDWQ AO
40 Red text Value Exceeds CSR DW

Less than reported detection limit

Notes:

<

APPENDIX D HISTORICAL WATER QUALITY DATA

Part											1			1											
Part		Sampling Location	DMW-1	DMW-1	DMW-1	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b
Part			2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29
March Marc		•																						7040434-07	7090074-04
Part		•																							Normal
Part	alyte	Unit		•				· · · · · · · · · · · · · · · · · · ·	·			•	•			•			•				•		
Professional Content	ld Parameters	•																							
Performant Per	pth to Water	m	-	-	-	-	-	9.89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Part	solved Oxygen	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.29	0.59	1.98	1.21	2.34	0.34	0.01	4.73	-	-	2.53
Secont continue	ctrical Conductivity	μS/cm	1120	1220	1150	1220	1000	1150	1170	1140	1070	870	750	1040	1075	1030	1118	1021	1142	1155	1134	1201	1127	1113	1128
Part	vation of Piezometric Surface	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Property	idation reduction potential	mV	-	61	-18	-199	40	162	99	44	-12	124	8	19	-41	-86	-65	-28	-26	53	-35	97	29	83	17
Part		pH Units	7.31	7.28	7.3	7.4	7.31	7.23	7.15	7.54	7.4	7.36	7.22	7.16	7.3	7.3	7	7.5	7.2	6.3	7.3	7.3	7.4	7.7	7.4
Perfect Perf	nperature	°C	6.5	9.9	6.2	8.8	9.5	6.1	8.2	10	8	8.7	7.7	8	7.8	9.1	8.2	9.8	8.5	8	8.1	7.9	9.1	6.8	9.6
Professor Prof	ions																								
Marche	omide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Marcie Name	oride	mg/L	26.8	23.3	30.1	26	27.7	32.7	28.4	32.2	35.7	38.9	40.9	41.1	35.8	39.7	40.1	39.7	42.4	51.7	38.7	47.1	50.4	42.1	12.4
Marticle	oride	mg/L	-	-	-		-	-	1.1	0.81	1.05	1.23	1.31	1.02	1.13	0.84	1.15	1.25	1.28	1.31	1.28	1.28	1.25	1.25	0.73
Part	rate (as N)	mg/L	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.199	0.397	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.175
Maricus Mari	rite (as N)	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.012	<0.010	<0.010	<0.010
Manifunch Migh Mi	fate	mg/L	208	213	91.7	137	133	124	144	127	123	121	129	117	135	127	122	133	114	116	129	124	124	126	252
Martines	etals																								
Partners, standbard Mag. No. 1.00 1.	ıminum, dissolved	mg/L	<0.005	0.007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.006	0.005	<0.005	-	-	-	-	<0.005	<0.005	-	<0.0050
Part	minum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.005	<0.005	<0.05	<0.005	-	-	0.005	-
Martine Martin Martine Martine Martine Martine Martine Martine Martine Martine	timony, dissolved	mg/L	0.0002	0.0002	<0.0001	0.0002	0.0002	<0.0020	0.0001	0.0002	0.0004	0.0004	0.0004	0.0005	0.0003	0.0003	0.0002	-	-	-	-	<0.0001	<0.0001	-	<0.00020
Martine Mart Mart Mart Mart Mart Mart Mart Mart Martine Mart Martine Mart Martine Martine Mart Martine	timony, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	0.0003	-
Parlian Residence March Ma	senic, dissolved	mg/L	0.0043	0.007	0.0389	0.026	0.0362	0.0285	0.0196	0.0419	0.0392	0.0388	0.0397	0.0382	0.0351	0.0378	0.0436	-	-	-	-	0.0421	0.0407	-	0.00124
Part	senic, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0236	0.0489	0.042	0.0375	-	-	0.0326	-
Part	rium, dissolved	mg/L	0.0236	0.023	0.0269	0.0242	0.022	0.021	0.024	0.023	0.022	0.023	0.023	0.023	0.024	0.024	0.026	-	-	-	-	0.025	0.024	-	0.0149
Performent	rium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.022	0.026	<0.05	0.024	-	-	0.025	-
Seminary	ryllium, dissolved	mg/L	<0.0001	<0.0001	0.0001	0.0001	<0.0001	0.0001	0.0001	<0.0001	0.0001	0.0001	<0.0001	0.0001	0.0002	0.0001	0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010
Seminate May	ryllium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	0.0001	<0.001	0.0001	-	-	<0.0001	-
Series Margin M	muth, dissolved		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0002	<0.0001	<0.0001	<0.0001					<0.0001	<0.0001		<0.00010
Second S	muth, total	mg/L	-			-					-	-						<0.0001	<0.0001	<0.001	<0.0001	-		<0.0001	-
Cadmium, dissolved			0.171	<u> </u>	<u> </u>	0.143	0.135	0.104	0.138	0.137	0.133	0.145	0.166		0.153	0.138	0.134		-		1	0.191	0.172		0.386
Calcium, Intell	<u> </u>		-			-			-			-	-			-		0.146	0.139	0.14	0.146			0.137	-
Calcium, dissolved mg/L 73.9 73.9 73.5 71.9 63.2 65.9 61.2 63.9 64 68.7 71.8 73.4 74 73.1 70.5 7.5 7.5 7.5 7.5 74.5 70.8 70.8 70.5 70.5 70.5 70.5 70.5 70.5 70.5 70.5			0.00002	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00003	<0.00001	<0.00001	0.00001	<0.00001	<0.00001	<0.00001	0.00001	0.00001		-			0.00003	0.00001		<0.000010
Calcium, total mg/L 0.0146 0.0014 0.0009 0.00005 0.000			-	1		-		-	-				-									-	-		
Chromium, dissolved mg/L 0.0146 0.0014 0.0009 0.0005			/3.9					65.9				68.7										/4.5			75.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · · · · · · · · · · · · · · · ·		-			1																			
Cobalt, dissolved	, , , , , , , , , , , , , , , , , , , ,											<0.0005									+	<0.0005			<0.00050
Cobalt, total mg/L				<u> </u>	<u> </u>	1						<0.00005		+								0.00007	+		0.00075
Copper, dissolved mg/L 0.0297 0.0392 0.0004 0.0006 0.0008 0.002 0.0002 0.0001 0.0004 0.0002 0.0007 0.0002 0.0007 0.0002 0.0004	·				1																	0.0000/	-0.00005		0.00075
Copper_total mg/L - - - - - - - - -	·			<u> </u>	<u> </u>	1																0.0004	0.0185		0.00361
From the control of																									0.00361
Front total mg/L - - - - - - - - -																						<u> </u>			0.014
Lead, dissolved mg/L 0.0001 0.0004 < 0.0001 0.0001 0.0001 0.0001 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0002 < 0.0002 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.																							-		- 0.014
Lead, total mg/L - 0.002 Lithium, dissolved mg/L 0.0232 0.031 0.026 0.0238 0.0218 0.029 0.0228 0.0227 0.0251 0.0251 0.0259 0.0264 0.0252 0.0252 - - - - 0.0222 0.024 - - - 0.0222 0.024 - - - 0.0222 0.024 - - - 0.0222 0.024 - - - 0.0222 0.024 - - - 0.0222 0.024 - - - - 0.0232 0.024 0.025 0.024 0.024 0.026 0.025 0.024 0.024 0.025 0.024 0.024 0.025 0.024 0.024 0.024 113 - - -					<u> </u>	-																	0.0003		<0.00020
Lithium, dissolved mg/L 0.023 0.031 0.026 0.0238 0.0218 0.0209 0.0196 0.0228 0.027 0.0251 0.0251 0.0259 0.0264 0.0252 0.0252 0.0243 0.024 0.026 0.0228 0.024 0.0245 0.0252 0.0252 0.0245 0.0252 0.0252 0.0245 0.0252	·											-													-
Lithium, total mg/L			0.0232		 	0.0238	0.0218	0.0209	0.0196	0.0228		0.0251	0.0251		0.0264		0.0252					0.0222	0.024		0.0477
Magnesium, dissolved mg/L 96.7 92.5 104 116 104 94.7 122 111 104 111 113 111 123 114 104 - - - - - - 124 113 - Magnesium, total mg/L <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>			-																						-
Magnesium, total mg/L			96.7	92.5	<u> </u>	116	104	94.7	122	111	104	111	113		123	114						124	113		98.8
Manganese, dissolved mg/L 0.0022 0.0032 0.0042 0.0039 0.004 0.0039 0.005 0.0041 0.0037 0.004 0.0039 0.0054 0.0158 0.0048 0.0046 0.0041 -	<u> </u>		-																						-
	<u> </u>		0.0022	0.0032	0.0042	0.0039	0.004	0.0039	0.005	0.0041	0.0037	0.004	0.0039	0.0039	0.0054	0.0158	0.0048					0.0046	0.0041		0.00401
		mg/L	-			-		-	-			-	-		-			0.0047	0.0046	0.005	0.0057	-		0.011	-
Mercury, dissolved mg/L <0.00005 <0.00005 <0.00005 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.000			<0.00005	<0.00005	<0.00005	<0.00002	<0.00002	<0.00002	<0.00002	0.00033	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-				<0.00002	<0.00002		<0.000010
Mercury, total mg/L <0.00002 - <0.00002 - <0.00002 - <0.00002	· · · · · · · · · · · · · · · · · · ·																	<0.00002	-	<0.00002	<0.00002	-			-

		ı			1									1							1			$\overline{}$
	Sampling Location	DMW-1	DMW-1	DMW-1	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b
	Date Sampled	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29
	Lab Sample ID	K0B0397-04		K0K0729-04	K1E0403-05	K1H0536-03		2051369-01	2081484-03	2111131-03	3051354-03	3081378-03	3110772-03		4081094-03	4110161-03	5051773-04	5081710-02	5110693-01	6050336-02		6111141-04	7040434-07	7090074-04
	Sample Type	K0D0337 04	K010700 01	KOKO725 04	KILO403 03	K1110330 03	K130003 03	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit							Normal	Worman	Homiu	Norman	Homiai	Normal	Worman	Homiu	Normal	Homiai	Homidi	Homidi	Normal	Normal	Horrida	Horrida	Normal
Molybdenum, dissolved	mg/L	0.0011	0.0008	0.0004	0.0003	0.0004	0.0017	0.0006	0.0004	0.0004	0.0004	0.0002	0.0004	0.0003	0.0004	0.0004	_	_	_	_	0.0004	0.0004	_	0.00058
Molybdenum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0004	0.0004	<0.001	0.0003	-	-	0.0003	-
Nickel, dissolved	mg/L	0.0034	0.0046	0.0036	0.0011	0.0014	0.0011	<0.0002	0.0014	0.0012	0.0014	0.0015	0.0016	0.0012	0.0021	0.0016	-	-		-	0.0017	0.0022	-	0.00115
Nickel, total	mg/L		-	-		- 0.0014	- 0.0011		-			-	-		0.0021	-	0.0006	0.0026	<0.002	0.0016		- 0.0022	0.002	- 0.00115
Phosphorus, dissolved	mg/L	<0.020	<0.020	<0.020	<0.020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	-	-		-	<0.02	0.24	-	<0.050
Phosphorus, total	mg/L	- 10.020			- 10.020	- 10.02							-	- 10.02	0.04	-	<0.020	0.08	<0.2	<0.02	-	0.24	<0.05	10.050
Potassium, dissolved	mg/L	6.64	9.66	4.75	4.72	4.85	4.24	5.17	5.08	4.72	5.11	5.31	4.86	4.76	5.06	4.94	-	-		-	5.62	5.2	-	8.08
Potassium, total	mg/L	- 0.04				4.05	-	5.17	-	-	3.11	5.51	-	4.70	3.00	-	4.93	5.94	5.1	5.1		5.2	4.73	- 0.00
Selenium, dissolved	mg/L	0.0005	<0.0003	<0.0003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	3.54	5.1	-	<0.0005	<0.0005	-	<0.00050
Selenium, total	mg/L	0.0003		-	-	-	-	\0.0003			-	<0.0003	-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	<0.0005	<0.0005	<0.005	<0.0005			<0.0005	-
Silicon, dissolved	mg/L	10.4	6.09	4.55	7.93	8	7.3	7.6	7.9	8	7.9	8	7.4	7.4	8	8.4	-		-		8	8.3	-	6.4
		10.4	- 0.09	4.55	7.93	-	7.5	7.0		-	7.5	0	7.4	7.4	0	-	7.9	9	8	8.3		0.3	7.5	- 0.4
Silicon, total	mg/L	<0.00005	<0.00005	<0.00005	0.00005	<0.00005	<0.00005	<0.0005	- <0.00005	<0.00005	<0.0005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0005	7.9	-	-	0.3	<0.00005	<0.00005	1.3	<0.000050
Silver, dissolved	mg/L	\0.00003	\0.00003	\0.00005	0.00005	\U.UUUU3	<0.00005	\U.UUUU3	\U.UUUU3	<0.00005	\U.UUUU3	\U.UUUU3	<0.00005	\U.UUUU3	\U.UUUU3	<0.00005	0.00005	0.00163	<0.0005	<0.00005	\0.00005	\U.UUUU3	<0.00005	\0.000030
Silver, total	mg/L	25.0	22.7	26.6	25.4	2F 1		72 5	29.6		20.1	30.4		25.4	20.4	30.1	0.00005	0.00163	<0.0005		22.0	20.0	<0.00005	47.5
Sodium, dissolved	mg/L	25.8	23.7	26.6	25.4	25.1	25.3	23.5	29.0	27.4	29.1	30.4	29.7	25.4	28.4	30.1	26.9	33.2	29.7	28.7	32.8	29.8	26.3	47.5
Sodium, total	mg/L	2.07	2.00	1.00	1.0	1.00	1.62	1.00	1 72	1.67	1.70	1.74		1.01	1.70		26.9	33.2	29.7	28.7	1.00	1.70	20.3	4 22
Strontium, dissolved	mg/L	3.07	3.89	1.88	1.8	1.69	1.62	1.69	1.72	1.67	1.76	1.74	1.7	1.81	1.76	1.71	1.00	1.00	1.74	1.02	1.96	1.79	1 70	4.33
Strontium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	- 27		-	- 47	1.68	1.99	1.74	1.82		-	1.78	
Sulfur, dissolved	mg/L	-	-	-	-	-	-	55	50	46	46	45	37	52	46	47	-	-	- 27	-	52	44	- 42	80.3
Sulfur, total	mg/L						0.000			0.000						0.000	46	51	37	45			43	
Tellurium, dissolved	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	<0.0002	<0.0002	-	<0.00050
Tellurium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	<0.002	<0.0002	-	-	<0.0002	-
Thallium, dissolved	mg/L	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	0.00004	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	-	-	-	<0.00002	<0.00002	-	<0.000020
Thallium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00002	<0.00002	<0.0002	<0.00002	-	-	<0.00002	-
Thorium, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010
Thorium, total	mg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-
Tin, dissolved	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0002	<0.0002	0.0003	-	-	-	-	0.0002	<0.0002	-	<0.00020
Tin, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0004	<0.0002	<0.002	<0.0002	-	-	<0.0002	-
Titanium, dissolved	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-	-	-	<0.005	<0.005	-	<0.0050
Titanium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	<0.05	<0.005	-	-	<0.005	-
Tungsten, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tungsten, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium, dissolved	mg/L	0.00173	0.00165	0.00008	0.00013	0.00011	0.00009	0.00014	0.00007	0.00009	0.00009	0.00007	0.00008	0.00014	0.00014	0.00009	-	-	-	-	0.00005	0.00007	-	0.00103
Uranium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00011	0.00007	<0.0002	0.00013	-	-	0.0002	 -
Vanadium, dissolved	mg/L	0.0055	0.0028	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-	-	-	-	<0.001	<0.001	-	<0.0010
Vanadium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	<0.001	<0.01	<0.001	-	-	<0.001	-
Zinc, dissolved	mg/L	0.0096	0.0193	0.0097	0.0321	0.005	0.01	0.009	<0.004	0.005	<0.004	<0.004	<0.004	<0.004	<0.004	0.005	-	-	-	-	<0.004	0.067	-	0.038
Zinc, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.004	<0.004	<0.04	<0.004	-	-	0.017	-
Zirconium, dissolved	mg/L	0.0006	0.0004	0.002	0.0015	0.0013	0.0011	0.0011	0.0013	0.0014	0.0011	0.001	0.0011	0.0012	0.0012	0.0015	-	-	-	-	0.0019	0.0015	-	0.00056
Zirconium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0012	0.0019	0.001	0.0014	-	-	0.0012	-
General Parameters					ļ														1			,		
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	481	482	480	504	432
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	444	453	475	509	509	495	486	480	512	497	463	479	499	479	478	490	478	500	481	482	480	504	432
Ammonia, Total (as N)	mg/L	0.65	0.76	0.29	0.2	0.26	0.26	0.155	0.263	0.031	0.274	0.274	0.295	0.261	0.28	0.24	0.234	0.21	0.276	0.196	0.251	0.228	0.239	0.758
Bicarbonate (HCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	587	588	586	614	527
Carbonate (CO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.6	<0.6	<0.600	<0.600
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	1130	1140	1090	1120	1090	1100	1150	1120	1120	1110	1140	1150	1160	1140	1160	1150	1120	<2	1170	1160	1180	1140	1170
Electrical Conductivity	uS/cm		_	_	_	_	_	_	-	_	-	_	_	_	-	-	-	_	-	_	_	_	_	-

											_	_					_							
	Sampling Location	DMW-1	DMW-1	DMW-1	DMW-1b																			
	Date Sampled	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29
	Lab Sample ID	КОВОЗ97-04	K0F0788-01	K0K0729-04	K1E0403-05	K1H0536-03	K1J0685-03	2051369-01	2081484-03	2111131-03	3051354-03	3081378-03	3110772-03	4060249-03	4081094-03	4110161-03	5051773-04	5081710-02	5110693-01	6050336-02	6081698-02	6111141-04	7040434-07	7090074-04
	Sample Type							Normal																
Analyte	Unit																							
Hardness, Total (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	649	678	645	-	-	-	-	-
Hydroxide (OH)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.3	<0.3	<0.340	<0.340
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	pH Units	7.73	7.89	7.69	7.84	7.79	7.79	7.86	7.85	7.09	7.78	7.86	7.86	7.89	7.66	7.81	7.74	7.7	7.63	7.6	7.73	7.89	7.67	7.92
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	0.8	0.5	3.6	2	3.4	1.8	1.6	3	3.4	3	3.4	3.2	4.3	3.7	4.3	1.5	3	4.5	4.8	1.68	1.49	2.4	0.63
Microbiological Parameters																								
Coliforms, Fecal	CFU/100 mL	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
E. coli, Total	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)																								
1,1-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-
1,2-Dibromoethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
1,2-Dichloropropane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Benzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-
Benzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Bromodichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-

		DMW-1	DMW-1	DMW-1	DMW-1b	DMW-1b	DMW-1b	DMW-1b																
	Sampling Location	DIVIVO-1	DIVIVV-1	DIVIV-1	DIVIVE-10	DIVIVO-1D	DIVIVV-10	DIVIVV-1D	DIVIVV-1D	DIVIVV-10	DIVIVV-10	DIVIVV-10	DIVIVV-10	DIVIVV-10	DIVIVY-10	DIVIVO-10	DIVIVO-10	DIVIVV-10	DIAIAA-10	DIVIVV-10	DIVIVO-10	DIVIVV-10	DIVIVV-10	DIVIVO-ID
	Date Sampled	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29
	Lab Sample ID	K0B0397-04	K0F0788-01	K0K0729-04	K1E0403-05	K1H0536-03	K1J0685-03	2051369-01	2081484-03	2111131-03	3051354-03	3081378-03	3110772-03	4060249-03	4081094-03	4110161-03	5051773-04	5081710-02	5110693-01	6050336-02	6081698-02	6111141-04	7040434-07	7090074-04
	Sample Type							Normal	Normal	Normal	Normal													
Analyte -	Unit		1	1			1						ı	1	T	<u> </u>	I				T	1		
Bromoform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-
Carbon tetrachloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-
Chloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Chloroform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 -	-	-	-
cis-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Dibromochloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Dibromomethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0030	-
Dichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Ethylbenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Methyl tert-butyl ether	μg/L	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-	-	-	1	-
Styrene	mg/L	-	-	-	-	-	-	-	-	-	1	•	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Styrene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	ug/L	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	•	-
Tetrachloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/L	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Toluene	μg/L	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	i	-	-	-	-	-	-	-	-	-	-	1	-
Trichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Trichlorofluoromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-
Vinyl chloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	μg/L	_	_	_	-	_	_	-	-	_	-	-	-	_	_	-	_	-	_	_	-	_	_	_
Xylenes (total)	ug/L		_	-	_	_	_	_	-	-	-	-	-	_	_	-	_	-	_	_	<u> </u>	_	_	
BCMOE Aggregate Hydrocarbons	1 49/-		1	1									ı	1	1	ı	1	1	ı		1	1	1	
VPHw	mg/L	-	_	<u> </u>	-	_	_	_	-	_	-	-	_	_	_	-	_	-	_	_	_	_	-	_
	I '''6/ L			1		1				1					1	<u> </u>	1	1	1	1	1	1	<u> </u>	

				1						1		1	1		1				1	1	1		1	
		DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4
	Sampling Location																							
	Date Sampled	2017-11-20	2018-06-26	2018-09-11	2019-05-29	2019-08-13	2019-10-29	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04		2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05		2017-11-20	2018-06-26	2018-09-11
	Lab Sample ID		8062674-02	8090975-04	9052874-07	9081278-07	N000444-06	3051354-05	3081378-04	3110772-04	4060249-04	4081094-04	4110161-04		5081710-03	5110693-02	6050336-03	6081698-03	6111141-05	7040434-06	7090074-03		8062674-03	8090975-05
	Sample Type	Normal	Normal	Normal				Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit																							
Field Parameters				1						1	1	ı	1	1					1	1		1	1	1
Depth to Water	m ,	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	4.67	-	0.32	3.45	2.75	2.49	-		-	2.33	0.3	3.22	2.98	2.04	0.4	0	9.12	4.63	-	0.54	4.21	-	4.34
Electrical Conductivity	μS/cm	1137	1033	1189	1056	987	1006	900	1130	1100	914	1062	953	922	1043	1109	1271	1139	790	927	1159	1187	1214	1232
Elevation of Piezometric Surface	m	-	- 464	- 402	- 22.7	- 10	- 464.7	-	-	- 204	- 70	-	-		-	- 27	-	- 206	452	- 225	- 47	-	-	- 72
Oxidation reduction potential	mV	7.2	-161	-182	-33.7	-16	161.7	235	68	204	78	77	-8	69	-5	37	80	206	152	235	-47	7.2	96	72
pH Tomporatura	pH Units	7.3 7.9	7.34	7.28 7.8	7.3 8.8	7.26	7.47 6.4	7.25 8.7	7.16	7.11	7.3	7.1 8.6	7.1 8.2	7.5	7.3 8.2	6.3	7.1 8.5	7.3	7.3 7.7	7.6 7.8	7.4	7.2	7.42 7.9	7.23 7.9
Temperature	C	7.9	8	7.8	8.8	11	6.4	8.7	7.8	7.2	7.9	8.6	8.2	9	8.2	8	8.5	8.2	7.7	7.8	9.5	8	7.9	7.9
Anions	/1	-0.10	<0.10	<0.10										<0.10	10.10	10.10	<0.10	<0.10	10.10	<0.10	<0.10	10.10	<0.10	10.10
Bromide	mg/L	<0.10			11.2	10.4	0 0	22.4	16.2	16.0	20.6	10.7	17.4	+	<0.10	<0.10	†		<0.10			<0.10		<0.10
Chloride Fluoride	mg/L mg/L	52.8 1.3	92.2	52.3 1.38	0.83	10.4 0.47	8.8 0.63	22.4 0.48	16.2 0.61	16.9 0.52	20.6 0.28	19.7 0.32	0.42	0.89	13.2 0.74	15.7 0.48	15.7 0.69	15.1 0.49	14.5 0.42	12.8 0.34	46.5 1.45	0.79	11.8 0.71	12.6 0.72
Nitrate (as N)	mg/L	<0.010	<0.010	<0.100	0.522	0.47	0.756	0.48	0.135	<0.010	0.28	0.32	0.602	0.89	0.74	0.725	0.488	0.49	0.42	0.34	0.012	0.79	0.71	0.72
Nitrate (as N)	mg/L	<0.010	<0.010	<0.100	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.012	<0.010	<0.010	0.048
Sulfate	mg/L	108	117	119	246	191	175	236	270	268	150	250	213	275	232	196	263	223	135	153	122	246	238	252
Metals	18/ -	100	117	113	240	131	173	230	270	200	130	230	213	273	232	130	203	223	133	133	122	240	230	232
Aluminum, dissolved	mg/L	_	0.0202	<0.0050	0.0141	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	l -	_	_	_	<0.005	<0.005	_	<0.0050	l -	0.0128	<0.0050
Aluminum, total	mg/L	<0.0050	-	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	<0.05	<0.005	-	-	<0.005	-	<0.0050	-	-
Antimony, dissolved	mg/L	-	<0.00020	<0.00020	<0.0002	<0.0002	<0.0002	0.0004	0.0005	0.0005	0.0004	0.0004	0.0003	-	-	-	-	<0.0001	0.0002	-	<0.00020	-	<0.00020	<0.00020
Antimony, total	mg/L	<0.00020	-	-	-	-	-	-	-	-	-	-	-	0.0002	0.0003	<0.001	0.0002	-	-	0.0001	-	<0.00020	-	-
Arsenic, dissolved	mg/L	-	0.0434	0.0411	0.00107	0.0011	0.00082	0.0013	0.0013	0.0014	0.0012	0.0014	0.0013	-	-	-	-	0.001	0.0009	-	0.0421	-	0.00124	0.00137
Arsenic, total	mg/L	0.0476	-	-	-	-	-	-	-	-	-	-	-	0.0014	0.0018	<0.005	<0.0005	-	-	0.001	-	0.00149	-	-
Barium, dissolved	mg/L	-	0.0225	0.0222	0.0167	0.014	0.0152	0.015	0.014	0.015	0.015	0.017	0.017	-	-	-	-	0.017	0.015	-	0.0223	-	0.0159	0.0155
Barium, total	mg/L	0.0246	-	-	-	-	-	-	-	-	-	-	-	0.017	0.016	<0.05	0.019	-	-	0.016	-	0.0165	-	-
Beryllium, dissolved	mg/L	-	0.00011	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	0.00011	-	<0.00010	<0.00010
Beryllium, total	mg/L	0.00011	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-
Bismuth, dissolved	mg/L	-	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010	-	<0.00010	<0.00010
Bismuth, total	mg/L	<0.00010	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-
Boron, dissolved	mg/L	1	0.156	0.134	0.321	0.204	0.275	0.263	0.415	0.465	0.07	0.286	0.218	-	-	-	-	0.267	0.092	-	0.148	-	0.355	0.336
Boron, total	mg/L	0.101	-	-	-	-	-	-	-	-	-	-	-	0.659	0.392	0.2	0.444	-	-	0.106	-	0.386	-	-
Cadmium, dissolved	mg/L	-	<0.000010	<0.000010	0.000011	<0.00001	0.000011	0.00002	0.00003	<0.00001	0.00002	0.00001	0.00002	-	-	-	-	0.00003	0.00001	-	<0.000010	-	0.000014	0.000015
Cadmium, total	mg/L	<0.000010	-	-	-	-	-	-	-	-	-	-	-	0.00001	<0.00001	<0.0001	<0.00001	-	-	<0.00001	-	<0.000010	-	-
Calcium, dissolved	mg/L	-	71.2	70.8	75.7	74.4	69.6	78.2	80.7	82.5	75.1	86.4	79.9	-	-	-	-	77.8	68.9	-	70.7	-	74.9	78.6
Calcium, total	mg/L	65.9	-	-	-	-	-	-	-	-	-	-	-	79	81.9	81.6	97	-	-	73.2	-	76.1	-	-
Chromium, dissolved	mg/L	-	<0.00050	<0.00050	0.00108	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	-	<0.00050	-	<0.00050	<0.00050
Chromium, total	mg/L	<0.00050	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.005	<0.0005	-	-	<0.0005	-	<0.00050	-	-
Cobalt, dissolved	mg/L	-	0.00011	<0.00010	0.00108	0.00077	0.00082	0.00084	0.00075	0.00059	0.00126	0.00133	0.00106	-	-	-	-	0.00091	0.00088	-	<0.00010	-	0.0008	0.00112
Cobalt, total	mg/L	<0.00010	-	-	-	-	-	-	-	-	-	-	-	0.00079	0.00083	0.0009	0.00125	-	-	0.00077	-	0.00068	-	-
Copper, dissolved	mg/L	-	0.00069	<0.00040	0.006	0.015	0.0264	0.0036	0.003	0.0024	0.0668	0.006	0.0065	-	-	-	-	0.0043	0.0593	-	0.00044	-	0.00594	0.0263
Copper, total	mg/L	0.00073	-	-	-	-	-	-	-	-	-	-	-	0.01	0.0027	0.006	0.0071	-	-	0.0394	-	0.00181	-	-
Iron, dissolved	mg/L	-	0.381	<0.010	0.122	<0.01	0.011	0.014	0.014	0.013	0.011	0.021	0.014	-	-	-	-	0.011	<0.010	-	0.575	-	0.039	<0.010
Iron, total	mg/L	0.437	-	-	-	-	-	-	-	-	-	-	-	0.04	0.02	<0.10	0.01	-	-	0.03	-	0.037	-	-
Lead, dissolved	mg/L	-	<0.00020	<0.00020	0.0003	0.00026	0.00034	0.0003	0.0004	0.0002	0.0003	0.0002	0.0003	-	-	-	-	<0.0001	0.0004	-	<0.00020	-	0.00028	<0.00020
Lead, total	mg/L	<0.00020	- 0.024	- 0.0245	- 0.0455	- 0.0204	- 0.0244	- 0.0247	- 0.0470	- 0.0546	- 0.0470	- 0.0005	- 0.0247	0.0004	0.0003	<0.001	0.0003	- 0.0005	- 0.0472	0.0002		<0.00020	- 0.0456	
Lithium, dissolved	mg/L	- 0.0247	0.024	0.0245	0.0455	0.0301	0.0344	0.0347	0.0478	0.0516	0.0178	0.0385	0.0317		- 0.0463	-	- 0.0547	0.0285	0.0173	- 0.04.03	0.0245	- 0.0500	0.0456	0.0443
Lithium, total	mg/L	0.0217	100	100	- 02.7	- 07.4	- 01	- 102	107	100		102	- 02.2	0.0696	0.0462	0.03	0.0547	105	-	0.0192		0.0508	- 02.5	- 04.7
Magnesium, dissolved	mg/L	- 404	106	106	92.7	87.4	91	103	107	106	93	102	93.3	102	- 00.6	- 02.4	- 110	105	85	- 00.5	115	- 01.1	93.5	94.7
Magnesium, total	mg/L	101	0.00000	- 0.00380	0.00366	0.00275	- 0.00242	- 0.0020	- 0.0043	0.004	0.0021	0.0127	- 0.0042	102	98.6	93.1	119	- 0.0020	0.0015	80.5	0.00535	91.1	0.00585	- 0.006E8
Manganese, dissolved	mg/L	- 0.00410	0.00808	0.00389	0.00366	0.00275	0.00242	0.0039	0.0042	0.004	0.0021	0.0127	0.0043	- 0.0048	0.0027	- 0.004	0.0061	0.0039	0.0015	0.0017	0.00535	0.00277	0.00585	0.00658
Manganese, total	mg/L	0.00419	-0.000010	-0.000040	-0.00001	-0.00001	-0.00001				-0.00003	-0.00003		0.0048	0.0037	0.004	0.0061	-0.00003	-0.00003	0.0017	-0.000010	0.00377	-0.000010	
Mercury, dissolved	mg/L	-0.000010	<0.000010	<0.000040	<0.00001	<0.00001	<0.00001	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002		-	-0.00003	-0.00003	<0.00002	<0.00002	-0.00002	<0.000010		<0.000010	<0.000040
Mercury, total	mg/L	<0.000010	-	-	-	-	-	-	-	-	-	-	-	<0.00002	_	<0.00002	<0.00002	-	-	<0.00002	-	<0.000010	-	-

					1								1		1				1					$\overline{}$
S ₂	mpling Location	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4																
Sa	Date Sampled	2017-11-20	2018-06-26	2018-09-11	2019-05-29	2019-08-13	2019-10-29	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11
	Lab Sample ID	7111886-05	8062674-02	8090975-04	9052874-07	9081278-07	N000444-06	3051354-05	3081378-04	3110772-04	4060249-04	4081094-04	4110161-04	5051773-03	5081710-03	5110693-02	6050336-03	6081698-03	6111141-05	7040434-06	7090074-03	7111886-06	8062674-03	8090975-05
	Sample Type	Normal	Normal	Normal				Normal																
Analyte	Unit																							
, Molybdenum, dissolved	mg/L	-	0.00027	0.00036	0.00082	0.00105	0.00097	0.0008	0.0004	0.0006	0.0014	0.0008	0.001	-	-	-	-	0.001	0.0012	-	0.00031		0.00062	0.00079
Molybdenum, total	mg/L	0.00035	-	-	-	-	-	-	-	-	-	-	-	0.0006	0.0007	0.001	0.0009	-	-	0.0014	-	0.00049	-	-
Nickel, dissolved	mg/L	-	0.00199	0.00201	0.00205	0.00146	0.00148	0.0018	0.0015	0.0012	0.0027	0.0026	0.0019	-	-	-	-	0.0014	0.0017	-	0.00179		0.00127	0.00132
Nickel, total	mg/L	0.00204	-	-	-	-	-	-	-	-	-	-	-	<0.0002	0.0025	<0.002	0.0018	-	-	0.0017	-	0.00105	- '	-
Phosphorus, dissolved	mg/L	-	<0.050	<0.050	<0.05	<0.05	<0.05	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	-	-	-	-	<0.02	<0.02	-	<0.050	-	<0.050	<0.050
Phosphorus, total	mg/L	<0.050	-	-	-	-	-	-	-	-	-	-	-	<0.020	<0.02	<0.2	<0.02	-	-	<0.05	-	<0.050	-	-
Potassium, dissolved	mg/L	-	5.15	4.79	7.19	5.75	5.72	7.63	9.49	9.36	3.66	7.73	6.8	-	-	-	-	7.23	4.01	-	4.69	-	8.51	8.04
Potassium, total	mg/L	4.63	-	-	-	-	-	-	-	-	-	1	-	11.7	9.42	6.2	9.74	1	-	4.15	-	8.59	-	-
Selenium, dissolved	mg/L	-	<0.00050	<0.00050	<0.0005	0.00056	<0.0005	<0.0005	<0.0005	<0.0005	0.0008	0.0007	0.0007	-	-	-	-	0.0005	0.0007	-	<0.00050	-	<0.00050	<0.00050
Selenium, total	mg/L	<0.00050	-	-	-	-	-	-	-	-	-	1	-	<0.0005	<0.0005	<0.005	<0.0005	-	-	0.0006	-	<0.00050	-	-
Silicon, dissolved	mg/L	-	7.7	7.6	6.3	7.2	7.9	7.2	7	6.6	7.4	7.3	7.9	-	-	-	-	6.8	7.6	-	7.2	-	6.8	6.5
Silicon, total	mg/L	7.6	-	-	-	-	-	-	-	-	-	ī	-	7	7.2	7	8.1	-	-	7.3	-	6.4	-	<u> </u>
Silver, dissolved	mg/L	-	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	-	-	-	-	<0.00005	<0.00005	-	<0.000050	-	<0.000050	<0.000050
Silver, total	mg/L	<0.000050	-		-	-	-	-	-	-	-	-	-	0.00005	0.00129	<0.0005	<0.00005	-	-	<0.00005	-	<0.000050	-	-
Sodium, dissolved	mg/L	-	29.2	28.8	39.4	26.2	29.9	34.2	48.8	51	20.2	34.8	31.6	-	-	-	-	33.4	17	-	27.9	-	44.6	41.2
Sodium, total	mg/L	26.9	-	-	-	-	-	-	-	-	-	-	-	70.3	46.9	27.2	50	-	-	21.1	-	46.4	-	-
Strontium, dissolved	mg/L	-	1.66	1.76	4.26	3.49	3.11	4.26	5.03	5.11	2.07	4.53	3.8	-	-	-	-	4.11	2.09	-	1.59	-	4.49	4.8
Strontium, total	mg/L	1.85	- '	- '	-	-	-	-	-	-	-	-	-	6.04	5.09	3.55	5.47	-	-	2.3	-	5.49	-	
Sulfur, dissolved	mg/L	-	44.1	41.4	82.7	70.7	71.2	80	95	88	58	87	80	-	-	-	-	83	48	-	43		85.5	86.6
Sulfur, total	mg/L	42.6	<u> </u>	- '	-	-	-	-	-	-	-	-	-	98	87	67	98	-	-	46	-	88.3	-	-
Tellurium, dissolved	mg/L	-	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	<0.0002	<0.0002	-	<0.00050	-	<0.00050	<0.00050
Tellurium, total	mg/L	<0.00050	-	- '	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	<0.002	<0.0002	-	-	<0.0002	-	<0.00050	-	-
Thallium, dissolved	mg/L	-	<0.000020	<0.000020	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	-	-	-	<0.00002	<0.00002	-	<0.000020	-	<0.000020	<0.000020
Thallium, total	mg/L	<0.000020	-	-	-	-	-	-	-	-	-	-	-	<0.00002	<0.00002	<0.0002	<0.00002	-	-	<0.00002	-	<0.000020	-	-
Thorium, dissolved	mg/L	-	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010	-	<0.00010	<0.00010
Thorium, total	mg/L	<0.00010	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-
Tin, dissolved	mg/L	-	<0.00020	<0.00020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-		<0.0002	<0.0002	-	<0.00020	-	<0.00020	<0.00020
Tin, total	mg/L	<0.00020										- 40.005		0.0003	<0.0002	<0.002	<0.0002	- 40.005		<0.0002		<0.00020		
Titanium, dissolved	mg/L		<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	40.005				<0.005	<0.005		<0.0050		<0.0050	<0.0050
Titanium, total	mg/L	<0.0050	<0.0010	<0.0010	<0.001	-0.001	- <0.001	-	-	-	-	-	-	<0.005	<0.005	<0.05	<0.005	-	-	<0.005	-	<0.0050	<0.0010	<0.0010
Tungsten, dissolved Tungsten, total	mg/L mg/L	<0.0010	<0.0010	<0.0010	<0.001	<0.001	- <0.001	-	-	-	-	-	_	-	-		-	-	-	-	-	<0.0010	<0.0010	<0.0010
Uranium, dissolved	mg/L	<0.0010	0.00011	0.000071	0.00141	0.00178	0.00155	0.00155	0.00115	0.001	0.00262	0.00152	0.00175	-	_		_	0.00158	0.00206	-	0.000121	- 0.0010	0.000954	0.00118
Uranium, total	mg/L	0.000068	0.00011	- 0.000071	0.00141	0.00178	- 0.00133	0.00133	0.00113	-	0.00202	0.00132	- 0.00173	0.00051	0.00108	0.0017	0.00134	0.00138	-	0.00225	0.000121	0.000895	0.000934	0.00118
Vanadium, dissolved	mg/L		<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00031	0.00108	- 0.0017	0.00134	<0.001	<0.001	0.00223	<0.0010	0.000633	<0.0010	<0.0010
Vanadium, total	mg/L	<0.0010	- 0.0010						-				-	<0.001	<0.001	<0.01	<0.001		-	<0.001		<0.0010		
Zinc, dissolved	mg/L		0.0066	<0.0040	0.037	0.0276	0.0435	0.029	0.046	0.019	0.045	0.028	0.032		-	-	-	0.015	0.022	-	0.0061	-	0.0431	0.055
Zinc, total	mg/L	0.0084	-	-	-	-	-	-	-	-	-	-	-	0.03	0.03	<0.04	0.018	-	-	0.024	-	0.0185	-	-
Zirconium, dissolved	mg/L	-	0.00155	0.00167	0.0005	0.00042	0.00034	0.0007	0.0007	0.0007	0.0004	0.0006	0.0006	-	-	-	-	0.0005	0.0003	-	0.0014	-	0.00057	0.00047
Zirconium, total	mg/L	0.00161	-	-	-	-	-	-	-	-	-	-	-	0.0007	0.0008	<0.001	0.0008	-	-	0.0004	-	0.00058	-	-
General Parameters	, ,,	-																						
Alkalinity, Bicarbonate (as CaCO3)	mg/L	481	477	522	435	401	415	-	-	-	-	-	-	-	-	-	419	410	396	399	489	439	409	452
Alkalinity, Carbonate (as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1	<1	<1	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1	<1	<1	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1	<1	<1	-	-	-	-	i	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	481	477	522	435	401	415	437	427	435	392	399	416	430	429	422	419	410	396	399	489	439	409	452
Ammonia, Total (as N)	mg/L	0.262	0.248	0.249	0.531	0.055	0.028	0.596	0.952	1.07	0.028	0.814	0.341	1.26	0.816	0.283	0.814	0.336	0.036	0.024	0.216	1.06	0.758	0.849
Bicarbonate (HCO3)	mg/L	587	582	637	531	489	506	-	-	-	-	-	-	-	-	-	511	500	483	486	596	536	499	552
Carbonate (CO3)	mg/L	<0.600	<0.600	<0.600	<0.6	<0.6	<0.6	-	-	-	-	-	-	-	-	-	<1	<0.6	<0.6	<0.600	<0.600	<0.600	<0.600	<0.600
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	1170	1150	1180	1150	1030	982	1160	1220	1230	979	1170	1120	1220	1130	1090	1210	1100	951	955	1160	1190	1140	1180
	<u>''</u>																							

r		1	1	1		1				ı		1	I							<u> </u>	1			
		DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4	DMW-4
	Sampling Location	2017 11 20	2019 06 26	2019 00 11	2010 05 20	2010 00 12	2010 10 20	2012 05 21	2012 00 20	2012 11 12	2014 06 02	2014 00 10	2014 11 04	2015 05 25	2015-08-25	2015 11 00	2016 05 02	2016 00 22	2016-11-14	2017 04 05	2017 00 20	2017 11 20	2019 06 26	2019 00 11
	Date Sampled Lab Sample ID	2017-11-20 7111886-05		2018-09-11 8090975-04	2019-05-29 9052874-07	2019-08-13	2019-10-29 N000444-06	2013-05-21 3051354-05	2013-08-20 3081378-04	2013-11-12 3110772-04	2014-06-02 4060249-04	2014-08-18 4081094-04	2014-11-04 4110161-04	2015-05-25 5051773-03		2015-11-09 5110693-02	2016-05-03 6050336-03	2016-08-22 6081698-03		2017-04-05 7040434-06	2017-08-29 7090074-03	2017-11-20 7111886-06	2018-06-26 8062674-03	2018-09-11 8090975-05
	Sample Type	Normal	Normal	Normal	3032874-07	9081276-07	11000444-00	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit	Normal	Normal	Normal				Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Norman	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Hardness, Total (as CaCO3)	mg/L	582	_	_	571	546	549	_	_	l -	_	_	l -	619	611	587	_	_	_	_	_	565	-	_
Hydroxide (OH)	mg/L	<0.340	<0.340	<0.340	<0.34	<0.34	<0.34	-	_	-	-	-	-	-	-	-	<1	<0.3	<0.3	<0.340	<0.340	<0.340	<0.340	<0.340
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH	pH Units	7.86	7.8	7.79	7.96	7.9	8.04	7.76	7.84	7.77	7.9	7.64	7.81	7.79	7.74	7.72	7.66	7.72	7.87	7.76	7.87	7.95	7.89	7.8
pH	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	5.34	4.61	-	0.27	0.27	0.18	0.2	0.2	0.3	5.5	0.2	0.2	0.5	0.2	0.2	0.2	0.3	0.24	0.25	7.35	0.37	0.32	-
Microbiological Parameters		•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•		-
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	1	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	1	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli, Total	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)																								
1,1-Dichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	-	<0.0003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-	-	-	<0.0003
1,2-Dibromoethane	μg/L	-	-	-	<0.3	-	<0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	ug/L	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0.0010	-	-	-	
1,2-Dichloropropane	mg/L	-	-	<0.0010	1	-	- 21	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
1,2-Dichloropropane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	ug/L μg/L	-	-	-		-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene 1,3-Dichlorobenzene	μg/L ug/L	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropenzene 1,3-Dichloropropene (cis + trans)	ug/L μg/L	-	-	-	<1	-	<1	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	ug/L	-	_	-	-	-	-	-		-		_	-	-	_	-	-	-	-	-	-	-		-
1,4-Dichlorobenzene	ug/L μg/L	-	_	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L ug/L	-	_	_	-	-	-	_	-	_	-	-	_	-	_	-	-	-	_	-	-	-	-	_
Benzene	mg/L	_	_	<0.0005	_	_	_	_	_	-	_	-	-	_	_	-	_	-	_	<0.0005	_	_	-	<0.0005
Benzene	μg/L	_	_	-	<0.5	_	<0.5	_	_	-	_	-	-	_	_	-	_	-	_	-	_	_	-	-
Benzene	ug/L	-	_	_	-	-	-	_	-	_	-	_	_	-	_	-	-	-	_	-	-	_	-	_
Bromodichloromethane	mg/L	_	_	<0.0010	_	_	_	_	_	-	_	-	-	_	_	-	_	-	_	<0.0010	_	_	-	<0.0010
Bromodichloromethane	μg/L	_	_	-	<1	_	<1	_	_	-	_	-	-	_	_	-	_	-	_	-	_	_	-	-
Bromodichloromethane	ug/L	_	_	_	-	_	-	_	_	-	_	-	-	_	_	-	_	-	_	_	_	_	-	_
Bromoform	mg/L	_	_	<0.0010	_	_	_	_	_	-	_	-	-	_	_	-	_	-	_	<0.0010	_	_	-	<0.0010
5. 55101111	'''8/ L	<u> </u>		10.0010							L	l				<u> </u>		L	1	10.0010		L		10.0010

		DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-1b	DMW-4																
Sar	npling Location	2		J	2		2													2				
	Date Sampled	2017-11-20		2018-09-11	2019-05-29	2019-08-13	2019-10-29	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11
	Lab Sample ID	7111886-05	8062674-02	8090975-04	9052874-07	9081278-07	N000444-06	3051354-05	3081378-04	3110772-04	4060249-04	4081094-04	4110161-04	5051773-03	5081710-03	5110693-02	6050336-03	6081698-03	6111141-05	7040434-06	7090074-03	7111886-06	8062674-03	8090975-05
	Sample Type	Normal	Normal	Normal				Normal																
Analyte	Unit		1			1								l	<u> </u>						l	<u> </u>	1	1
Bromoform	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	-	-	<0.0005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	<0.0005
Carbon tetrachloride	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	-	<0.0020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	<0.0020
Chloroethane	μg/L	-	-	-	<2	-	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Chloroform	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Dibromochloromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Dibromomethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/L	-	-	<0.0030	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0030	-	-	-	<0.0030
Dichloromethane	μg/L	-	-	-	<3	-	<3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Ethylbenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Methyl tert-butyl ether	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	•	-	-	1	-	-	-	-	-	-	-	-	•	-	-	-	-
Styrene	mg/L	-	-	<0.0010	-	-	-		-	-	1	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Styrene	μg/L	-	-	-	<1	-	<1	•	-	-	1	-	•	-	-	-	-	-	-	•	-	-	-	-
Styrene	ug/L	-	-	-	-	-	-		-	-	1	-	-	-	-	-	-	-	-	•	-	-	-	-
Tetrachloroethylene	μg/L	-	-	-	<1	-	<1	1	-	-	ı	-	•	-	-	-	-	-	-	1	-	-	-	-
Tetrachloroethylene	ug/L	-	-	-	-	-	-	1	-	-	ı	-	•	-	-	-	-	-	-	1	-	-	-	-
Toluene	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Toluene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Trichlorofluoromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010
Vinyl chloride	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	μg/L	-	-	-	<2	-	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	ug/L	-	_	_	-	_	-	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-	-
	, ~5/ L	!	1	1	1	1	1			1			1	1			ı		ı			ı	I	1
BCMOE Aggregate Hydrocarbons																								

						I	1		1	I	ı	l	l	I	l		T	1	1	T	1	ı		
	Compling Location	DMW-4	DMW-4	DMW-4	DMW-5	DMW-568	DMW-571	DMW-606	DUP	DUP A	DUP A	Hospital Creek	Kicking Horse	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Sampling Location Date Sampled	2018-12-03	2019-05-29	2019-08-13	2018-06-25	2018-06-27	2018-06-27	2018-06-27	2019-10-29	2019-05-29	2019-08-13	2018-12-04	2018-06-27	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2018-12-03	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09
	Lab Sample ID	8120636-04	9052874-08	9081278-08	8062668-01	8062808-02	8062808-03	8062808-01	N000444-07	9052874-09	9081278-09	8120636-06	8062805-03	K9E0816-03	K9K0184-01	K0B0397-02		8120636-01	K9E0816-02			K0F0788-03	K0K0729-01	K1E0403-03
	Sample Type	Normal	3032874-08	3081278-08	Normal	Normal	Normal	Normal	11000444-07	9032874-03	3081278-03	Normal	Normal	K9L0010-03	K3K0184-01	K0B0397-02	K010788-04	Normal	K9L0810-02	K3K0184-02	K0B0397-01	K010788-03	KUKU729-01	K1E0403-03
Analyte	Unit	Normal	I	<u> </u>	Normal	Normal	Normal	Normal			l	Normal	Normal				<u> </u>	Normal		<u> </u>				
Field Parameters	Offic	l																						
Depth to Water	l m	_	_	_	_			_		_	_	_		32.972	34	32.69	33.55	33.47	32.619	33	33.49	32.68	32.7	31.618
Dissolved Oxygen	mg/L	3.79	2.39	3.68				_			_	13.48		0.83	1.92	-		4.05	2.21	1.07	-	-	-	31.010
Electrical Conductivity	μS/cm	1000	1092	1129	1051	_	_	1895	_	_	_	360	220	6700	4700	4400	4300	3780	4600	4700	4400	4430	6600	4200
Elevation of Piezometric Surface	<u>да, е</u> m	-	-	-	-	_	_	-	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxidation reduction potential	mV	152	-70.4	-12.3	220	_	_	-113	_	_	_	_	138	_	-	-	73	110	_	-	-	73	173	175
pH	pH Units	7.18	7.27	7.18	7.38	-	_	7.31	_	-	-	7.49	8.48	6.78	6.86	6.76	7.01	6.81	6.87	6.84	6.79	6.86	6.91	6.75
Temperature	°C	7.1	12	11.2	13.5	-	-	10.7	-	-	-	0.1	10.1	10.8	9.4	9.4	11.3	8.9	12.5	10.5	10.9	11.6	10	12.2
Anions			ı	1				_			ı													
Bromide	mg/L	<0.10	_	_	_	_	_	_	_	_	_	<0.10	_	_	_	_	_	1.88	_	_	_	_	_	T -
Chloride	mg/L	10.9	49.5	42.4	1.75	51.1	20	32.7	391	397	395	0.97	4.04	688	574	715	665	358	674	604	713	667	732	556
Fluoride	mg/L	0.62	1.64	1.22	2.45	0.51	0.81	6.83	0.11	0.15	0.19	<0.10	-	-	-	-	-	0.25	-	-	-	-	-	-
Nitrate (as N)	mg/L	0.402	<0.01	<0.01	0.109	0.673	<0.010	<0.010	32.1	36.9	33.1	0.052	0.096	62.6	56.4	67.7	61.4	27.2	62	60	66.9	62.3	55	53.2
Nitrite (as N)	mg/L	0.035	<0.01	<0.01	<0.010	<0.010	<0.010	0.011	<0.01	<0.01	0.161	<0.010	-	<0.01	<0.01	<0.01	0.03	<0.010	<0.01	<0.01	0.02	0.03	<0.01	<0.01
Sulfate	mg/L	215	126	122	72.9	98.2	120	123	702	721	704	28.9	-	788	783	945	873	582	781	824	925	861	781	606
Metals	16/ -				 									1					1					
Aluminum, dissolved	mg/L	<0.0050	<0.005	<0.005	-		_	-	<0.005	<0.005	<0.005	<0.0050		0.006	<0.005	0.23	<0.005	0.0101	0.012	<0.005	0.009	0.006	<0.005	<0.005
Aluminum, total	mg/L	<0.0050	-	-	<0.0050	0.0079	<0.0050	0.0173	-	-	-	0.0088	-	_	-	-	-	_	_	_	-	-	-	-
Antimony, dissolved	mg/L	<0.00020	<0.0002	<0.0002	-	-	-	_	<0.0002	0.00044	<0.0002	<0.00020	-	0.0003	0.0003	0.0005	0.0005	0.00191	0.0006	0.0002	0.0006	0.0004	0.001	0.0006
Antimony, total	mg/L	<0.00020	-	-	0.0006	0.00021	<0.00020	<0.00020	-	-	-	<0.00020	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic, dissolved	mg/L	0.00146	0.0633	0.0414	-	-	-	-	<0.0005	<0.0005	<0.0005	<0.00050	-	0.0104	0.0029	0.003	0.0048	0.00063	0.0033	0.0028	0.0021	0.0044	0.0057	<0.0005
Arsenic, total	mg/L	0.00161	-	-	0.0674	<0.00050	<0.00050	0.00239	-	-	-	<0.00050	-	-	-	-	-	-	-	-	-	-	-	-
Barium, dissolved	mg/L	0.0224	0.0242	0.0229	-	-	-	-	0.047	0.0512	0.0491	0.0555	-	0.101	0.0566	0.0822	0.062	0.0465	0.087	0.0566	0.0831	0.0676	0.074	0.0595
Barium, total	mg/L	0.0154	-	-	<0.0050	0.0953	0.0833	0.0253	-	-	-	0.0589	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium, dissolved	mg/L	<0.00010	0.00011	0.00011	-	-	-	-	<0.0001	<0.0001	<0.0001	<0.00010	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Beryllium, total	mg/L	<0.00010	-	-	-	-	-	-	-	-	-	<0.00010	-	-	-	-	-	-	-	-	-	-	-	-
Bismuth, dissolved	mg/L	<0.00010	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	<0.0001	<0.00010	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth, total	mg/L	<0.00010	-	-	-	-	-	-	-	-	-	<0.00010	-	-	-	-	-	-	-	-	-	-	-	-
Boron, dissolved	mg/L	0.33	0.13	0.136	-	-	-	-	2.18	1.84	1.86	0.0091	-	1.12	1.05	1.28	1.08	1.95	1.09	0.921	1.24	1.14	1.48	1.31
Boron, total	mg/L	0.335	-	-	0.173	0.213	0.0545	0.961	-	-	-	0.0093	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, dissolved	mg/L	<0.000010	<0.00001	<0.00001	-	-	-	-	<0.00001	<0.00001	<0.00001	<0.000010	-	0.00006	0.00001	0.00002	0.00002	<0.000010	0.00005	0.00003	0.00004	0.00002	0.00002	0.00018
Cadmium, total	mg/L	0.00001	-	-	<0.000010	<0.000010	<0.000010	0.000121	-	-	-	<0.000010	-	-	-	-	-	-	-	-	-	-	-	-
Calcium, dissolved	mg/L	67.9	70.7	71.2	-	-	-	-	158	170	164	53.2	-	235	197	217	186	164	220	192	215	191	212	194
Calcium, total	mg/L	68.6	-	-	0.27	91.9	95.6	34.4	-	-	-	52.4	-	-	-	-	-	-	-	-	-	-	-	-
Chromium, dissolved	mg/L	<0.00050	0.00088	<0.0005	-	-	-	-	<0.0005	0.00105	<0.0005	<0.00050	-	0.006	0.0065	0.0342	0.0109	<0.00050	0.004	0.0082	0.0341	0.0117	0.0019	<0.0005
Chromium, total	mg/L	<0.00050	-	-	<0.00050	0.00076	<0.00050	<0.00050	-	_	-	<0.00050	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	mg/L	0.00076	0.00029	<0.0001	-	-	-	-	0.00164	0.00167	0.00168	<0.00010	-	0.00298	0.00108	0.00151	0.00142	0.00164	0.00415	0.0022	0.00258	0.00228	0.0014	0.00124
Cobalt, total	mg/L	0.00075	-	-	<0.00010	0.00049	0.00445	0.00104	-	-	-	<0.00010	-	-	-	-	-	-	-	-	-	-	-	-
Copper, dissolved	mg/L	0.00315	<0.0004	<0.0004	-	-	-	-	0.00217	0.00247	0.00201	<0.00040	-	0.008	0.0055	0.0143	0.0097	0.00328	0.0091	0.0056	0.0157	0.0077	0.0048	0.0019
Copper, total	mg/L	0.00488	-	-	0.00841	0.0582	0.00719	0.00196	-	-	-	0.00323	-	-	-	-	-	-	-	-	-	-	-	-
Iron, dissolved	mg/L	0.06	0.672	0.409	-	-	-	-	<0.01	<0.01	<0.01	<0.010	-	0.23	0.204	0.402	0.396	<0.010	0.219	0.196	0.195	0.425	0.396	<0.010
Iron, total	mg/L	0.062	-	-	0.059	0.466	0.552	3.6	-	-	-	<0.010	-	-	-	-	-	-	-	-	-	-	-	-
Lead, dissolved	mg/L	0.00032	<0.0002	<0.0002	-	-	-	-	<0.0002	<0.0002	<0.0002	<0.00020	-	<0.0001	<0.0001	0.0002	<0.0001	0.00048	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001
Lead, total	mg/L	0.00078	-	-	0.00149	0.00124	<0.00020	0.00134	-	-	-	0.00096	-	-	-	-	-	-	-	-	-	-	-	-
Lithium, dissolved	mg/L	0.0429	0.0269	0.0249	-	-	-	-	0.0453	0.0458	0.0438	0.00102	-	0.0341	0.0359	0.054	0.0477	0.0443	0.0305	0.0278	0.0574	0.0488	0.042	0.0377
Lithium, total	mg/L	0.0435	-	-	-	-	-	-	-	-	-	0.00107	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium, dissolved	mg/L	92.6	106	107	-	-	-	-	295	275	272	17.5	-	292	310	308	263	297	299	314	310	269	286	285
Magnesium, total	mg/L	94.9	-	-	2.05	107	118	19.7	-	-	-	18.1	-	-	-	-	-	-	-	-	-	-	-	-
Manganese, dissolved	mg/L	0.00333	0.00864	0.0041	-	-	-	-	0.0898	0.0792	0.0888	<0.00020	-	0.242	0.0862	0.115	0.113	0.00199	0.518	0.212	0.168	0.191	0.108	0.0937
Manganese, total	mg/L	0.00392	-	_	0.00103	0.0225	0.36	0.017	-	-	-	0.00048	-	-	-	-	_	_	-			-	-	-
Mercury, dissolved	mg/L	<0.000010	<0.00001	<0.00001	-	-	-	-	<0.00001	<0.00001	<0.00001	<0.000040	-	<0.00005	<0.00005	<0.00005	<0.00005	<0.000040	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00002
Mercury, total	mg/L	<0.000040	-	-	<0.000010	<0.000010	<0.000010	<0.000010	-	-	-	<0.000010	-	-	-	-	-	-	-	-	-	-	-	-

						1	1					Hospital	Kicking											$\overline{}$
s	ampling Location	DMW-4	DMW-4	DMW-4	DMW-5	DMW-568	DMW-571	DMW-606	DUP	DUP A	DUP A	Creek	Horse	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Date Sampled	2018-12-03	2019-05-29	2019-08-13	2018-06-25	2018-06-27	2018-06-27	2018-06-27	2019-10-29	2019-05-29	2019-08-13	2018-12-04	2018-06-27	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2018-12-03	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09
	Lab Sample ID	8120636-04	9052874-08	9081278-08	8062668-01	8062808-02	8062808-03	8062808-01	N000444-07	9052874-09	9081278-09	8120636-06	8062805-03	K9E0816-03	K9K0184-01	КОВОЗ97-02	K0F0788-04	8120636-01	K9E0816-02	К9К0184-02	КОВОЗ97-01	K0F0788-03	коко729-01	K1E0403-03
	Sample Type	Normal			Normal	Normal	Normal	Normal				Normal	Normal					Normal						
Analyte	Unit															1		1				,	1	
Molybdenum, dissolved	mg/L	0.00077	0.00037	0.00034	-	-	-	-	0.0003	0.00031	0.00032	0.00036	-	0.0006	0.0003	0.0003	0.0003	0.00047	0.0023	0.0009	0.0004	0.0006	0.0005	0.0003
Molybdenum, total	mg/L	0.0008	-	-	0.0009	0.00083	0.00107	0.00022	-	-	-	0.0004	-	-	-	-	-	-	-	-	-	-	-	-
Nickel, dissolved	mg/L	0.00116	0.0022	0.00217	-	-	-	-	0.0116	0.0114	0.0123	<0.00040	-	0.0163	0.0085	0.0112	0.0132	0.012	0.0148	0.0094	0.0115	0.0137	0.0154	0.007
Nickel, total	mg/L	0.00118	-	-	0.00076	0.0032	0.00347	0.00109		-	-	<0.00040	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, dissolved	mg/L	<0.050	<0.05	<0.05	-	-	-	-	<0.05	<0.05	<0.05	<0.050	-	0.039	<0.020	0.03	<0.020	<0.050	0.043	0.02	0.031	0.024	<0.020	<0.020
Phosphorus, total	mg/L	<0.050	4.62	4.68	-	-	-	-	172	171	176	<0.050 0.47	-	121	140	152	147	186	100	133	152	146	157	167
Potassium, dissolved Potassium, total	mg/L mg/L	7.11 7.38	4.02	4.06	1.07	8.26	10.6	14.5	173	171	176	0.47	-	131	149	153	147	- 100	109	- 155	153	146	-	- 107
Selenium, dissolved	mg/L	<0.00050	<0.0005	<0.0005	-	- 6.20	10.0	14.5	<0.0005	<0.0005	<0.0005	<0.00050	-	<0.0003	<0.0003	<0.0003	0.0018	<0.00050	<0.0003	<0.0003	<0.0003	0.0006	0.0018	0.0006
Selenium, total	mg/L	<0.00050	-	-	<0.00050	<0.00050	<0.00050	<0.00050	-	-	-	<0.00050	_	-	-	-	-	-	-	-	-	-		-
Silicon, dissolved	mg/L	7	7.3	7.7	-	-	-	-	13.7	11.3	12.3	3.3	-	10	10.1	22.4	8.42	12.8	9.21	9.1	17.6	10.8	8.95	12.4
Silicon, total	mg/L	7.2	-	-	-	-	-	-	-	-	-	3.3	-	-	-	-	-	-	-	-	-	-	-	-
Silver, dissolved	mg/L	<0.000050	<0.00005	<0.00005	-	-	-	-	<0.00005	<0.00005	<0.00005	<0.000050	-	<0.00005	<0.00005	<0.00005	<0.00005	<0.000050	0.00005	<0.00005	<0.00005	0.00006	0.00014	<0.00005
Silver, total	mg/L	<0.000050	-	-	-	-	-	-	-	-	-	<0.000050	-	-	-	-	-	-	-	-	-	-	-	-
Sodium, dissolved	mg/L	40.7	28.4	26.7	-		-	-	317	294	294	1.89	-	348	379	384	314	323	351	378	380	323	344	322
Sodium, total	mg/L	41.5	-	-	282	46.6	22.3	484				1.86	-					-					-	-
Strontium, dissolved	mg/L	4.1	1.73	1.76	-	-	-	-	1.56	1.69	1.66	0.174	-	2.53	2.21	2.04	2.04	1.75	2.42	2.09	2.07	2.12	2.25	1.95
Strontium, total	mg/L	4.14	-	-	0.0123	1.19	1.29	1.65	-	-	-	0.173	-	-	-	-	-	-	-	-	-	-	-	-
Sulfur, dissolved	mg/L	78.8	43.4	45.4	-	-	-	-	285	259	274	10.8	-	-	-	-	-	292	-	-	-	-	-	-
Sulfur, total	mg/L	81	-	-	-	-	-	-	-	-	-	10.1	-	-	-	-	-	-	-	-	-	-	-	-
Tellurium, dissolved	mg/L	<0.00050	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	<0.0005	<0.00050	-	<0.0002	<0.0002	<0.0002	<0.0002	<0.00050	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Tellurium, total	mg/L	<0.00050	-	-	-	-	-	-	-	-	-	<0.00050	-	-	-	-	-	-	-	-	-	-	-	-
Thallium, dissolved	mg/L	<0.000020	<0.00002	<0.00002	-	-	-	-	0.00006	0.000056	0.000061	<0.000020	-	0.00009	0.00006	0.00006	0.00007	0.000048	0.00008	0.00006	0.00007	0.00007	0.00007	0.00006
Thallium, total	mg/L	<0.000020	-	-	-	-	-	-	-	-	-	<0.000020	-	-	-	-	-	-	-	-	-	-	-	-
Thorium, dissolved	mg/L	<0.00010	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	<0.0001	<0.00010	-	-	<0.0001	<0.0001	<0.0001	<0.00010	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thorium, total	mg/L	<0.00010		0.000	-	-	-	-	0.000	- 0.0035		<0.00010	-	- 0.0003					- 0.0003				- 0.0003	
Tin, dissolved	mg/L	<0.00020	<0.0002	<0.0002	-	-	-	-	<0.0002	0.00025	<0.0002	<0.00020	-	0.0002	0.0002	0.0002	0.0002	0.00151	0.0003	<0.0002	<0.0002	<0.0002	0.0002	<0.0002
Titonium dissalved	mg/L	<0.00020 <0.0050	<0.005	<0.005	-	-	-	-	- <0.005		<0.005	<0.00020 <0.0050	-	<0.005	0.006	0.017	0.008	<0.0050	- -0.00F	0.005	0.005	0.000	0.014	<0.005
Titanium, dissolved	mg/L	<0.0050		<0.005	-	-	-	-	<0.005	<0.005	<0.005	<0.0050	-	- <0.005	0.006	0.017	0.008	<0.0050	<0.005	0.005	0.005	0.008	0.014	
Titanium, total Tungsten, dissolved	mg/L mg/L	<0.0030	<0.001	<0.001	-	-	<u> </u>		<0.001	<0.001	<0.001	<0.0030	<u> </u>	<u> </u>	-	-		<0.0010	<u> </u>		 	<u> </u>		-
Tungsten, total	mg/L	<0.0010	- 10.001		_		_					<0.0010		 	_	_	_	- 10.0010		_	<u> </u>	<u> </u>	_	
Uranium, dissolved	mg/L	0.00134	0.000111	0.00014	_	_	_	_	0.00747	0.00771	0.00761	0.000797	_	0.00761	0.00751	0.00639	0.00741	0.00793	0.00886	0.00757	0.007	0.00757	0.0079	0.00607
Uranium, total	mg/L	0.00131	-	-	0.00141	0.00174	0.00277	0.000176	-	-	-	0.000856	_	-	-	-	-	-	-	-	-	-	-	-
Vanadium, dissolved	mg/L	<0.0010	<0.001	<0.001	-	-	-	-	<0.001	<0.001	<0.001	<0.0010	-	0.0019	0.002	0.016	0.0062	<0.0010	0.0014	0.0026	0.0134	0.009	<0.0010	<0.001
Vanadium, total	mg/L	<0.0010	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-
Zinc, dissolved	mg/L	0.0189	0.0101	0.0045	-	-	-	-	<0.004	0.0047	<0.004	<0.0040	-	0.0063	0.0036	0.0086	0.0047	0.0057	0.0063	0.0029	0.0103	0.005	0.0044	0.004
Zinc, total	mg/L	0.0192	-	-	0.0153	0.0447	0.0671	1.27	-	-	-	0.0065	-	-	-	-	-	-	-	-	-	-	-	-
Zirconium, dissolved	mg/L	0.00053	0.00153	0.00162	-	-	-	-	0.00017	0.00015	0.00014	<0.00010	-	0.0008	0.0002	0.0004	0.0002	0.00021	0.001	0.0005	0.0003	0.0003	0.0002	0.0002
Zirconium, total	mg/L	0.00049	-	-	-	-	-	-	-	-	-	<0.00010	-	-	-	-	-	-	-	-	-	-	-	-
General Parameters																								
Alkalinity, Bicarbonate (as CaCO3)	mg/L	411	504	516	477	504	546	932	938	970	917	189	-	-	-	-	-	939	-	-	-	-	-	-
Alkalinity, Carbonate (as CaCO3)	mg/L	<1.0	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	-	-	-	-	-	<1.0	-	-	-	-	-	-
Alkalinity, Hydroxide (as CaCO3)	mg/L	<1.0	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	-	-	-	-	-	<1.0	-	-	-	-	-	-
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	<1.0	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	-	-	-	-	-	<1.0	-	-	-	-	-	-
Alkalinity, Total (as CaCO3)	mg/L	411	504	516	477	504	546	932	938	970	917	189	-	1380	762	768	787	939	1590	780	794	778	757	801
Ammonia, Total (as N)	mg/L	0.416	0.285	0.288	-	-	-	-	1 1110	1.06	1.3	<0.020	-	0.29	0.08	0.3	0.09	0.79	0.54	0.26	0.44	0.26	0.13	0.2
Bicarbonate (HCO3)	mg/L	502	615	630	582	615	667	1140	1140	1180	1120	230	-	-	-	-	-	1150	-	-	 	-	-	-
Chamical Oxygen Demand	mg/L	<0.600	<0.6	<0.6	<0.600	<0.600	<0.600	<0.600	<0.6	<0.6	<0.6	<0.600	-	-	-	-	-	<0.600	-	-	 	-	-	-
Chemical Oxygen Demand	mg/L μS/cm	1100	1160	1160	1020	1200	1190	2010		- 4130	2070	202	-	E110	4820	4790	4720	700	- 5090	4840	4780	4680	4640	4250
Electrical Conductivity Electrical Conductivity	μS/cm uS/cm	1100	1160	1160	1020	1200	1130	2010	3860	4130	3970	382	-	5110	4820	4/90	4720	789	5090	4840	4/80	4680	4640	4250
Electrical Conductivity	us/cm				<u> </u>	<u> </u>		-			-			<u> </u>					<u> </u>			1 -		

					1	1	1			I		Hoonital	Vielden							1				$\overline{}$
	Sampling Location	DMW-4	DMW-4	DMW-4	DMW-5	DMW-568	DMW-571	DMW-606	DUP	DUP A	DUP A	Hospital Creek	Kicking Horse	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Date Sampled	2018-12-03	2019-05-29	2019-08-13	2018-06-25	2018-06-27	2018-06-27	2018-06-27	2019-10-29	2019-05-29	2019-08-13	2018-12-04	2018-06-27	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2018-12-03	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09
	Lab Sample ID	8120636-04	9052874-08		8062668-01	8062808-02	8062808-03	8062808-01	N000444-07	9052874-09	9081278-09	8120636-06	8062805-03	K9E0816-03	K9K0184-01	K0B0397-02	K0F0788-04	8120636-01	K9E0816-02	K9K0184-02	K0B0397-01	K0F0788-03	K0K0729-01	
	Sample Type	Normal			Normal	Normal	Normal	Normal				Normal	Normal					Normal						
Analyte	Unit		1													ı								
Hardness, Total (as CaCO3)	mg/L	-	612	619	9.13	671	726	167	1610	1560	1530	-	-	-	-	-	-	_	-	_	_	-	-	-
Hydroxide (OH)	mg/L	<0.340	<0.34	<0.34	<0.340	<0.340	<0.340	<0.340	<0.34	<0.34	<0.34	<0.340	-	-	-	-	-	<0.340	-	-	-	-	-	-
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH	pH Units	7.83	7.99	7.96	7.88	7.89	7.97	8.02	7.73	7.61	7.66	8.21	_	7.4	7.28	7.32	7.55	7.32	7.4	7.29	7.49	7.57	7.35	7.5
pH	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
Phosphorus, Total Dissolved	mg/L	<0.0020	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	-	-	0.163	-	_	-	-	-	-
Total organic carbon	mg/L	-	-	-	_	_	_	_	-	_	-	-	-	_	_	-	-	_	_	_	_	_	-	-
Turbidity	NTU	0.58	6.97	3.56	0.11	2.38	1.96	42.6	114	222	235	0.83	-	_	9.1	1600	3500	176	2400	2900	830	1500	730	188
Microbiological Parameters															_									
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	_	_	_	-	T -
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli, Total	CFU/100 mL	-	-	-	<1	<1	<1	<1	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)	,			1																	•			
1,1-Dichloroethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
1,1-Dichloroethylene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	_	-	-	-	-
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	-	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	μg/L	-	<0.3	-	-	-	-	-	<0.3	<0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	1	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	1	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	μg/L	-	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	mg/L	_	_	_	_			_	<u> </u>	_	_		_	_	_	_	_	_	_	l .	_	_	_	_

		DMW-4	DRAWA A	DMW-4	DMW-5	DMW F69	DMW-571	DMW 606	DUD	DUP A	DUDA	Hospital	Kicking	MW09-6D	M14/00 6D	MANAGO ED	MANAGO ED	MW09-6D	M14/00 65	MANAGO CE	MANAGO 66	MANAGO CC	MANAGO 66	MWOO 66
	Sampling Location	DIVIVV-4	DMW-4	DIVIVV-4	DIVIVV-5	DMW-568	DIVIVV-3/1	DMW-606	DUP	DUPA	DUP A	Creek	Horse	IVIVVUS-6D	MW09-6D	MW09-6D	MW09-6D	IVIVVU9-6D	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Date Sampled	2018-12-03	2019-05-29	2019-08-13	2018-06-25	2018-06-27	2018-06-27	2018-06-27	2019-10-29	2019-05-29	2019-08-13	2018-12-04	2018-06-27	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2018-12-03	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09
	Lab Sample ID	8120636-04	9052874-08	9081278-08	8062668-01	8062808-02	8062808-03	8062808-01	N000444-07	9052874-09	9081278-09	8120636-06	8062805-03	K9E0816-03	K9K0184-01	K0B0397-02	K0F0788-04	8120636-01	K9E0816-02	K9K0184-02	K0B0397-01	K0F0788-03	K0K0729-01	K1E0403-03
	Sample Type	Normal			Normal	Normal	Normal	Normal				Normal	Normal					Normal						
Analyte	Unit		1	1							I			 	ı			I			1			
Bromoform	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	μg/L	-	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	μg/L	-	<2	-	-	-	-	-	<2	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
Dibromochloromethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	μg/L	-	<3	-	-	-	-	-	<3	<3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	μg/L	-	<1	-	-	-	-	-	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-		-
Vinyl chloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	μg/L	-	<2	-	-	-	-	-	<2	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BCMOE Aggregate Hydrocarbons																								
VPHw	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
																								

			_	1		1	1	1	1	1				1		1	1	1				1		
		MW09-6S																						
	Sampling Location				2012 20 20		2012 25 21								2015 11 00	2045 05 00			2247 24 25			2010.05.05		
	Date Sampled			2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-10	2019-05-29
	Lab Sample ID	K1H0536-02	K1J0685-01	2051369-03	2081484-01	2111131-01		3081378-01	3110772-01	4060249-06	4081094-06	4110161-06	5051773-06		5110693-03	6050336-01		6111141-03	7040434-03		7111886-01	8062674-01		9052874-01
A	Sample Type		1	Normal																				
Analyte	Unit]																						
Field Parameters	1	22.525	1 00 005	20.50	22.525	20.504	1		22.554	1	20.54	22.5	22.57	1 00.70	20.74	22.75	20.50		1	22.56	22.50			22.522
Depth to Water	m	32.625	32.625	32.59	32.605	32.624	32.629	32.64	32.651	32.6	32.61	32.6	32.67	32.78	32.74	32.76	32.59	32.57	-	32.56	32.68	32.73	32.47	32.588
Dissolved Oxygen	mg/L	-	-	-	-	-	-	-	-	0.28	1.56	1.07	1.36	1.74	0.95	0.46	0.43	1.98	-	1.17	0.6	-	3.51	2.06
Electrical Conductivity	μS/cm	3600	4000	4100	4600	480	3300	4900	3700	4240	4030	4610	4710	4550	4530	4700	4520	2270	4150	4120	3630	4260	4160	3759
Elevation of Piezometric Surface	m	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	885.687
Oxidation reduction potential	mV	67	167	135	210	164	231	228	-24	96	116	44	-7	-55	45	151	182	186	217	158	-	168	168	-4.3
рн	pH Units	6.87	6.73	6.86	6.97	6.9	6.87	6.63	6.64	4.8	7.3	6.7	6.5	6.7	6	6.7	6.7	/	7.3	7	/	7.03	7.02	6.89
Temperature	°C	12.4	11.1	11.2	12.5	12.2	12.4	12.1	12.2	13	13	12.3	14.1	12.8	12.5	12.5	13.5	12.2	11.8	12.6	12	13.1	11.6	11.7
Anions	1 .	1	Т	1		I	1	1	1	1	I			T	1		1	T		1	T	T	1	
Bromide	mg/L	-	-		-		-	-	-	-	-		0.47	1.09	1.48	0.13	2.81	1.14	0.88	2.16	2.84	0.38	<10.0	-
Chloride	mg/L	632	621	599	587	709	669	662	662	650	491	529	594	549	627	605	529	497	470	480	417	416	- 0.20	398
Fluoride	mg/L	-	-	0.11	0.31	0.14	0.12	0.14	<0.10	<0.10	0.11	0.25	0.14	0.1	0.23	0.17	0.16	0.33	0.14	<0.10	0.51	0.27	0.28	0.15
Nitrate (as N)	mg/L	66.5	56.3	0.010	54.6	59.1	62.3	54.5	54.7	52.1	41.8	48.9	38	34.1	33.3	44.1	37.7	40.1	42.3	35.3	32.6	31.3		33.8
Nitrite (as N)	mg/L	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.016	5.7	<0.010	<0.010	<0.010	<0.010	<0.01
Sulfate	mg/L	688	701	719	787	893	814	910	884	858	784	879	950	878	905	903	851	867	799	757	663	628	-	677
Metals	· · · · · ·		1	1		1		1	1	1				T			1				1			
Aluminum, dissolved	mg/L	<0.005	<0.005	0.005	<0.005	<0.005	0.006	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	0.024	0.859	<0.005	<0.005	0.007	0.006	0.0067	<0.0050	0.927	0.0081	<0.005
Aluminum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony, dissolved	mg/L	0.0004	<0.0020	0.0002	0.0009	0.0009	0.0009	0.0011	0.001	0.0003	0.0005	0.0003	0.0005	0.0005	0.0004	0.0006	<0.0001	0.0002	0.0001	<0.00020	<0.00020	0.00116	0.00076	0.00042
Antimony, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic, dissolved	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.001	0.0034	<0.0005	<0.0005	0.0007	0.00055	<0.00050	0.00117	0.00067	<0.0005
Arsenic, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium, dissolved	mg/L	0.059	0.051	0.062	0.066	0.067	0.067	0.065	0.061	0.059	0.054	0.058	0.062	0.062	0.071	0.055	0.058	0.057	0.057	0.051	0.05	0.0748	0.0491	0.0515
Barium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	0.003	<0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001
Beryllium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bismuth, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001
Bismuth, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Boron, dissolved	mg/L	1.18	1.26	1.23	1.29	1.43	1.47	1.53	1.64	1.67	1.6	1.61	2.04	1.9	1.77	2.12	2.08	1.76	2.03	1.86	1.57	1.7	1.6	1.8
Boron, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, dissolved	mg/L	0.00001	0.00002	<0.00001	<0.00001	0.00002	0.00002	0.00003	0.00001	<0.00001	<0.00001	0.00001	0.00002	<0.00001	0.00003	<0.00001	0.00002	0.00003	<0.00001	<0.000010	<0.000010	0.000036	<0.000010	<0.00001
Cadmium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium, dissolved	mg/L	177	177	180	182	193	218	235	231	218	217	209	199	197	208	202	179	168	163	180	167	186	148	170
Calcium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium, dissolved	mg/L	<0.0005	<0.0005	<0.0005	0.0016	0.0006	0.0009	<0.0005	0.0066	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0017	0.0057	0.0008	<0.0005	0.0006	0.00063	<0.00050	0.00169	<0.00050	0.00093
Chromium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	mg/L	0.00116	0.00093	0.00136	0.00114	0.00108	0.00148	0.00128	0.00127	0.001	0.00118	0.00133	0.00141	0.00149	0.00204	0.00198	0.00164	0.00183	0.00164	0.00161	0.00164	0.00212	0.00162	0.00163
Cobalt, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper, dissolved	mg/L	0.0015	0.017	0.0009	0.0018	0.0016	0.0014	0.0021	0.0013	0.0169	0.0017	0.0018	0.0028	0.042	0.2	0.0065	0.0051	0.217	0.0028	0.00681	0.00211	0.00664	0.00312	0.00252
Copper, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron, dissolved	mg/L	<0.01	<0.01	<0.01	0.02	0.01	0.028	<0.010	0.105	<0.010	0.012	0.011	0.011	0.062	1.21	0.609	0.021	0.02	<0.010	0.013	<0.010	1.43	0.046	<0.01
Iron, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	<0.0001	0.0014	0.0039	<0.0001	<0.0001	<0.0001	<0.0001	<0.00020	<0.00020	0.00191	<0.00020	<0.0002
Lead, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lithium, dissolved	mg/L	0.0364	0.0335	0.0361	0.0382	0.0395	0.045	0.0479	0.0486	0.052	0.0497	0.0501	0.0483	0.0513	0.0462	0.0519	0.0396	0.0438	0.0484	0.0452	0.042	0.045	0.0403	0.0448
Lithium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium, dissolved	mg/L	259	246	308	308	321	349	378	347	351	335	329	332	339	322	327	331	309	302	298	267	259	274	276
Magnesium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese, dissolved	mg/L	0.0894	0.0932	0.072	0.0683	0.0882	0.112	0.122	0.119	0.0908	0.121	0.132	0.0747	0.087	0.157	0.0791	0.0793	0.0731	0.0597	0.0887	0.0697	0.147	0.0262	0.0826
Manganese, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury, dissolved	mg/L	<0.00002	0.00005	<0.00002	0.00008	0.00004	0.00002	0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.000010	0.000041	<0.000010	<0.000040	<0.00001
Mercury, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

		1	1	1															1	1	1			
	Sampling Location	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Date Sampled	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-10	2019-05-29
	Lab Sample ID	K1H0536-02	K1J0685-01	2051369-03	2081484-01	2111131-01	3051354-01	3081378-01	3110772-01	4060249-06	4081094-06	4110161-06	5051773-06	5081710-04	5110693-03	6050336-01	6081698-01	6111141-03	7040434-03	7090074-01	7111886-01	8062674-01	8090975-01	9052874-01
	Sample Type			Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	
Analyte	Unit																							
Molybdenum, dissolved	mg/L	0.0003	0.0036	0.0003	0.0018	0.0005	0.0006	0.0003	0.0007	0.0003	0.0003	0.0003	0.0004	0.0004	0.0037	0.0003	0.0003	0.0012	0.0003	0.00031	0.00032	0.00027	0.00033	0.00036
Molybdenum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel, dissolved	mg/L	0.0067	0.0067	0.0073	0.008	0.008	0.0155	0.0097	0.0176	0.0078	0.0097	0.0103	0.0093	0.0109	0.0119	0.0139	0.0114	0.0116	0.011	0.0113	0.0116	0.0122	0.0123	0.0116
Nickel, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, dissolved	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.05	<0.050	<0.050	0.053	<0.050	<0.05
Phosphorus, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Potassium, dissolved	mg/L	160	148	170	161	178	202	228	210	222	232	246	215	217	199	209	213	211	209	200	184	189	180	172
Potassium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Selenium, dissolved	mg/L	0.0006	<0.0005	0.0007	<0.0005	<0.0005	<0.0005	0.0008	<0.0005	<0.0005	0.0006	0.0006	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.0005
Selenium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silicon, dissolved	mg/L	11.5	10.2	12.2	11.4	11.9	11.9	12.5	11.1	12	12.3	13.7	12.7	12.7	12.9	13.3	11.2	12.1	12.6	11.6	11.2	13.8	11.3	11.3
Silicon, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver, dissolved	mg/L	0.00012	0.00009	<0.00005	<0.00005	0.00011	0.0001	<0.00005	0.00008	<0.00005	<0.00005	<0.00005	0.00007	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.000050	<0.000050	<0.000050	<0.000050	<0.00005
Silver, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium, dissolved	mg/L	298	290	346	362	375	409	444	407	372	385	428	385	394	375	359	366	347	343	334	285	261	297	294
Sodium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Strontium, dissolved	mg/L	1.88	1.74	1.91	2	2.11	2.18	2.28	2.1	2.15	2.06	2.04	1.92	2.05	1.9	1.95	1.84	1.76	1.74	1.62	1.73	1.65	1.65	1.7
Strontium, total	mg/L	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Sulfur, dissolved	mg/L	-	-	266	298	339	359	405	366	337	340	398	343	362	342	281	336	312	284	268	273	266	257	263
Sulfur, total	mg/L						0.000				0.000			- 0.0003			0.000					-0.00050	-0.00050	
Tellurium, dissolved	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0003	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.00050	<0.00050	<0.00050	<0.00050	<0.0005
Tellurium, total	mg/L	0.00005	0.00006	0.00005	0.00005	0.00022	0.00005	0.00000	0.00007	0.00005	0.00007	0.00007	0.00007	0.00006	0.00007	0.00006	0.00006		0.00006	-0.000030	0.000058	0.00006	0.000057	0.000061
Thallium, dissolved	mg/L	0.00005	0.00006	0.00005	0.00005	0.00022	0.00005	0.00009	0.00007	0.00005	0.00007	0.00007	0.00007	0.00006	0.00007	0.00006	0.00006	0.00006	0.00006	<0.000020	0.000058	0.00006	0.000057	0.000061
Thallium, total Thorium, dissolved	mg/L mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	0.00067	<0.00010	<0.0001
Thorium, total	mg/L	\0.0001	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 0.0001	\0.0001	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		<0.0001	<0.0001 -		- 0.0001			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.0000		<0.0001	<0.0001	\0.0001	\0.00010	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.00007		\(\text{0.0001}\)
Tin, dissolved	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0005	0.0013	<0.0002	0.0003	0.0003	<0.0002	0.00026	0.00023	0.00031	<0.00020	0.00028
Tin, total	mg/L	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium, dissolved	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.038	0.014	<0.005	<0.005	<0.005	<0.0050	<0.0050	0.0525	<0.0050	<0.005
Titanium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tungsten, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	<0.0010	<0.001
Tungsten, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium, dissolved	mg/L	0.00602	0.00607	0.0058	0.00698	0.00686	0.00779	0.00823	0.00765	0.00721	0.00777	0.00802	0.00729	0.00779	0.00804	0.00863	0.00753	0.00717	0.00734	0.00769	0.00796	0.00707	0.00763	0.00748
Uranium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium, dissolved	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.002	<0.001	<0.001	<0.001	<0.0010	<0.0010	0.0013	<0.0010	<0.001
Vanadium, total	mg/L	-	-	-	-		-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-
Zinc, dissolved	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.009	0.005	0.005	0.006	0.027	0.067	0.009	0.035	0.199	0.005	0.034	<0.0040	0.0229	0.0044	0.0048
Zinc, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zirconium, dissolved	mg/L	0.0001	0.0001	0.0001	0.0003	0.0001	0.0002	0.0002	0.0001	0.0001	0.0004	0.0004	0.0002	0.0001	0.0008	0.0002	0.0001	0.0001	0.0002	0.00014	0.00012	0.00083	0.00019	0.00014
Zirconium, total	mg/L	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
General Parameters																								
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	857	878	907	902	878	929	1050	1140	963
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1
Alkalinity, Total (as CaCO3)	mg/L	800	784	805	813	790	902	771	798	818	802	832	855	865	897	857	878	907	902	878	929	1050	1140	963
Ammonia, Total (as N)	mg/L	0.18	0.16	0.133	0.274	0.406	0.432	0.462	0.518	0.39	0.588	0.408	0.644	0.614	0.899	1.4	1.21	0.94	1.19	0.935	1.17	1.26	1.12	1.42
Bicarbonate (HCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1050	1070	1110	1100	1070	1130	1280	1390	1180
Carbonate (CO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.6	<0.6	<0.600	<0.600	<0.600	<0.600	<0.600	<0.6
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	4230	4320	4380	4670	5040	5020	5150	5220	4840	4750	4850	4640	4520	4570	4650	4480	4430	4350	4170	4190	4060	4070	3990
Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

		1	1								<u> </u>	1	1			1			1	1	1			
	Canadina Lasatian	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Sampling Location Date Sampled		2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-10	2019-05-29
	Lab Sample ID	K1H0536-02		2051369-03	2012-08-22	2111131-01		3081378-01	3110772-01	4060249-06		4110161-06	5051773-06		5110693-03	6050336-01	6081698-01	6111141-03	7040434-03	7090074-01	7111886-01	8062674-01	8090975-01	1 1
	Sample Type	A RITIOSSO OZ	KIJOOOJ OI	Normal	3032074 01																			
Analyte	Unit		ı	1		1				1	1		1	1	1		1							-
Hardness, Total (as CaCO3)	mg/L	-	_	-	_	_	_	-	-	_	_	_	_	_	_	-	_	_	_	_	_	_	-	1560
Hydroxide (OH)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.3	<0.3	<0.340	<0.340	<0.340	<0.340	<0.340	<0.34
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH	pH Units	7.39	7.35	7.45	7.35	6.96	7.4	7.46	7.36	7.65	7.39	7.49	7.37	7.34	7.3	7.55	7.42	7.68	7.42	7.6	7.51	7.39	7.45	7.61
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	79	155	437	267	32.2	448	163	84.6	3.7	47.2	196	6.9	1.6	205	1.6	1.89	220	1.03	46.9	387	2210	-	203
Microbiological Parameters		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		1
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli, Total	CFU/100 mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)																								
1,1-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-	-	-	<0.0003	-
1,2-Dibromoethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.3
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
1,2-Dichloropropane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,3-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,3-Dichloropropene (cis + trans)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,4-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	<1
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	<0.0005	-
Benzene	mg/L	-	-	-	-	-	-		-				-		-	-	-			-	-	-		
Benzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5
Benzene Bromodichloromothano	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0.0010	-	-	-	- 0.0010	-
Bromodichloromethane Bromodichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	
Bromodichloromethane Bromodichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Bromodichloromethane Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0.0010	-	-	-	- 0.0010	-
Bromoform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-

		MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S	MW09-6S
	Sampling Location			"""	1111105 05	1111105 05					1111103 03		1111103 03				"""			1111105 05		1111103 03	1111105 05	1111105 05
	Date Sampled	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-10	2019-05-29
	Lab Sample ID	K1H0536-02	K1J0685-01	2051369-03	2081484-01	2111131-01	3051354-01	3081378-01	3110772-01	4060249-06	4081094-06	4110161-06	5051773-06	5081710-04	5110693-03	6050336-01	6081698-01	6111141-03	7040434-03	7090074-01	7111886-01	8062674-01	8090975-01	9052874-01
	Sample Type			Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	
Analyte	Unit			1	1	1		ı											1					
Bromoform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	<0.0005	-
Carbon tetrachloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	<0.0020	-
Chloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Chloroform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Dibromochloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	<0.0010	-	-	-	<0.0010	-
Dibromomethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	<1
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-
Dichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	•	<0.0030	-	-	-	<0.0030	-
Dichloromethane	μg/L	-	-	-	-	-	-	-	-	-	1	-		-	-	-	-	-	-	-	-	-	-	<3
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	1	-		-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Ethylbenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Methyl tert-butyl ether	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Styrene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Styrene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
, Toluene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0066	-	-	-	<0.0010	-
Toluene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Trichlorofluoromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<0.0010	-
Vinyl chloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	<1
Vinyl chloride	ug/L	_	_	_	_	-	-	_	-	_	_	-	-	-	_	-	_	_	_	-	_	_	-	-
Xylenes (total)	μg/L	_	-	-	_	-	-	-		-	-		-	-	_	_	-		_	-	-	_	_	<2
Xylenes (total)	ug/L		-	 		_		-					-									-		
BCMOE Aggregate Hydrocarbons	l ng/r	<u> </u>	<u> </u>	<u> </u>		<u> </u>	I -	<u> </u>	-	<u> </u>	=	=	=		ı - I			<u> </u>	<u> </u>	<u> </u>	<u> </u>	· -	<u> </u>	1 -

																								Т
	Sampling Location	MW09-6S	MW09-6S	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW10-8	MW15-01
	Date Sampled	2019-08-13	2019-10-29	2010-11-16	2011-05-09	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2015-11-09
	Lab Sample ID	9081278-01	N000444-01	K0K0729-02	K1E0403-01	K1E0403-04	K1H0536-01	K1J0685-02	2051369-04	2081484-02	2111131-02	3051354-02	3081378-05	3110772-05	4060249-05	4081094-05	4110161-05	5051773-05	8090975-03	8120636-03	9052874-02	9081278-02	N000444-02	5110701-01
	Sample Type								Normal				Normal											
Analyte	Unit																							
Field Parameters																								
Depth to Water	m	32.574	32.566	14.14	13.903	-	13.945	13.78	13.59	13.85	14.109	14.252	14.381	16.281	15.19	13.84	14.99	15.37	15.91	14.72	13.834	13.792	14.572	11.04
Dissolved Oxygen	mg/L	1.75	2.56	-	-	-	-	-	-	-	-	-	-	-	7.43	7.85	8.3	7.05	10.98	9.05	7.3	9.5	9.28	1.42
Electrical Conductivity	μS/cm	3660	3607	2100	2800	-	2700	3100	3200	3500	340	2200	3300	2700	2740	2770	3150	2960	2910	2700	2444	2850	2945	1056
Elevation of Piezometric Surface	m	885.701	885.709	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	906.334	906.376	905.596	<u> </u>
Oxidation reduction potential	mV	-8.3	173	-138	2800	-	83	143	124	52	122	254	121	47	87	132	24	23	100	158	-17.1	42.1	175.3	50
рН	pH Units	6.72	7.04	8.44	7.85	-	7.51	7.33	7.43	7.54	7.6	7.4	7.37	7.23	3.1	7.3	7.4	7.3	7.57	7.23	7.5	7.47	7.59	6.5
Temperature	°C	11.9	11	5.9	8.7	-	8.1	6.9	7.9	8.4	7.1	8.9	8.6	7.5	8.1	9.5	7.5	9.7	8.3	6.8	7.9	9.1	6.4	9.3
Anions		1										1												↓
Bromide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10	<0.10	<0.10	- /	-	-	<0.10
Chloride	mg/L	388	391	523	663	-	844	873	834	888	988	762	820	815	672	672	700	666	509	580	605	651	736	125
Fluoride	mg/L	0.18	0.11	-	-	-	-	-	0.12	0.13	0.12	0.23	0.24	0.25	0.27	0.13	0.26	0.26	0.28	0.22	0.29	0.22	0.2	<0.10
Nitrate (as N)	mg/L	33.6	31	0.22	<0.010	-	0.341	0.58	0.59	0.141	0.339	0.566	0.929	<0.010	0.206	1.11	0.723	0.695	0.94	0.778	0.942	0.89	1.22	1.19
Nitrite (as N)	mg/L	0.154	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.01	<0.01	<0.01	<0.010
Sulfate	mg/L	698	700	72.9	44.3	-	44.4	55.2	36.5	37.4	57.6	53.2	45.1	56.2	38.1	44.7	47.5	39.4	48.6	51.8	47.5	48.8	43.5	45.8
Metals	<u> </u>					I																	2.20	
Aluminum, dissolved	mg/L	<0.005	<0.005	0.007	-	0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.006	0.01	<0.005	<0.0050	<0.0050	<0.005	<0.005	<0.005	0.008
Aluminum, total	mg/L			- 0.0000		-			-						- 0.0000	-		-						0.455
Antimony, dissolved	mg/L	<0.0002	<0.0002	0.0008	0.0015	-	0.001	<0.0020	0.0003	0.0016	0.0009	0.0007	0.0004	0.0007	0.0003	0.0003	0.0013	0.0019	0.00028	0.00029	<0.0002	<0.0002	<0.0002	<0.0001
Antimony, total	mg/L			0.0107	- 0.0140	-	0.0004	0.0024	- 0.0039	0.0020	0.0024	0.0024	0.0020	0.0040	0.0024	- 0.0042	0.0016	- 0.0000	0.000	0.00204	0.00245	- 0.0022	0.00353	<0.0001
Arsenic, dissolved	mg/L	<0.0005	<0.0005	0.0107	0.0149	-	0.0061	0.0031	0.0028	0.0039	0.0024	0.0024	0.0029	0.0018	0.0024	0.0042	0.0016	0.0039	0.002	0.00204	0.00215	0.0022	0.00353	<0.0005
Arsenic, total	mg/L	0.054	0.047	0.125	0.257	-	0.246	0.105	0.355	0.271	0.25	0 227	0.220	0.357	0.103	0.225	0.242	0.212	0 174	0.100	0.10	0.200	0 222	<0.0005
Barium, dissolved	mg/L	0.051	0.047	0.125	0.257	-	0.246	0.195	0.255	0.271	0.25	0.227	0.239	0.257	0.192	0.235	0.242	0.212	0.174	0.199	0.19	0.208	0.223	0.154 0.184
Barium, total	mg/L	<0.0001		<0.0001	<0.0001	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	1
Beryllium, dissolved Beryllium, total	mg/L mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-	<0.0001	\0.0001	<0.0001	<0.0001		\U.UUU1	<0.0001	\0.0001	<0.0001	<0.0001	<0.0001	-0.0001	~0.00010	<u></u>	\U.UUU1		<0.0001	<0.0001 0.0001
Bismuth, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001
Bismuth, total	mg/L	- 0.0001	- <0.0001	- 0.0001									- 0.0001		-	- 0.0001		- 0.0001	-		- 0.0001			<0.0001
Boron, dissolved	mg/L	1.85	2.22	0.093	0.034	-	0.028	0.027	0.031	0.017	0.024	0.025	0.051	0.041	0.031	0.035	0.024	0.02	0.0602	0.0413	0.0476	0.0574	0.196	0.029
Boron, total	mg/L	-	-	-	-	_	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	0.028
Cadmium, dissolved	mg/L	<0.00001	<0.00001	0.00009	0.00002	-	<0.00001	0.00008	<0.00001	<0.00001	0.00003	0.00004	0.00001	0.00002	0.00002	0.00003	0.00001	0.00004	<0.000010	<0.000010	<0.00001	0.000011	<0.00001	<0.0001
Cadmium, total	mg/L	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00001
Calcium, dissolved	mg/L	163	156	73.8	-	90.6	103	100	102	107	110	107	120	128	103	116	116	101	84	93.3	94.8	100	103	97.5
Calcium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	118
Chromium, dissolved	mg/L	<0.0005	<0.0005	0.0025	<0.0005	-	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0007	<0.00050	<0.00050	0.00104	<0.0005	<0.0005	<0.0005
Chromium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0018
Cobalt, dissolved	mg/L	0.00165	0.00157	0.00537	0.0198	-	0.00674	0.00078	0.00219	0.00342	0.00264	0.00126	0.00127	0.00151	0.00111	0.00024	0.00096	0.00012	<0.00010	<0.00010	0.00092	0.00039	<0.0001	0.00007
Cobalt, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00062
Copper, dissolved	mg/L	0.00199	0.00229	0.0031	<0.0002	-	<0.0002	0.0054	<0.0002	0.001	0.001	0.0014	<0.0002	0.0012	0.0011	0.004	0.0008	0.0051	0.00086	<0.00040	0.00076	0.00067	0.00146	0.0019
Copper, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0281
Iron, dissolved	mg/L	<0.01	<0.01	0.347	3.01	-	1.87	0.02	0.12	0.15	0.03	0.011	0.038	0.012	0.111	0.015	0.049	0.015	<0.010	<0.010	0.013	0.011	<0.01	0.019
Iron, total	mg/L	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-		-	1.07
Lead, dissolved	mg/L	<0.0002	0.00096	0.0002	<0.0001	-	<0.0001	0.0002	<0.0001	<0.0001	0.0007	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00020	0.00056	<0.0002	<0.0002	<0.0002	<0.0001
Lead, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0008
Lithium, dissolved	mg/L	0.0434	0.044	0.02	-	0.0248	0.0224	0.0193	0.0182	0.019	0.019	0.0203	0.022	0.0233	0.0223	0.0219	0.0212	0.0188	0.0198	0.0218	0.021	0.0217	0.0227	0.0049
Lithium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0061
Magnesium, dissolved	mg/L	268	292	96.5	160	-	144	130	139	129	139	139	151	155	132	132	130	117	120	128	115	125	125	48.5
Magnesium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	57.5
Manganese, dissolved	mg/L	0.0868	0.0864	0.219	0.492	-	0.349	0.035	0.0785	0.0546	0.172	0.0896	0.0336	0.0871	0.038	0.0049	0.027	0.0031	0.00139	0.00063	0.0174	0.0069	0.00106	0.0043
Manganese, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	0.0238
			1	1	1	1				1		1		1							1	1	· ——	0.0000
Mercury, dissolved	mg/L	<0.00001	<0.00001	<0.00005	-	0.00002	0.00002	0.00008	0.00003	0.00006	0.00003	0.00002	<0.00002	<0.00002	<0.00002	0.00002	0.00002	<0.00002	<0.000040	<0.000040	<0.00001	<0.00001	<0.00001	<0.00002

Part	19-08-13	0-29 201: 14-02 5110 No 035 0. 098 0. 055 < 6 2 005 <0 66
Part	81278-02 N000444-02 51 0.00056	14-02 5110 No 035 0. 098 0. 055 < 66 2 005 <0 66
Part	81278-02 N000444-02 51 0.00056	14-02 5110 No 035 0. 098 0. 055 < 66 2 005 <0 66
Part	0.00056	No. 335 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Mary Mary Mary Mary Mary Mary Mary Mary		0.098 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <
Mary Mary Mary Mary Mary Mary Mary Mary		0.098 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <
Marchel Share Marchel Shar	0.00287	0.05
Marke Mark		0. 0. 05 < 6 2. 005 <0 6 6
Perspanse, proceded mg/s col.	<0.05	05 < 6 2 005 <0 <0
Property Start Prop		6 2 005 <0 <0
Pattern Patt	5.87 6.26 	6 2 2005 <0 <0
Personang-stand mg/s mg/	<- <- <- <- <- <- <- <- <- <- <- <	005 <0
Seminary Horisone March	0.0005 <0.0005 < < 9.2 10.6 0.00005 <0.00005 <	<0 <0 6
Selection Mark Ma	9.2 10.6 0.00005 <0.00005 <	<0 6
Second personant	9.2 10.6 0.00005 <0.00005 <	6
Since, Island mg/s		_
Series of Series Might Calconomy C	0.00005 < 0.00005 <	
Septentional Mig/L 2.88 3.06 1.78 3.12 3.14 3.05 3.46 3.50 3.86		
Sedium, India mg/L 288 306 178 312 . 341 305 436 450 390 390 386 392 336 399 436 365 365 370 310 500		005 <0.
Second Margin M	(0.0
Strontium, dissolved mg/L 1.7 1.54 1.03 1.66	334 431	1
Suffix (stable mg/L		
Suffix, dissolved mg/L 271 277 - - - - 19 17 28 21 20 18 18 17 20 16 17.2 20.2 17.1 17.5 20.5 18.5 18 18 17 20 16 17.2 20.2 17.1 17.5 20.5 18.5 18 18 17 20 16 17.2 20.2 17.1 17.5 20.5 18.5 18 18 17 20 16 17.2 20.2 17.1 17.5 20.5 18.5 18 18 17 20 16 17.2 20.2 17.1 17.5 20.5 18.5 18 18 17 20 16 17.2 20.2 17.1 17.5 20.5 18.5 18 18 17 20 16 17.2 20.2 17.1 17.5 20.5 20.5	1.45 1.31	1 0
Sulfur, total mg/L		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.1 17.5	5
Tellurium, total mg/L 0.00062 0.000061 <0.00002 <0.000002 <0.000002 <0.000002 <0.000002 <0.000002 <0.000002 <0.000001 <0.00001 <0.00001 <0.00002 <0.00003 0.00007 <0.00002 0.00008 <0.00002 0.000004 <0.00002 0.00007 40.00002 0.00007 <0.00002 <0.000004 <0.00002 0.000004 <0.00001 0.00007 40.00002 0.000004 <0.00001 <0.00001 0.00007 40.00001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0		
Thailium, dissolved mg/L 0.000062 0.000061 0.000062 0.00062 0.00	<0.0005 <0.0005 <	005 <0
Thaillum, total mg/L	<	<0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.000032 <0.00002 <	002 <0.
Thorium, total mg/L	<	<0.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-
Tin, total mg/L		<u>_</u> _
Titalium, dissolved mg/L <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0		-
Titanium, total mg/L		<u>_</u>
Tungsten, dissolved mg/L < 0.001 < 0.001		-
Tungsten, total mg/L		
Uranium, dissolved mg/L 0.00775 0.00734 0.00216 - 0.00166 0.00196 0.00205 0.00213 0.00218 0.00213 0.00218 0.00223 0.00205 0.0021 0.00218 0.00227 0.00193 0.00231 0.00238 0.0023 0.0024 Uranium, total mg/L -	0.0035 0.0012	
Uranium, total mg/L -		
Vanadium, dissolved mg/L < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001		
Vanadium, total mg/L		<u>_</u>
Zinc, dissolved mg/L <0.004 <0.004 0.0037 <0.0040 - <0.004 0.007 0.008 0.008 <0.004 0.011 <0.004 <0.004 <0.004 0.005 0.012 0.008 <0.0040 <0.0040 <0.0040 <0.004 <0.004		_
		_
General Parameters		- 0
	500 518	3
	<1 <1	-
	<1 <1	-
	<1 <1	-
		-
	500 518	-
	500 518 0.118 0.075 610 632	-
Chemical Oxygen Demand mg/L	0.118 0.075	_
	0.118 0.075 610 632	0 1
Electrical Conductivity uS/cm	0.118	

				I																	1			
	Sampling Location	MW09-6S	MW09-6S	MW10-8	MW15-01																			
	Date Sampled	2019-08-13	2019-10-29	2010-11-16	2011-05-09	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2015-11-09
	Lab Sample ID	9081278-01				K1E0403-04	K1H0536-01	K1J0685-02	2051369-04	2081484-02	2111131-02	3051354-02	3081378-05	3110772-05	4060249-05	4081094-05	4110161-05	5051773-05	8090975-03	8120636-03	9052874-02		N000444-02	
	Sample Type								Normal				Normal											
Analyte	Unit		'		•			<u> </u>			•							•			•			
Hardness, Total (as CaCO3)	mg/L	1510	1590	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	712	767	772	532
Hydroxide (OH)	mg/L	<0.34	<0.34	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.340	<0.340	<0.34	<0.34	<0.34	-
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	pH Units	7.61	7.61	7.97	-	7.95	7.76	7.78	7.85	7.74	6.95	7.78	7.86	7.86	7.94	7.74	7.82	7.81	7.83	7.81	8.04	7.91	8.04	7.65
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.017
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	-
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Turbidity	NTU	248	77.2	87	641	-	-	71.1	-	2350	1910	620	664	1220	292	186	1180	122	-	3750	294	3080	671	37.8
Microbiological Parameters					1																			
Coliforms, Fecal	CFU/100 mL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	<u> - </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<3.0
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	L <u>-</u>	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	L -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<3.0
E. coli, Total	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)		1	T .							1				1						1			_	
1,1-Dichloroethane	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,1-Dichloroethane	ug/L	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 4	-	-	-
1,1-Dichloroethylene	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,1-Dichloroethylene 1,1,1-Trichloroethane	ug/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-		-
1,1,1-Trichloroethane	μg/L ug/L	-	-	<u> </u>				-		-	_	_		-	_	-		_	-	-	-	-	<1	
1,1,2-Trichloroethane	μg/L	_	<1		_	_	_	_		_		_	_			_	_	_		_	<1	_	<1	
1,1,2-Trichloroethane	ug/L	 -	-		_	_	_	_	_	_	_	_	_		_	-	_	_	_	_	-	_		
1,1,2,2-Tetrachloroethane	μg/L	-	<0.5		_	-	_	_	_	_	_	_	_	_	_	-	-	_	_	_	<0.5	_	<0.5	_
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0003	-	-	-	-	-
1,2-Dibromoethane	μg/L	-	<0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.3	-	<0.3	-
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
1,2-Dichloropropane	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Benzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	-	<0.0005
Benzene	μg/L	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Bromodichloromethane	mg/L	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
Bromodichloromethane	μg/L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	- -
Bromodichloromethane Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0.0010	-	-	-	-	-
Bromoform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-

Sampling Locatic Date Sample Lab Sample Lab Sample Sample Type Sample Sample Type Sample Sa	ation ipled 2: ble ID 9: Type t L L	MW09-6S 2019-08-13 9081278-01	MW09-6S 2019-10-29 N000444-01	MW10-8 2010-11-16 K0K0729-02	MW10-8 2011-05-09 K1E0403-01	MW10-8 2011-05-09 K1E0403-04	MW10-8 2011-08-10	MW10-8 2011-10-18	MW10-8 2012-05-24	MW10-8 2012-08-22	MW10-8 2012-11-20	MW10-8 2013-05-21	MW10-8 2013-08-20	MW10-8 2013-11-12	MW10-8 2014-06-02	MW10-8 2014-08-18	MW10-8 2014-11-04	MW10-8 2015-05-25	MW10-8 2018-09-11	MW10-8 2018-12-03	MW10-8 2019-05-29	MW10-8	MW10-8	MW15-01
Lab Sample Tyl Analyte Unit Bromoform µg/L Bromoform ug/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chlorobenzene µg/L Chloroethane µg/L Chloroethane µg/L Chloroethane µg/L Chloroform µg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromomethane µg/L	Type t L L							2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-08-20	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2018-09-11	2018-12-03	2010-05-20	2012 20 12	2010 10 20	
Sample Tyj Analyte Unit Bromoform µg/L Bromoform ug/L Carbon tetrachloride µg/L Carbon tetrachloride µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chlorobenzene µg/L Chloroethane µg/L Chloroethane µg/L Chloroform mg/L Chloroform µg/L Cis-1,2-Dichloroethylene µg/L cis-1,2-Dichloroethylene µg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromomethane µg/L	Type t L L	9081278-01	N000444-01	K0K0729-02	K1E0403-01	K1F0403-04						ı				202 / 00 20		2010 00 20	2010 03 11	2010 12 03	2019-03-29	2019-08-13	2019-10-29	2015-11-09
Analyte Unit Bromoform	t L L						K1H0536-01	K1J0685-02	2051369-04	2081484-02	2111131-02	3051354-02	3081378-05	3110772-05	4060249-05	4081094-05	4110161-05	5051773-05	8090975-03	8120636-03	9052874-02	9081278-02	N000444-02	5110701-01
Bromoform µg/L Bromoform ug/L Carbon tetrachloride µg/L Carbon tetrachloride µg/L Carbon tetrachloride µg/L Carbon tetrachloride ug/L Chlorobenzene µg/L Chlorobenzene µg/L Chloroethane µg/L Chloroethane µg/L Chloroform µg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromomethane µg/L	L L								Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal				Normal
Bromoform ug/L Carbon tetrachloride mg/L Carbon tetrachloride µg/L Carbon tetrachloride µg/L Carbon tetrachloride ug/L Chlorobenzene µg/L Chlorobenzene ug/L Chloroethane µg/L Chloroethane µg/L Chloroform ug/L Chloroform ug/L Chloroform ug/L Chloroform ug/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromomethane µg/L	L L																							
Carbon tetrachloride mg/L Carbon tetrachloride µg/L Carbon tetrachloride µg/L Carbon tetrachloride ug/L Chlorobenzene µg/L Chlorobenzene ug/L Chloroethane mg/L Chloroethane µg/L Chloroform mg/L Chloroform µg/L Chloroform µg/L Chloroform µg/L Chloroform µg/L Chloroform ug/L Chloroform ug/L Chloroform ug/L Chloroform ug/L Cis-1,2-Dichloroethylene µg/L Dibromochloromethane mg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromomethane µg/L	'L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Carbon tetrachloride	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride ug/L Chlorobenzene µg/L Chlorobenzene ug/L Chloroethane mg/L Chloroethane µg/L Chloroethane µg/L Chloroform mg/L Chloroform µg/L Dibromochloroethylene µg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromomethane µg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	-	-
Chlorobenzene	L	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-
Chlorobenzene ug/L Chloroethane mg/L Chloroethane µg/L Chloroethane ug/L Chloroform mg/L Chloroform µg/L Chloroform µg/L Chloroform µg/L Chloroform ug/L Cis-1,2-Dichloroethylene µg/L Dibromochloromethane mg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromochloromethane µg/L Dibromomethane µg/L	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane mg/L Chloroethane ug/L Chloroform mg/L Chloroform μg/L Chloroform ug/L Cis-1,2-Dichloroethylene μg/L cis-1,2-Dichloroethylene ug/L Dibromochloromethane mg/L Dibromochloromethane μg/L Dibromochloromethane ug/L Dibromomethane μg/L Dibromomethane μg/L Dibromomethane μg/L Dibromomethane ug/L Dibromomethane mg/L	L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Chloroethane μg/L Chloroform mg/L Chloroform μg/L Chloroform ug/L Cis-1,2-Dichloroethylene μg/L Cis-1,2-Dichloroethylene ug/L Dibromochloromethane mg/L Dibromochloromethane μg/L Dibromochloromethane ug/L Dibromomethane μg/L Dibromomethane μg/L Dibromomethane μg/L Dibromomethane ug/L Dibromomethane ug/L Dichloromethane mg/L	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane ug/L Chloroform mg/L Chloroform μg/L Chloroform ug/L cis-1,2-Dichloroethylene μg/L Dibromochloromethane mg/L Dibromochloromethane μg/L Dibromochloromethane ug/L Dibromomethane mg/L Dibromomethane μg/L Dibromomethane ug/L Dibromomethane ug/L Dichloromethane mg/L	'L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	-	-
Chloroform mg/L Chloroform μg/L Cis-1,2-Dichloroethylene μg/L cis-1,2-Dichloroethylene ug/L Dibromochloromethane mg/L Dibromochloromethane μg/L Dibromochloromethane ug/L Dibromomethane μg/L Dibromomethane μg/L Dibromomethane μg/L Dichloromethane mg/L	L	-	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2	-	<2	-
Chloroform μg/L Chloroform ug/L cis-1,2-Dichloroethylene ug/L cis-1,2-Dichloroethylene ug/L Dibromochloromethane mg/L Dibromochloromethane μg/L Dibromochloromethane ug/L Dibromomethane μg/L	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform ug/L cis-1,2-Dichloroethylene μg/L cis-1,2-Dichloroethylene ug/L Dibromochloromethane mg/L Dibromochloromethane μg/L Dibromochloromethane ug/L Dibromomethane μg/L Dibromomethane μg/L Dibromomethane ug/L Dichloromethane mg/L	L L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
cis-1,2-Dichloroethylene μg/L cis-1,2-Dichloroethylene ug/L Dibromochloromethane mg/L Dibromochloromethane μg/L Dibromochloromethane ug/L Dibromomethane mg/L Dibromomethane μg/L Dibromomethane ug/L Dichloromethane mg/L	L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
cis-1,2-Dichloroethylene ug/L Dibromochloromethane mg/L Dibromochloromethane µg/L Dibromochloromethane ug/L Dibromomethane mg/L Dibromomethane mg/L Dibromomethane µg/L Dibromomethane µg/L Dibromomethane ug/L Dibromomethane ug/L	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane mg/L Dibromochloromethane μg/L Dibromochloromethane ug/L Dibromomethane mg/L Dibromomethane μg/L Dibromomethane μg/L Dibromomethane μg/L Dibromomethane ug/L	L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Dibromochloromethane μg/L Dibromochloromethane ug/L Dibromomethane mg/L Dibromomethane μg/L Dibromomethane μg/L Dibromomethane ug/L Dichloromethane mg/L	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane ug/L Dibromomethane mg/L Dibromomethane μg/L Dibromomethane ug/L Dichloromethane mg/L	'L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
Dibromomethane mg/L Dibromomethane µg/L Dibromomethane ug/L Dichloromethane mg/L	L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
$\begin{array}{ccc} \text{Dibromomethane} & & \mu\text{g/L} \\ \text{Dibromomethane} & & \text{ug/L} \\ \text{Dichloromethane} & & \text{mg/L} \end{array}$	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane ug/L Dichloromethane mg/L	L L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
Dichloromethane mg/L	L	-	<1	-	1	-	-	-	-	-	-	-	-	-	-		-		-	-	<1	-	<1	-
	L	-	-	-	1	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-
Dichloromethane ug/l	L L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	<0.0030	-	-	-	-	-
Dictiloroffietriane µg/L	L	-	<3	-	1	-	-	-	-	-	-	-	-	-	-		-		-	-	<3	-	<3	-
Dichloromethane ug/L	L	-	-	-		-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-
Ethylbenzene mg/L	'L	-	-	-		-	-	-	-	-	-	-	-	-	-		-		<0.0010	-	-	-	-	<0.0010
Ethylbenzene μg/L	L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Ethylbenzene ug/L	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether mg/L	'L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	<0.0010
Methyl tert-butyl ether μg/L	L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Methyl tert-butyl ether ug/L	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene mg/L	'L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	<0.0010
Styrene μg/L	L	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Styrene ug/L	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene μg/L		-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Tetrachloroethylene ug/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene mg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0602	-	-	-	-	0.005
Toluene μg/L		-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Toluene ug/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene µg/L		-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
trans-1,2-Dichloroethylene ug/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene μg/L		-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Trichloroethylene ug/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane mg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
Trichlorofluoromethane µg/L		-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-
Trichlorofluoromethane ug/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride mg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-
Vinyl chloride µg/L	-	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	<1	-	<1	-
Vinyl chloride ug/L		_	-	_	-	-	-	_	-	-	_	_	-	-	_	_	_	_	-	_	-	-	-	_
Xylenes (total) μg/L			<2	_	-	_	-	-	-	-	_	_	_	-	_	_	_	_	-	_	<2	-	<2	_
Xylenes (total) μg/L Xylenes (total) ug/L		- 1																						\vdash
BCMOE Aggregate Hydrocarbons		-	-	_	-	_	_	-	_	_	_	_	-	_	_	-	_	-	_	-	-	-	-	-
VPHw mg/L			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

																					1			
	Sampling Location	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	MW18-11
	Date Sampled	2016-05-02	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11	2018-12-04	2019-05-29	2019-08-13	2019-10-29	2018-06-27	2018-09-10	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2018-12-04	2018-12-06	2019-05-29	2019-08-13	2019-10-29
	Lab Sample ID	6050110-01	6081657-01	6111045-01	7040391-01	7082760-01	7112039-01	8062805-01	8090971-01	8120631-01	9052867-01	9081228-01	N000451-01	8062805-02	8090975-02	8120636-02	9052874-03	9081278-03	N000444-03	8120636-08	8120644-01	9052874-04	9081278-04	N000444-04
	Sample Type		Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Supplementary	Supplementar	Supplementar	Normal	Normal	Normal				Normal	Normal			
Analyte	Unit																							
Field Parameters		-			1	1			1	1		1			1	1					1	1	1	
Depth to Water	m .	-	11.475	-	10.955	10.425	11.24	9.54	10.81	11.29	-	-	-	-	28.31	28.24	28.085	28.075	28.11	-	-	-	112.994	112.901
Dissolved Oxygen	mg/L	0.3	0.62	0.35	-	0.89	1.28	-	1.84	1.02	-	-	-	-	2.91	1.08	3.9	5	4.4	-	-	5.36	1.59	1.42
Electrical Conductivity	μS/cm	1062	1033	1031	1047	1122	1107	1050	1111	973	-	-	-	2480	2730	2380	2380	2462	2497	558	1036	1054	1172	1468
Elevation of Piezometric Surface	m m	-	- 477	- 462	- 220	-	-	-	-	- 20	-	-	-		- 426	- 420	888.228	888.238	888.203	-	-	- 40.2	796.94	797.033
Oxidation reduction potential	mV	-6 7.1	177	162	229	101	7.1	198	7.72	30	-	-	-	222	126	128	-4.5	3.6	148.5	- 0.2	-	18.2	-128.1	-196.2
Temperature	pH Units	7.1 9.2	7.1 9.8	7.3	7.6 8.7	7.2 9.5	7.1 8.7	7.39 9.3	7.73 9.2	7.08	_	-	-	7.62 13.8	7.35 13.9	6.92 12.4	7.3 14.6	7.15 13.3	7.32 11.1	9.8	-	7.74 9.4	7.52 10.5	7.93 9.1
Anions	'	3.2	3.8	0.0	6.7	9.5	0.7	9.5	9.2	1 0.0	_	_		13.8	13.9	12.4	14.0	13.3	11.1	9.6		3.4	10.5	9.1
Bromide	mg/L	<0.10	<0.10	<0.10	<0.10	0.12	0.11	<0.10	<0.10	<0.10	<0.10	0.15	<0.10	<0.10	<1.00	0.64	_	_	_	<0.10	<1.00	_	_	_
Chloride	mg/L	117	107	94.5	125	125	116	105	114	113	113	113	116	314	313	343	299	337	348	26.6	23.2	60.9	89.7	105
Fluoride	mg/L	<0.10	<0.10	<0.10	0.16	0.14	<0.10	<0.10	0.12	<0.10	<0.10	<0.10	<0.10	0.32	0.29	0.2	0.14	0.13	<0.1	0.9	1.42	0.31	0.65	0.94
Nitrate (as N)	mg/L	1.19	1.05	0.803	0.807	1.18	1.15	0.892	0.954	0.855	0.92	1.03	0.906	12.9	21.7	15.7	21	30	34.7	1.03	0.043	0.023	<0.01	<0.01
Nitrite (as N)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.134	0.02	<0.01	0.131	<0.01	0.068	0.275	<0.01	<0.01	<0.01
Sulfate	mg/L	43.2	45.1	42.3	46.5	46.6	47.3	43.5	46	44.6	43.5	43.5	44.2	89.5	89	76.5	76.9	73.5	74.2	39	156	72.3	70.7	70.2
Metals																								
Aluminum, dissolved	mg/L	<0.005	-	0.007	<0.005	-	-	0.0154	<0.0050	0.0081	<0.0050	<0.0050	<0.0050	0.0126	0.0124	<0.0050	<0.005	<0.005	<0.005	0.0134	0.032	0.006	<0.005	<0.005
Aluminum, total	mg/L	0.069	-	0.122	0.047	-	-	-	0.0181	0.0297	2.53	7.7	0.759	-	-	-	-	-	-	-	-	-	-	-
Antimony, dissolved	mg/L	0.0004	-	0.0001	<0.0001	-	-	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.0007	0.00072	0.00036	0.0003	<0.0002	0.00026	0.00072	0.00576	0.0057	0.00348	0.00284
Antimony, total	mg/L	0.0004	-	0.0001	<0.0001	-	-	-	<0.00020	<0.00020	<0.00020	0.00032	<0.00020	-	-	-	-	-	-	-	-	-	-	-
Arsenic, dissolved	mg/L	<0.0005	-	<0.0005	<0.0005	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00269	0.00212	0.00161	0.00164	0.00133	0.00143	<0.00050	0.0352	0.00373	0.00511	0.0045
Arsenic, total	mg/L	<0.0005	-	<0.0005	<0.0005	-	-	-	<0.00050	<0.00050	0.00184	0.00569	0.0007	-	-	-	-	-	-	-	-	-	-	-
Barium, dissolved	mg/L	0.156	-	0.157	0.165	-	-	0.152	0.159	0.161	0.162	0.166	0.172	0.14	0.167	0.227	0.303	0.316	0.296	0.0369	0.018	0.0424	0.0271	0.0202
Barium, total	mg/L	0.165	-	0.171	0.178	-	-	-	0.169	0.165	0.219	0.285	0.191	-	-	-	-	-	-	-	-	-	-	
Beryllium, dissolved	mg/L	<0.0001	-	<0.0001	<0.0001	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001
Beryllium, total	mg/L	<0.0001	-	0.0002	<0.0001	-	-	-	<0.00010	<0.00010	0.00017	0.00044	<0.00010	-	-	-	-	-	-	-	-	-	-	
Bismuth, dissolved	mg/L	<0.0001	-	<0.0001	<0.0001	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001
Bismuth, total	mg/L	<0.0001 0.033	-	<0.0001	<0.0001 0.036	-	-	0.0422	<0.00010	<0.00010	<0.00010	0.00012 0.026	<0.00010 0.0236	0.187	0.465	0.452	0.418	0.408	0.61	0.0339	0.418	0.152	0.17	0.301
Boron, dissolved Boron, total	mg/L	0.033	-	0.031	0.036	-	-	0.0432	0.0222	0.0291	0.0264 0.0306	0.026	0.0256	0.187	0.405	0.452	0.418	0.408	0.61	0.0559	0.416	0.153	- 0.17	0.301
Cadmium, dissolved	mg/L mg/L	<0.0001		0.00001	<0.0001	<u> </u>		<0.000010	<0.00010	<0.00010	<0.000010	<0.000010	<0.00010	0.000032	0.00001	0.000045	0.000036	0.000032	0.000039	0.000015	0.000016	<0.00001	<0.00001	<0.00001
Cadmium, total	mg/L	<0.00001	_	<0.00001	<0.00001		_	-	<0.000010	<0.000010	0.000010	0.000055	<0.000010	- 0.000032	0.00001	-	-	-	-	- 0.000013	- 0.000010		-	
Calcium, dissolved	mg/L	88.1	_	86.4	92	_	_	91.9	78.3	88	94.1	90.8	93.6	136	97.8	86.3	94.5	92.5	92.9	14.9	23.7	46.1	43.2	48.7
Calcium, total	mg/L	89.6	_	92.2	102	_	-	-	91.8	89.2	119	193	104	-	-	-	-	-	-	-	-	-	-	-
Chromium, dissolved	mg/L	0.0018	-	<0.0005	<0.0005	_	-	<0.00050	<0.00050	0.00194	0.0008	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00106	0.00056	<0.0005	<0.00050	<0.00050	0.00266	<0.0005	<0.0005
Chromium, total	mg/L	<0.0005	-	<0.0005	<0.0005	-	-	-	<0.00050	<0.00050	0.00692	0.0167	0.00221	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	mg/L	0.00019	-	0.00006	<0.00005	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00273	0.00322	0.00402	0.00565	0.00559	0.00423	0.00046	0.00162	0.00076	0.00017	0.00013
Cobalt, total	mg/L	0.00022	-	0.00016	0.00006	-	-		<0.00010	<0.00010	0.00341	0.0105	0.00118			-	-				-			
Copper, dissolved	mg/L	0.0008	-	0.003	<0.0002	-	-	0.00052	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	0.00242	0.00263	0.00297	0.0019	0.00125	0.00186	0.00271	<0.00040	0.00044	<0.0004	<0.0004
Copper, total	mg/L	0.0024	-	0.0181	0.0004	-	-	-	0.00092	<0.00040	0.005	0.0172	0.00165	-	-	-	-	-	-	-	-	-	-	-
Iron, dissolved	mg/L	0.279	-	<0.010	<0.010	-	-	0.034	<0.010	0.013	<0.010	<0.010	<0.010	0.038	0.011	<0.010	<0.01	<0.01	<0.01	0.017	0.018	0.115	2.05	0.495
Iron, total	mg/L	0.36	-	0.27	0.06	-	-	-	0.039	0.047	5.6	20.4	2.2	-	-	-	-	-	-	-	-	-	-	-
Lead, dissolved	mg/L	<0.0001	-	<0.0001	<0.0001	-	-	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.0004	<0.0002	<0.0002	<0.0002	0.00031	<0.00020	<0.0002	<0.0002	<0.0002
Lead, total	mg/L	<0.0001	-	0.0002	<0.0001	-	-	-	<0.00020	0.00048	0.00327	0.0115	0.0011	-	-	-	-	-	-	-	-	-	-	-
Lithium, dissolved	mg/L	0.0058	-	0.0047	0.0054	-	-	0.00523	0.00539	0.00563	0.00585	0.00553	0.00593	0.0294	0.026	0.0232	0.0239	0.022	0.0243	0.0314	0.0871	0.0201	0.0212	0.0276
Lithium, total	mg/L	0.0059	-	0.005	0.0052	-	-	-	0.00573	0.00578	0.00989	0.0172	0.00677	-	-	-	-	-	-	-	-	-	-	-
Magnesium, dissolved	mg/L	45.6	-	45.3	48.7	-	-	45.6	46.8	50.1	46.5	45.9	51.8	138	188	204	193	192	204	58.4	28.5	87.9	105	147
Magnesium, total	mg/L	46.4	-	47.1	49	-	-		46.8	51.1	51.9	61.9	49.3	-	-	-	-	-		-	-	-		-
Manganese, dissolved	mg/L	0.0012	-	0.0013	0.0003	-	-	0.00291	<0.00020	0.00593	0.0011	0.00023	<0.00020	0.168	0.126	0.202	0.231	0.195	0.215	0.294	0.0149	0.106	0.152	0.132
Manganese, total	mg/L	0.0024	-	0.0046	0.0013	-	-	-0.000010	0.0017	0.00142	0.183	0.515	0.0782	-0.000010	-0.000040	-0.000040	-0.00004	-0.00001	-0.00001	-0.000040	-0.000040	-0.00001	-0.00001	-0.00001
Mercury, dissolved	mg/L	<0.00002 <0.00002	 	<0.00002	<0.00002 <0.00002	-	-	<0.00010	<0.000040 <0.000010	<0.000010 <0.000040	<0.000010 <0.000010	<0.000010 <0.000010	<0.000010	<0.000010	<0.000040	<0.000040	<0.00001	<0.00001	<0.00001	<0.000040	<0.000040	<0.00001	<0.00001	<0.00001
Mercury, total	mg/L	<0.00002	-	<0.00002	<0.00002		_	_	<0.000010	_ <0.000040	<0.000010	<0.000010	<0.000010				-	-	-	-				-

	npling Location Date Sampled Lab Sample ID	MW15-01 2016-05-02	MW15-01	MW15-01	MW15-01	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	MW18-11								
Analyte	Date Sampled	2016-05-02											1				ı			10100 11	1	1		
Analyte	•	2010-03-02	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11	2018-12-04	2019-05-29	2019-08-13	2019-10-29	2018-06-27	2018-09-10	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2018-12-04	2018-12-06	2019-05-29	2019-08-13	2019-10-29
Analyte		6050110-01		6111045-01	7040391-01	7082760-01	7112039-01	8062805-01	8090971-01	8120631-01	9052867-01	9081228-01		8062805-02	8090975-02	8120636-02	9052874-03	9081278-03			8120644-01		9081278-04	
· · · · · · · · · · · · · · · · · · ·	Sample Type	0030110-01	Normal		Supplementary			Normal	Normal	Normal	3032874-03	3081278-03	1000444-03	Normal	Normal	3032874-04	3081278-04	10000444-04						
· · · · · · · · · · · · · · · · · · ·	Unit		Normal	NOTITIAL	NOTITIAL	INOTITIAL	Normal	Nominal	Normal	Normal	puppiementary	арріентента	риррієпієпіаї	Normal	Normal	INOTITIAL				NOTITIAL	Normal			
	mg/L	0.0003	_	0.0003	0.0002	_	_	0.00032	0.00023	0.00024	0.00023	0.00022	0.00022	0.00287	0.00257	0.0019	0.00152	0.00141	0.00127	0.0062	0.0364	0.00762	0.00344	0.00324
Molybdenum, total	mg/L	0.0003	-	0.0003	0.0002	_		0.00032	0.00023	0.00024	0.00023	0.00022	0.00022	0.00287	0.00237	0.0019	0.00132	0.00141	- 0.00127	0.0002	0.0304	0.00702	0.00344	0.00324
Nickel, dissolved	mg/L	0.0003	_	0.0005	0.0002	_	_	<0.00040	<0.00040	0.00054	<0.00043	<0.00123	<0.00040	0.0355	0.0388	0.0438	0.0442	0.0447	0.0409	0.00553	0.00589	0.0301	0.0111	0.01
Nickel, dissolved	mg/L	0.0017		0.0005	0.0003			\0.00040	<0.00040	<0.00034	0.00548	0.018	0.00202	0.0333	0.0388	0.0438	0.0442	0.0447	0.0403	0.00333	0.00389	0.0301	0.0111	0.01
Phosphorus, dissolved	mg/L	<0.02	_	<0.02	<0.05		_	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.05	<0.05	<0.05	<0.050	<0.050	<0.05	<0.05	<0.05
Phosphorus, total	mg/L	<0.02	_	0.04	<0.05	_	_		<0.050	<0.050	0.182	0.417	<0.050	- 10.030	- 0.030	-	- 10.03		- 10.03	-	- 10.030	- 10.03		10.05
Potassium, dissolved	mg/L	2.33	-	2.35	2.32	_	_	2.21	2.1	2.14	2.14	2.18	2.31	13.7	20	19.9	20.3	24.4	25.7	5.73	38.1	5.39	4.78	4.51
Potassium, total	mg/L	2.23	_	2.31	2.31	_	_	-	2.11	2.15	2.57	3.22	2.41	- 15.7	-	-	-		-	-	30.1	-	-	4.51
Selenium, dissolved	mg/L	<0.0005	_	<0.0005	<0.0005	_	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00109	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005
Selenium, total	mg/L	<0.0005	-	<0.0005	<0.0005	_	_		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	- 0.00103	- 0.00030	-	-			-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\0.0003	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Silicon, dissolved	mg/L	5.3	-	4	4.9	_	_	4.5	4.6	5	4.4	4.7	5	8.5	10.2	10.9	9.5	9.9	11.1	1.1	4.3	2.4	3.1	4.8
Silicon, total	mg/L	5.4	_	5.2	5	_	_		4.9	5.1	9.4	14.5	6.3	0.5	10.2	-	-		-			2.7	-	4.0
Silver, dissolved	mg/L	<0.00005	_	<0.00005	<0.00005	_	_	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005
Silver, total	mg/L	<0.00005	_	<0.00005	<0.00005	_	_	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	- 10.000030	-		- 40.00003	-	-		- 10.000030	-		- 40.00003
Sodium, dissolved	mg/L	64	-	55.4	61.1		-	56.5	58	63	60.2	58.8	67.6	168	185	190	182	183	206	30.7	270	81.1	85.3	110
Sodium, total	mg/L	58.8	_	57.5	66	_	_	-	58.1	64.7	59.4	60	61.9	-	-	-	-	-	-	-	-		-	- 110
Strontium, dissolved	mg/L	0.592	_	0.548	0.561		_	0.532	0.555	0.562	0.563	0.579	0.617	0.842	1.18	1.43	1.44	1.46	1.34	0.0865	0.246	0.632	0.622	0.691
Strontium, total	mg/L	0.609	_	0.571	0.597	_	_	0.552	0.583	0.502	0.665	0.774	0.605	- 0.042	-	-		-	-	-	0.240	-	-	0.051
Sulfur, dissolved	mg/L	17	_	14	14	_	_	16.4	15.6	16.6	16.6	15.8	16.5	37.5	31.3	30.9	29	28.2	29	16.1	62.1	27.5	25.2	28.8
Sulfur, total	mg/L	16	_	14	14	_	_	-	16	15.7	16.4	15.1	14.5	-	-	-	-	-	-	-	- 02.1	-	-	-
Tellurium, dissolved	mg/L	<0.0002	_	<0.0002	<0.0002	_	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005
Tellurium, total	mg/L	<0.0002	_	<0.0002	<0.0002	_	_	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	-	-			-	-	-	-	-	
Thallium, dissolved	mg/L	<0.0002	_	<0.0002	<0.0002	_	_	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.00030	0.000088	0.000085	0.000071	0.000099	0.000091	0.000099	<0.000020	0.000141	<0.00002	<0.00002	<0.00002
Thallium, total	mg/L	<0.00002	_	<0.00002	<0.00002	_	_	-	<0.000020	<0.000020	0.000043	0.00007	<0.000020	-	-	-		-	-	-	-	-	-	-
Thorium, dissolved	mg/L	<0.0001	-	<0.0001	<0.0001	_	_	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001
Thorium, total	mg/L	<0.0001	-	<0.0001	<0.0001	_	_	-	<0.00010	<0.00010	0.00111	0.00404	0.00031	-	-	-	-	-	-	-	-	-	-	-
Tin, dissolved	mg/L	<0.0002	-	<0.0002	<0.0002	_	_	<0.00020	<0.00020	0.00033	<0.00020	<0.00020	<0.00020	0.00077	<0.00020	<0.00020	<0.0002	<0.0002	0.00023	<0.00020	0.00064	0.00022	<0.0002	<0.0002
Tin, total	mg/L	<0.0002	-	<0.0002	0.0004	_	-	-	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	-	-	-	-	-	-	-	-	-	-	-
Titanium, dissolved	mg/L	<0.005	-	<0.005	<0.005	_	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.0050	<0.0050	<0.005	<0.005	<0.005
Titanium, total	mg/L	<0.005	-	<0.005	<0.005	_	-	-	<0.0050	<0.0050	0.0992	0.111	0.0652	-	-	-	-	-	-	-	-	-	-	_
Tungsten, dissolved	mg/L	-	-	-	-	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.0010	<0.0010	<0.001	<0.001	<0.001
Tungsten, total	mg/L	-	-	-	-	-	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	-	-	-	-	-	-	-	-	-	-	_
Uranium, dissolved	mg/L	0.00115	-	0.00102	0.0011	-	-	0.00105	0.00106	0.00114	0.00111	0.00108	0.00109	0.00902	0.00845	0.00597	0.00432	0.00442	0.00424	0.000448	0.00256	0.000262	0.000084	0.0001
Uranium, total	mg/L	0.00114	-	0.00111	0.00108	_	_	-	0.00107	0.00111	0.0013	0.00156	0.00111	_	-	_	-		_	_	-	_	-	_
Vanadium, dissolved	mg/L	<0.001	-	<0.001	<0.001	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.0010	<0.0010	<0.001	<0.001	<0.001
Vanadium, total	mg/L	<0.001	-	<0.001	<0.001	-	-	-	<0.0010	<0.0010	0.0043	0.0096	0.0018	-	-	-	-	-	-	-	-	-	-	-
Zinc, dissolved	mg/L	<0.004	-	0.007	<0.004	-	-	<0.0040	<0.0040	0.0174	0.0065	<0.0040	<0.0040	0.0065	<0.0040	0.006	0.021	0.0043	0.0111	0.0092	<0.0040	<0.004	0.0073	0.0081
Zinc, total	mg/L	<0.004	-	0.011	<0.004	-	-	-	<0.0040	0.0056	0.0156	0.045	0.0071	-	-	-	-	-	-	-	-	-	-	-
Zirconium, dissolved	mg/L	<0.0001	-	<0.0001	<0.0001	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.0006	0.0006	0.00044	0.00027	0.00026	0.00029	<0.00010	0.00068	<0.0001	<0.0001	<0.0001
Zirconium, total	mg/L	<0.0001	-	<0.0001	<0.0001	-	-	-	<0.00010	<0.00010	0.00068	0.00047	0.00014	-	-	-	-	-	-	-	-	-	-	-
General Parameters																								
Alkalinity, Bicarbonate (as CaCO3)	mg/L	332	335	335	364	356	126	330	372	363	366	349	364	667	992	876	810	785	802	494	8900	431	541	700
Alkalinity, Carbonate (as CaCO3)	mg/L	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	<1.0	<1	<1	<1
Alkalinity, Hydroxide (as CaCO3)	mg/L	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	<1.0	<1	<1	<1
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1	<1	<1.0	<1.0	<1	<1	<1
Alkalinity, Total (as CaCO3)	mg/L	332	335	335	364	356	126	330	372	363	366	349	364	667	992	876	810	785	802	494	8900	431	541	700
Ammonia, Total (as N)	mg/L	-	-	-	-	-	-	<0.020	0.026	<0.020	0.102	0.118	<0.020	1.8	2.14	2.4	1.54	1.63	1.37	0.449	1.36	0.607	0.228	0.095
Bicarbonate (HCO3)	mg/L	404	408	409	444	434	154	402	453	443	446	425	444	813	1210	1070	988	957	978	603	10900	526	660	855
Carbonate (CO3)	mg/L	<1	<0.6	<0.6	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.6	<0.6	<0.6	<0.600	<0.600	<0.6	<0.6	<0.6
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	993	974	1030	1080	1110	327	999	1050	1080	-	-	-	2390	2590	2500	2590	2580	2650	193	1190	992	1330	1490
Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	1060	1050	1060	-	-	-	-	-	-	-	-	-	-	-

			I										I	I						I				Τ
	Sampling Location	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW15-01	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	MW18-11
	Date Sampled		2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11	2018-12-04	2019-05-29	2019-08-13	2019-10-29	2018-06-27	2018-09-10	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2018-12-04	2018-12-06	2019-05-29	2019-08-13	2019-10-29
	Lab Sample ID		1	6111045-01	7040391-01	7082760-01	7112039-01	8062805-01	8090971-01	8120631-01	9052867-01	9081228-01		8062805-02	8090975-02	8120636-02		9081278-03	N000444-03		8120644-01	9052874-04		
	Sample Type	0030110-01	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal				Normal	Normal	Normal	3032874-03	3081278-03	11000444-03	Normal	Normal	3032874-04	3081276-04	10000444-04
Analyte	Unit	; 	Normal	Normal	NOTITIAL	Normai	INOTITIAL	NOTHIAL	NOTITIAL	Normal	puppiemental	§upplementar	puppiememai	Normal	Normal	Normal	<u> </u>	l		NOTITIAL	Normal	<u> </u>	<u> </u>	
Hardness, Total (as CaCO3)		_	T -		_		_	l .		l -	427	416	447	 . 	_	_	1030	1020	1070	<u> </u>	Ι.	477	542	726
Hydroxide (OH)	mg/L	<1	<0.3	<0.3	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.340	<0.34	<0.34	<0.34	<0.340	<0.340	<0.34	<0.34	<0.34
<u> </u>	mg/L	-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\0.340	- \0.540		- 0.340				V0.340		- \0.540	- 0.340		X0.34		- 0.34	<u> </u>				
Nitrate + Nitrite (as N)	mg/L	+	-	 -	-	<u> </u>	-	-	-	-	-	-	-	-		-	 -	-		<u> </u>	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	7.86	 -	-	-	-	-	7.74	7.88	7.74	-	-	-	7.01	7.7	7.62	0.11	7.00	- 8	0.07	7.02	0.10	- 0.1	- 0.2
pn 	pH Units	7.00	-		-	-	-	7.74	7.00	7.74	7.93	7.88	7.93	7.81	7.7	7.62	8.11	7.88	-	8.07	7.93	8.18	8.1	8.2
Phosphorus Total (as D)	pH units	0.007	-	-	-	-	-				0.282		0.075	-	-	-			_			-	-	
Phosphorus, Total (as P)	mg/L	1		-	-							0.381		t						-				
Phosphorus, Total Dissolved	mg/L			-	-	- 0.02	0.50	- 0.74	0.50		<0.0020	<0.0020	0.005	-	-	0.013	-	-	-	0.0053	0.0103	-	-	-
Total organic carbon	mg/L	<0.5	0.7	0.8	1	0.83	<0.50	0.71	<0.50	<0.50	0.7	<0.50	<0.50	-	-	-	-	-	-	-	-	-	-	
Turbidity	NTU	2.5	12.1	7.28	1.6	1.3	2.48	1.41	-	3.69	153	81.8	60.5	267	-	661		3590		-	-	35.8	202	95.6
Microbiological Parameters	0511/400	T	T	ı	1 .			1		ı	T	1	ı	1		1	ı	1	1	<u> </u>	ı	1	1	
Coliforms, Fecal	CFU/100 mL	-	-	-	<1	<1	<1	-	<1	-	-	-	- 4.0	-	-	-	-	-	-	 	-	-	-	+
Coliforms, Fecal	MPN/100 ml			-	-	-	-		-	-		-	<1.0	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 ml	<3.0	<3.0	<3.0	-	-	-	<3.0	-	-	<1.1	<1.1	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total	MPN/100 ml	-	-	-	-	-	-	-	-	-		-	<1.0	-	-	-	-	-	-	-	-	-	-	+
Coliforms, Total (MPN)	MPN/100 ml		-	-	-	-	-	-	-	-	<1.1	<1.1	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 ml	<3.0	<3.0	<3.0	-	-	-	<3.0	-	-	<1.1	<1.1	-	-	-	-	-	-	-	-	-	-	-	-
E. coli, Total	CFU/100 mL	-	-	-	<1	<1	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)	<u> </u>		1	1		1	ı	1		1	1		1	1			1	1	1		1	1		
1,1-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	<1	-	<1	-	-	<1	-	<1
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	<1	-	<1	-	-	<1	-	<1
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-	-	<0.5	-	<0.5
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	<0.0003	-	-	<0.0002	-	-	-	<0.0003	-	-	-	-	<u> </u>	<0.0003	<0.0003	-	-	-	-	-	-	-	-
1,2-Dibromoethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.3	-	<0.3	-	-	<0.3	-	<0.3
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	<0.3	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-	-	<0.5	-	<0.5
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	 -
1,2-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,2-Dichloroethane	ug/L	-	 -	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	
1,2-Dichloropropane	μg/L	-	-	-	-	-	-	-	-	-	- 4.0	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	
1,3-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	- 4.0	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	-	-	-	-	-	-	-	-	- 10	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	- 4.0	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
1,4-Dichlorobenzene	ug/L		-		0.005	-	-	-	0.005	-	<1.0	-	-	-			-	-	-	-	-	-	-	-
Benzene	mg/L	<0.0005	-	<0.0005	<0.0005	-	-	-	<0.0005	-	 -	-	-	-	<0.0005	<0.0005		-	- 40.5	-	-		-	
Benzene	μg/L	-	-	-	-	-	-	-	-	-	0.5	-	-	-	-	-	<0.5	-	<0.5	-	-	<0.5	-	<0.5
Benzene	ug/L		-	-	0.004.0	-	-	-	0.004.0	-	<0.5	-	-	-			-	-	-	-	-	-	-	-
Bromodichloromethane	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Bromodichloromethane	μg/L	-	-	-	-	-	-	-	-	-	- 4.0	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Bromodichloromethane	ug/L	-	-	-		-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	- -	-	-	-	-
Bromoform	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	_	-	-		-	-	-	-

										1				I										
	Sampling Location	MW15-01	MW15-01	MW15-01	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-10	MW18-11	MW18-11	MW18-11	MW18-11	MW18-11									
	Date Sampled	2016-05-02	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2018-09-11	2018-12-04	2019-05-29	2019-08-13	2019-10-29	2018-06-27	2018-09-10	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2018-12-04	2018-12-06	2019-05-29	2019-08-13	2019-10-29
	Lab Sample ID	6050110-01	6081657-01	6111045-01	7040391-01	7082760-01	7112039-01	8062805-01	8090971-01	8120631-01	9052867-01	9081228-01	N000451-01	8062805-02	8090975-02	8120636-02	9052874-03	9081278-03	N000444-03	8120636-08	8120644-01	9052874-04	9081278-04	N000444-04
	Sample Type	:	Normal	Supplementary	upplementar	Supplementary	Normal	Normal	Normal				Normal	Normal										
Analyte	Unit																							
Bromoform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	<0.0010	-	-	<0.0005	-	-	-	<0.0005	-	-	-	-	-	<0.0005	<0.0005	-	-	-	-	-	-	-	-
Carbon tetrachloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-	-	<0.5	-	<0.5
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	<0.0020	-	-	<0.0020	-	-	-	<0.0020	-	-	-	-	-	<0.0020	<0.0020	-	-	-	-	-	-	-	-
Chloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2	-	<2	-	-	<2	-	<2
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	<2.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Chloroform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	
cis-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Dibromochloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Dibromomethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/L	<0.0030	-	-	<0.0030	-	-	-	<0.0030	-	-	-	-	-	<0.0030	<0.0030	-	-	-	-	-	-	-	-
Dichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	-	<3	-	-	<3	-	<3
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	<3.0	-	-	-	-	•	-	-	-	-	-	-	•	-
Ethylbenzene	mg/L	<0.0010	-	<0.0010	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Ethylbenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	<1	-	<1	-	-	<1	•	<1
Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	<0.0010	-	<0.0010	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Methyl tert-butyl ether	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	•	-	-	-	-	-	-	•	-
Styrene	mg/L	<0.0010	-	<0.0010	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	•	-
Styrene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	<1	-	<1	-	-	<1	•	<1
Styrene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/L	<0.0010	-	0.0076	<0.0010	-	-	-	0.0023	-	-	-	-	-	0.0108	0.0162	-	-	-	-	-	-	-	-
Toluene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	<1	-	<1	-	-	150	-	12.8
Toluene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	•	-	-	-	-	-	-	-	-
Trichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-		-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	<0.0010	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Trichlorofluoromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	<0.0020	-	-	<0.0010	-	-	-	<0.0010	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-	-	-
Vinyl chloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	<1	-	-	<1	-	<1
Vinyl chloride	ug/L	-	-	-	-	-	-	-	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2	-	<2	-	-	<2	-	<2
Xylenes (total)	ug/L	-	-	-	-	-	-	-	-	-	<2.0	-	-	-	-	-	-	-	-	-	-	-	-	-
BCMOE Aggregate Hydrocarbons	,	•	-			-		l		-	· '													
VPHw	mg/L	<0.100	-	<0.100	<0.100	-	-	-	<0.100	-		-	-	-	-	-	-	-	-	-	-	-	-	-
-	,	•	•	•	•	•				•				-	•				•					

																			Town Well					
	Sampling Location	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-04	Runoff 1	Runoff 2	Runoff 3	#4	#4	#4	#4	#4	#4
	Date Sampled	2002-06-03	2002-08-26	2002-11-06	2003-03-07	2003-05-12	2003-11-03	2004-05-17	2004-11-08	2005-04-25	2005-11-02	2006-04-17	2006-11-05	2007-05-22	2004-05-17	2017-04-05	2017-04-05	2017-03-30	2002-06-03	2003-05-12	2004-05-17	2007-05-22	2007-11-05	2008-04-28
	Lab Sample ID													K705752-01		7040434-01	7040434-02	7040370-01				K705752-02	K7K0165-01	K8E0035-01
	Sample Type															Normal	Normal							
Analyte	Unit																							
Field Parameters																						,		
Depth to Water	m	9999	9999	9999	9999	21.25	21.25	21.3	21.82	21.28	9999	21.18	9999	21.27	26.6	-	-	-	8	-	-	-	-	-
Dissolved Oxygen	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2370	13170	-	-	-	-	-	-	-
Elevation of Piezometric Surface	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxidation reduction potential	mV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-2	-112	-	-	-	-	-	-	-
рН	pH Units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.4	7.6	-	-	-	-	-	-	-
Temperature	°C	-	-	-	-	11	11	13	11	12	-	10.3	-	10	13	4.2	4.3	-	-	10	12	7.5	5	-
Anions																								
Bromide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.82	<10.0	<0.10	-	-	-	-	-	-
Chloride	mg/L	-	-	-	-	57.5	63.8	72.5	75	128	-	159	-	90.5	298	708	1230	5.45	62.5	73.8	65	60.2	76.7	69.4
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.00	<1.00	0.47	-	-	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	27.8	16.3	34.5	32.5	65	-	77	-	12.5	55.5	2.78	<0.100	0.214	1.4	1.35	1.63	1.35	1.09	0.982
Nitrite (as N)	mg/L	-	-	-	-	<0.01	0.16	<0.01	0.04	<0.01	-	<0.01	-	1.44	0.01	<0.100	<0.100	0.021	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010
Sulfate	mg/L	-	-	-	-	51	78	71	79	104	-	150	-	254	640	153	32.7	13	44.5	43	40	37.5	38	38.6
Metals	,														ļ	ļ	<u> </u>	<u> </u>		<u> </u>				
Aluminum, dissolved	mg/L	-	-	-	-	<0.2	<0.2	<0.2	-	<0.4	-	<0.02	-	<0.050	<0.2	-	-	-	<0.2	<0.2	<0.2	<0.050	-	<0.050
Aluminum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.10	-	-	2.17	41.1	-	-	-	<0.10	-	
Antimony, dissolved	mg/L	-	-	-	-	<0.2	<0.2	<0.2	-	<0.4	-	<0.02	-	<0.0050	<0.2	-	-	-	<0.2	<0.2	<0.2	<0.0050	-	<0.0030
Antimony, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.006	-	-	0.0063	0.0008	-	-	-	<0.006	-	
Arsenic, dissolved	mg/L	-	-	-	-	<0.2	<0.2	<0.2	-	<0.4	-	<0.02	-	<0.0050	<0.2	-	-	-	<0.2	<0.2	<0.2	<0.0050	-	<0.0050
Arsenic, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	0.0524	0.0123	-	-	-	<0.010	-	-
Barium, dissolved	mg/L	-	-	-	-	0.2	0.19	0.19	-	0.21	-	0.15	-	0.124	0.12	-	-	-	0.2	0.2	0.21	0.191	-	0.191
Barium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.114	-	-	0.259	0.421	-	-	-	0.19	-	-
Beryllium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-	-	<0.0010	-	<0.0020
Beryllium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	0.0001	0.0014	-	-	-	<0.005	-	-
Bismuth, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-	-	<0.0010	-	<0.0005
Bismuth, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	<0.0001	0.0003	-	-	-	<0.001	-	-
Boron, dissolved	mg/L	-	-	-	-	0.6	0.58	0.59	-	0.6	-	0.6	-	0.632	0.65	-	-	-	<0.1	<0.1	<0.1	<0.020	-	<0.020
Boron, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.608	-	-	4.9	0.164	-	-	-	<0.020	-	<u> </u>
Cadmium, dissolved	mg/L	-	-	-	-	<0.01	<0.01	<0.01	-	<0.02	-	<0.01	-	<0.00010	<0.01	-	-	-	<0.01	<0.01	<0.01	<0.00010	-	<0.00010
Cadmium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.00010	-	-	0.00048	0.00011	-	-	-	<0.00010	-	
Calcium, dissolved	mg/L	-	-	-	-	174	177	175	-	210	-	210	-	215	165	-	-	-	90	104	88	84.6	88.4	91.2
Calcium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	206	-	-	382	174	-	-	-	85.1	-	-
Chromium, dissolved	mg/L	-	-	-	-	<0.01	<0.01	-	-	<0.02	-	<0.01	-	0.0054	<0.01	-	-	-	<0.01	<0.01	<0.01	<0.0050	-	0.006
Chromium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	0.126	0.053	-	-	-	<0.010	-	-
Cobalt, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.0037	-	-	-	-	-	-	-	<0.0010	-	<0.0005
Cobalt, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.0034	-	-	0.0371	0.0191	-	-	-	<0.0010	-	-
Copper, dissolved	mg/L	-	-	-	-	<0.01	<0.01	-	-	<0.02	-	<0.01	-	0.0057	<0.01	-	-	-	<0.01	<0.01	<0.01	<0.0050	-	<0.0030
Copper, total	mg/L	-	-	-	-				-		-		-	<0.010		-	0.0227	0.033				<0.010	-	- 0.200
Iron, dissolved	mg/L	-	-	-	-	<0.03	<0.03	<0.03	-	<0.06	-	<0.06	-	0.655	<0.03	-	-	- 20.2	<0.03	<0.03	<0.03	0.267	-	0.386
Iron, total	mg/L	-	-	-	-		- 40.05		-		-		-	0.7		-	46	39.2				<0.30	-	
Lead, dissolved	mg/L	-	-	-	-	<0.05	<0.05	<0.05	-	<0.1	-	<0.05	-	<0.0020	<0.05	-	- 0.0440	- 0.0206	<0.01	<0.05	<0.05	<0.0020	-	<0.0010
Lead, total	mg/L	-	 -	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	0.0119	0.0296	-	-	-	<0.0020	-	- 0.000
Lithium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.0185	-	-	- 0.220	- 0.0403	-	-	-	0.0018	-	0.002
Lithium, total	mg/L	-	-	-	-	- 00.4	102	- 01.2	-	120	-	- 07	-	0.0179		-	0.238	0.0402	- 27	42.7	- 20.1	<0.0050	- 41.1	- 40.2
Magnesium, dissolved	mg/L	-	-	-	-	99.4	103	91.3	-	120	-	97	-	103	233	-	- 276	-	37	43.7	38.1	38.4	41.1	40.2
Magnesium, total	mg/L	-	-	-	-	- 0.000	- 0.002	- 0.02	-	- 0.04	-	- 0.007	-	97.2	- 0.000	-	276	40.6				37.9	-	
Manganese, dissolved	mg/L	-	-	-	-	0.009	0.083	0.02	-	0.04	-	0.007	-	0.107	0.009	-	- 1 41	- 0.71	<0.005	<0.005	<0.005	<0.0100	-	<0.0050
Manganese, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.107	-	-	1.41	0.71	-	-	-	<0.010	-	
Mercury, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.00050	-	-	-	-	-	-	-	<0.00050	-	<0.00030
Mercury, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.00050	-	-	0.00004	0.0001	-	-	-	<0.00050	-	-

			MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-02	MW95-04	Runoff 1	Runoff 2	Runoff 3	Town Well					
	Sampling Location	MW95-02	1010095-02	1010095-02	10100 95-02	1010093-02	1010033-02	1010093-02	1010033-02	1010095-02	1010093-02	1010093-02	1010033-02	1010093-02	10100 95-04	Kulloli 1	Kulloli 2	Kulloli 3	#4	#4	#4	#4	#4	#4
1	Date Sampled	2002-06-03	2002-08-26	2002-11-06	2003-03-07	2003-05-12	2003-11-03	2004-05-17	2004-11-08	2005-04-25	2005-11-02	2006-04-17	2006-11-05	2007-05-22	2004-05-17	2017-04-05	2017-04-05	2017-03-30	2002-06-03	2003-05-12	2004-05-17	2007-05-22	2007-11-05	2008-04-28
	Lab Sample ID													K705752-01		7040434-01	7040434-02	7040370-01				K705752-02	K7K0165-01	K8E0035-01
<u> </u>	Sample Type															Normal	Normal							
Analyte	Unit										1	ı										1		
Molybdenum, dissolved	mg/L	-	-	-	-	<0.03	<0.03	<0.03	-	<0.06	-	<0.03	-	<0.0020	<0.03	-	-	-	<0.03	<0.03	<0.03	<0.0020	-	<0.0010
Molybdenum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050	-	-	0.0061	0.0025	-	-	-	<0.0050	-	'
Nickel, dissolved	mg/L	-	-	-	-	<0.05	<0.05	<0.05	-	<0.1	-	<0.05	-	0.037	<0.05	-	-	-	<0.05	<0.05	<0.05	<0.010	-	<0.005
Nickel, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.020	-	-	0.19	0.04	-	-	-	<0.020	-	'
Phosphorus, dissolved	mg/L	-	-	-	-	<0.3	<0.3	<0.3	-	<0.6	-	<0.3	-	<0.500	<0.3	-	-	-	<0.3	<0.3	<0.3	<0.500	-	<0.200
Phosphorus, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.50	-	-	13.1	0.61	-	-	-	<0.50	-	-
Potassium, dissolved	mg/L	-	-	-	-	54	53	50	-	50	-	57	-	59.5	52	-	-	-	<2	<2	<2	1.66	-	2.17
Potassium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	56.4	-	-	852	16.6	-	-	-	1.53	-	-
Selenium, dissolved	mg/L	-	-	-	-	<0.2	<0.2	<0.2	-	<0.4	-	<0.2	-	<0.0100	<0.2	-	-	-	<0.2	<0.2	<0.2	<0.0100	-	<0.0050
Selenium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	0.0007	<0.0005	-	-	-	<0.010	-	
Silicon, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	9.58	-	-	-	-	-	-	-	3.88	-	5.01
Silicon, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	29.8	73.8	-	-	-	2.6	-	-
Silver, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0004	-	-	-	-	-	-	-	<0.0004	-	<0.00040
Silver, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.00050	-	-	0.00015	<0.00005	-	-	-	<0.00050	-	
Sodium, dissolved	mg/L	-	-	-	-	68	73.8	74	-	120	-	130	-	107	234	-	-	-	34	37	37	36.8	-	43.1
Sodium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	98	-	-	1460	8.12	-	-	-	34.8	-	-
Strontium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	1.12	-	-	-	-	-	-	-	0.414	-	0.434
Strontium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	1.1	-	-	2.4	0.579	-	-	-	0.405	-	-
Sulfur, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sulfur, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	31	4	-	-	-	-	-	-
Tellurium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050	-	-	-	-	-	-	-	<0.0050	-	<0.0030
Tellurium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	<0.0002	<0.0002	-	-	-	<0.005	-	-
Thallium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-	-	<0.0010	-	<0.0005
Thallium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	<0.00002	0.00032	-	-	-	<0.0010	-	-
Thorium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050	-	-	-	-	-	-	-	<0.0050	-	<0.0030
Thorium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	-	-	0.0004	0.0099	-	-	-	<0.005	-	-
Tin, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	-	-	-	-	<0.0020	-	<0.0020
Tin, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	0.0093	0.0013	-	-	-	<0.001	-	-
Titanium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0200	-	-	-	-	-	-	-	<0.0200	-	<0.100
Titanium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.050	-	-	0.069	1.4	-	-	-	<0.050	-	-
Tungsten, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tungsten, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.0025	-	-	-	-	-	-	-	0.0011	-	0.0012
Uranium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	0.0028	-	-	0.00069	0.00239	-	-	-	0.0012	-	-
Vanadium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.0050	-	-	-	-	-	-	-	<0.0050	-	<0.010
Vanadium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	0.011	0.042	-	-	-	<0.010	-	-
Zinc, dissolved	mg/L	-	-	-	-	0.017	0.0197	0.02	-	0.01	-	0.028	-	<0.040	0.02	-	-	-	0.01	0.021	0.039	<0.040	-	<0.030
Zinc, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.050	-	-	0.576	0.094	-	-	-	<0.050	-	-
Zirconium, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	-	-	-	-	-	<0.010	-	<0.005
Zirconium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	<0.010	-	-	0.0071	0.028	-	-	-	<0.010	-	-
General Parameters								I																
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3050	9700	6010	-	-	-	-	-	- '
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.0	<1.0	<1	-	-	-	-	-	-
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.0	<1.0	<1	-	-	-	-	-	-
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.0	<1.0	<1	-	-	-	-	-	-
Alkalinity, Total (as CaCO3)	mg/L	-	-	-	-	2800	5600	1720	7040	4100	-	3500	-	3000	900	3050	9700	6010	287	290	324	310	340	333
Ammonia, Total (as N)	mg/L	-	-	-	-	-	-	-	0.19	0.04	-	0.08	-	0.31	-	-	928	0.792	-	-	-	<0.02	<0.02	0.04
Bicarbonate (HCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3720	11800	7330	-	-	-	-	-	-
Carbonate (CO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.600	<0.600	<0.600	-	-	-	-	-	-
Chemical Oxygen Demand	mg/L	_	_	_	-	69	202	108	184	136	_	129	_	39	89	-	-	-	<5	5	10	<5	<5	_
Electrical Conductivity	μS/cm	_	_	_	-	1660	1620	1600	1900	2000	_	2200	_	1910	2810	8440	13800	324	845	866	791	822	881	842
Electrical Conductivity	uS/cm	_			-	-	-	-	-	-	_	-	_	- 1910	-	-	-	-	-		-			- 042

				T		T									l	l			Town Well	Town Well	Town Well	Town Well	Town Well	Town Well
	Sampling Location	MW95-02	MW95-04	Runoff 1	Runoff 2	Runoff 3	#4	#4	#4	#4	#4	#4												
	Date Sampled	2002-06-03	2002-08-26	2002-11-06	2003-03-07	2003-05-12	2003-11-03	2004-05-17	2004-11-08	2005-04-25	2005-11-02	2006-04-17	2006-11-05	2007-05-22	2004-05-17	2017-04-05	2017-04-05	2017-03-30	2002-06-03	2003-05-12	2004-05-17	2007-05-22	2007-11-05	2008-04-28
	Lab Sample ID													K705752-01		7040434-01	7040434-02	7040370-01				K705752-02	K7K0165-01	K8E0035-01
	Sample Type															Normal	Normal							
Analyte	Unit																							
Hardness, Total (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydroxide (OH)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.340	<0.340	<0.340	-	-	-	-	-	-
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	14	-	-	-	-	-	-	-	1.35	1.09	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	2.92	13	3.7	4.7	5.12	-	5.1	-	7.12	0.84	-	-	-	0.05	<0.05	0.08	0.1	0.06	-
рН	pH Units	-	-	-	-	7.1	6.8	6.9	7.1	7.2	-	7	-	6.8	7	-	7.7	7.85	7.1	7.2	7.3	7.1	7.4	7.4
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	-	-	-	-	-	-	-	-	-	-	-	-	-	680	-	212	-	0.4	2.5	0.6	-	-	0.2
Microbiological Parameters	,																							
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	_	_	-	-	_	_	-	-	-	-	-	-	_	-	_	_	-	_	_	-	_	-	_
E. coli (MPN)	MPN/100 mL	_	_	_	-	_	_	_		-	_	-	_	_	_	_	_	_	_	_	_	_	_	_
E. coli, Total	CFU/100 mL	_	_	_	-	_	_	_	_	-	_	-	-	_	_	_	_	_	_	_	_	-	-	_
Volatile Organic Compounds (VOC)	0. 0, 200		ı			1		1												1	1	1	ı	
1,1-Dichloroethane	μg/L	_	_	_	_	_	_	_	_	-	_	-	_	_	-	_	_	-	_	_	_	_	-	_
1,1-Dichloroethane	ug/L	_	_	_	-	_	_	_		-	_	-	-	_	_	_	_	_	_	_	_	_	-	_
1,1-Dichloroethylene	μg/L	_	_	_	-	_	_	_		-	_	-	-	_	-	-	_	_	_	_	_	-	-	_
1,1-Dichloroethylene	ug/L	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
1,1,1-Trichloroethane	μg/L	_	_		_	_	_	_	_	_	_	_	_	_	_	<u> </u>			_	_	_	_	-	<u> </u>
1,1,1-Trichloroethane	ug/L	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
1,1,2-Trichloroethane	μg/L		_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_			_			_	_	_
1,1,2-Trichloroethane	ug/L		_		_	_		_		_	_	_	_		_	_			_			_	-	 -
1,1,2,2-Tetrachloroethane	μg/L		_		_	_		_		_	_	_	_		_	_			_	_	_	_	-	 -
1,1,2,2-Tetrachloroethane	ug/L		_		_	_	_	_	-	_	_	_	_		_	_			_	_		_	-	 -
1,2-Dibromoethane	mg/L	_	_	_	_	_	_	_		_	_	-	_	_	_		<0.0002	<0.0002	-	_	_	_	-	<u> </u>
1,2-Dibromoethane	μg/L		_		_	_	_	_		_	_	_	_		_			-	_	_		_	_	_
1,2-Dibromoethane	ug/L	_	_		_	_	_	_		_	_	_	_	_	_	<u> </u>			_			_	_	_
1,2-Dichlorobenzene	μg/L	_	_		_	_	_	_	_	-	_	-	_	_	_	_			_	_	_	-	-	
1,2-Dichlorobenzene	ug/L		_		_	-	-	_		_	_	-	_		_	-		-	-		_	_	-	
1,2-Dichloroethane	μg/L	-	-	<u> </u>		-	-	_		-	-	-			_	-		 	-		 	-	-	- -
1,2-Dichloroethane	μg/L ug/L		-	-	-	-		_		-	-	-	-	_		-		-	-		-	-	-	 -
1,2-Dichloropropane	mg/L		<u> </u>	<u> </u>	-	_		_	-	-	-	-				<u> </u>	<0.0010	<0.0010	-		 	-	-	
1,2-Dichloropropane	μg/L	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-		- <0.0010	-	-	-	-	-	-
1,2-Dichloropropane	μg/L ug/L	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-		-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	- -
1,3-Dichlorobenzene	μg/L ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropenzene 1,3-Dichloropropene (cis + trans)	ug/L μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			-		-	†		t								1								
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene			-	-	-	-		-	-		-		-	-	-	-	0.0011	<0.0005	-	-	-		-	
Benzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0011		-	-	-	-	-	-
Benzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-
Bromodichloromethane Bromodichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Bromodichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-
Bromoform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-

March Marc			MW95-02	MW95-04	Runoff 1	Runoff 2	Runoff 3	Town Well																	
Second		Sampling Location																		#4	#4	#4		#4	#4
Care		Date Sampled	2002-06-03	2002-08-26	2002-11-06	2003-03-07	2003-05-12	2003-11-03	2004-05-17	2004-11-08	2005-04-25	2005-11-02	2006-04-17	2006-11-05	2007-05-22	2004-05-17	2017-04-05	2017-04-05	2017-03-30	2002-06-03	2003-05-12	2004-05-17	2007-05-22	2007-11-05	2008-04-28
March Marc		Lab Sample ID													K705752-01		7040434-01	7040434-02	7040370-01				K705752-02	K7K0165-01	K8E0035-01
Second S		Sample Type															Normal	Normal							
Section Sect	Analyte	Unit																					1		
Contact Cont	Bromoform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- !
Section Assessment	Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Contraction of	Carbon tetrachloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	-	-	-	-	-	-
Notember 95	Carbon tetrachloride	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Procedure	Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Consistency	Chlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Description	Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
State Stat	Chloroethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	<0.0020	-	-	-	-	-	-
Condemina	Chloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Southern 1974 1975 197	Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Control Cont	Chloroform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
SEA SEASON SEA SEA	Chloroform	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
## 15-20 Processor	Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Deconocionamente mg	cis-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Descriptions Page	cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manufacture	Dibromochloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Description Fig.	Dibromochloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Descripantable Mg/L	Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Decomposition March Marc	Dibromomethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Control of the cont	Dibromomethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Self-conformance Self-confor	Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Definition	Dichloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0030	<0.0030	-	-	-	-	-	-
Explorations mg/L	Dichloromethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Explanamen	Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Explanare with test outside the map 1	Ethylbenzene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0028	<0.0010	-	-	-	-	-	-
Methylater study ether mg/L	Ethylbenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylater dauly ether	Ethylbenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methy terts tury et her Mg/L	Methyl tert-butyl ether	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Spree mg/L	Methyl tert-butyl ether	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Syrene	Methyl tert-butyl ether	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Syrene	Styrene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Tetrachloroethylene	Styrene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene	Styrene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene mg/L	Tetrachloroethylene	μg/L	-	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	Tetrachloroethylene	ug/L	-	-	-	-	-	-	-	_	_	-	-	-	-	_	_	_	-	-	-	-	-	-	-
Toluene	Toluene	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.104	<0.0010	-	-	-	-	-	-
trans-1,2-Dichloroethylene	Toluene	μg/L	-		-	-	-	-	-		-	-	-	-	-	-	_	-	_	-	-	-	-	-	-
trans-1,2-Dichloroethylene μg/L	Toluene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Trichloroethylene μg/L	trans-1,2-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene μg/L	trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	Trichloroethylene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	Trichloroethylene		-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	_	-
Trichlorofluoromethane	Trichlorofluoromethane	mg/L	-	-	-	-	-	-	-		-	-	-	-	-	-		<0.0010	<0.0010	-	-	-	-	_	-
Trichlorofluoromethane	Trichlorofluoromethane	μg/L		_	-	_	-	-	-		_	-		-	-				_	_	_	-	-	_	-
Vinyl chloride mg/L	Trichlorofluoromethane		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Vinyl chloride μg/L	Vinyl chloride		-	-	-	-	-	-	-		-	-	-	-	-	-	-	<0.0010	<0.0010	-	-	-	-	-	-
Vinyl chloride	Vinyl chloride		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total) μg/L			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total) ug/L -			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BCMOE Aggregate Hydrocarbons			-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-
		, 5			•	•																			-
	VPHw	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

				1			1			1	1		1	1	1		1	1			1			
		Town Well	Town Well	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well	Town Well #4	Town Well	Town Well	Town Well	Town Well	Town Well #4	Town Well #4	Town Well #4	Town Well #4	Town Well	Town Well #4	Town Well	Town Well	Town Well	Town Well	Town Well #4
	Sampling Location	***				1		***			"'	#4	***					***			"'	***	***	
	Date Sampled			2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20		2013-11-12	2014-06-02		2014-11-04	2015-05-25	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-11-20
	Lab Sample ID	K8J0452-01	K9E0816-01	K9K0184-03	K0B0397-03	K0F0788-02	K0K0729-03	K1E0403-02	K1H0536-04	K1J0685-04	2051369-02	2081484-04	2111131-04		3110772-02	4060249-02		4110161-01	5051773-02		6081698-04	6111141-02	7040434-04	
	Sample Type										Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Analyte	Unit																							
Field Parameters		-	T					1				1			,				T	Т			1	
Depth to Water	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	-	2.01	3.7	-	-	-	-	-	-	-	-	-	-	-	4.5	3.93	4.38	4.85	4.24	4.67	-	-	-
Electrical Conductivity	μS/cm	-	900	890	870	970	890	-	690	930	740	860	800	640	710	799	805	756	813	1013	986	932	63	1050
Elevation of Piezometric Surface	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxidation reduction potential	mV	-	-	-	-	49	159	-	62	119	111	221	188	258	74	165	201	47	68	156	240	293	261	-
рН	pH Units	-	6.85	7.48	7.2	7.41	7.49	-	7.35	7.39	7.43	7.59	7.6	7.36	7.2	7.5	7.5	7.2	7.2	7.4	7.3	7.5	7.5	7.2
Temperature	°C	-	8.4	8.4	7.4	12.2	8.2	-	9.4	7.6	8.2	8.8	8.1	8.4	8.1	7.9	8.5	8.4	12.9	8.31	8.6	8.3	8	8.2
Anions																								
Bromide	mg/L	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chloride	mg/L	86.9	74	57.6	91.1	76.7	75.7	79.2	72.9	77.2	63	67.2	65.6	69.1	68.5	67	69.7	70.2	81.2	97.3	88.5	88.6	90.4	105
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Nitrate (as N)	mg/L	1.17	1.12	1.21	1.3	1.17	1.14	0.895	1.26	1.21	1.19	1.2	0.755	1.36	1.33	1.26	1.55	1.57	1.53	1.72	1.48	1.19	1.39	1.61
Nitrite (as N)	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Sulfate	mg/L	40.6	38.8	39.8	42.9	41.2	36.1	37.6	35.8	40	37.2	36.6	40.4	36.6	38.8	37.6	39.7	40.7	40	40.3	41.5	40.2	42.8	43.8
Metals	·																							
Aluminum, dissolved	mg/L	<0.010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.014	<0.005	<0.005	<0.005	<0.005	0.021	<0.005	-	-	<0.005	<0.005	-	-
Aluminum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	-	-	<0.005	<0.0050
Antimony, dissolved	mg/L	<0.0006	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0004	0.0001	<0.0020	<0.0001	0.0007	0.0003	0.0003	0.0007	0.0004	0.0005	0.0002	-	-	<0.0001	<0.0001	-	-
Antimony, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	-	-	<0.0001	<0.00020
Arsenic, dissolved	mg/L	<0.0010	<0.0005	<0.0005	<0.0005	<0.0005	0.0006	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	<0.0005	<0.0005	-	-
Arsenic, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	-	-	<0.0005	<0.00050
Barium, dissolved	mg/L	0.211	0.227	0.173	0.244	0.216	0.217	0.189	0.195	0.184	0.189	0.193	0.191	0.195	0.2	0.192	0.195	0.21	-	-	0.247	0.219	-	-
Barium, total	mg/L	-	_	-	-	_	-	-	-	_	_	-	-	-	-	-	_	-	0.193	0.227	_	_	0.214	0.228
Beryllium, dissolved	mg/L	<0.0004	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	_	<0.0001	<0.0001	-	-
Beryllium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	-	-	<0.0001	<0.00010
Bismuth, dissolved	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	_	_	<0.0001	<0.0001	_	_
Bismuth, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.0001	<0.0001	-	-	<0.0001	<0.00010
Boron, dissolved	mg/L	0.013	0.015	0.02	0.02	0.015	0.042	0.016	0.018	0.017	0.018	0.012	0.018	0.018	0.032	0.021	0.024	0.014	_	_	0.031	0.014	_	-
Boron, total	mg/L	-	-		-	-	-	-	-	-	-	-	-	-		-	-		0.015	0.021	-	_	0.025	0.014
Cadmium, dissolved	mg/L	<0.00002	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00005	0.00009	<0.0001	0.00001	<0.00001	<0.00001	0.00001	<0.00001	<0.00001	0.00003	0.00002	-	-	0.00002	<0.00001	-	-
Cadmium, total	mg/L	-	- 0.00001	-	-		-	-	-		-	-	-	- 0.00001	-	-		- 0.00002	<0.00001	<0.00001			<0.00001	<0.000010
Calcium, dissolved	mg/L	87	83.8	80	87.4	79.1	81.3	90	83.8	84.7	74.7	80.7	82	82.5	88.6	90.2	92.1	88.7	10.00001	-	100	86.1	- 40.00001	-
Calcium, total	mg/L	-		-	-			-	-	-	-	-			-	- 30.2		-	91.7	99.5	-	-	93.7	91.1
Chromium, dissolved	mg/L	0.006	0.0033	0.0028	0.0116	0.0022	0.0007	<0.0005	0.0007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	<0.0005	<0.0005	-	-
Chromium, total	mg/L	-	- 0.0033	-	-	-	-	-	-	-	-	-		-	-	-	-	-	<0.0005	<0.0005	-	-	0.0005	0.00052
Cobalt, dissolved	-	<0.0001	0.00009	0.00006	0.00007	0.0001	0.00013	<0.00005	0.00018	<0.00005	<0.00005	<0.0005	<0.00005	<0.00005	<0.00005	<0.00005	0.00007	0.00006		-	0.00006	<0.00005	-	-
Cobalt, dissolved	mg/L mg/L	<0.0001	0.00009	0.00006		0.0001	0.00013	-0.00003						- <0.00005	-0.00003	-0.00003	0.00007	- 0.00000	<0.00005	<0.00005		-	<0.0005	<0.00010
Copper, dissolved	mg/L	0.0046	0.0038	0.0016	0.0045	0.0025	0.0025	0.0008	0.0038	0.0016	0.0007	0.0013	0.001	0.0008	0.0006	0.0009	0.0014	0.0014		-	0.0016	0.0012	-0.00003	- 0.00010
Copper, dissolved	mg/L	0.0046	0.0036	0.0016	0.0045	0.0025	0.0025	0.0008	0.0038	0.0016	0.0007	0.0013	0.001	0.0008	0.0006	0.0009	0.0014	0.0014	0.0039	0.0009	0.0016	0.0012	0.0015	0.00073
			0.002	0.07			+	- -0.010						-	-		+	- -0.010		0.0009	<0.010		0.0015	- 0.00073
Iron, dissolved	mg/L mg/L	0.079	0.082	- 0.07	0.063	0.147	0.166	<0.010	0.02	<0.01	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	0.031	<0.010		<0.01		<0.010		
Iron, total			+		- 0.0003	+	+			ł							+		<0.01				<0.01	<0.010
Lead, dissolved	mg/L	0.0002	0.0001	<0.0001	0.0002	0.0002	0.0002	0.0001	0.0005	0.0001	<0.0001	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	0.0001	0.0001	0.0004	<0.0001	0.0001	0.0001	
Lead, total	mg/L	0.0015	0.0021	0.0012	0.0017	0.0021	- 0.004	- 0.003	0.0017	0.0018	0.0017	- 0.0016	0.0019	0.0018	0.0018	- 0.003	0.0022	- 0.002	0.0001	0.0004	0.0010	0.0010	0.0001	<0.00020
Lithium, dissolved	mg/L	0.0015	0.0021	0.0013	0.0017	0.0021	0.004	0.002	0.0017	0.0018	0.0017	0.0016	0.0018	0.0018	0.0018	0.002	0.0022	0.002	- 0.003	- 0.0022	0.0019	0.0019	- 0.003	- 0.00100
Lithium, total	mg/L	- 20.0	- 24.0	- 20.0			- 40.5	- 20.7	- 27.2	- 24.0	- 20.4	- 27.7	- 26.0	- 20.0		-	- 20.4	-	0.002	0.0022	- 40.2	- 44.5	0.002	0.00199
Magnesium, dissolved	mg/L	38.9	34.9	39.8	39.7	35	40.5	39.7	37.3	34.9	39.1	37.7	36.8	38.9	39.3	41.8	39.4	38	- 20.0	-	49.3	41.5	- 20.6	- 20.2
Magnesium, total	mg/L	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	39.8	45.4	-	-	39.6	39.2
Manganese, dissolved	mg/L	<0.0010	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0006	0.0008	<0.0002	0.0007	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0068	0.0012	-	-	0.0003	<0.0002	-	-
Manganese, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	-	-	<0.0002	<0.00020
Mercury, dissolved	mg/L	<0.00006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00002	<0.00002	<0.00002	<0.00002	0.00005	0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	-	<0.00002	<0.00002	-	-
Mercury, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00002	<0.00002	-	-	<0.00002	<0.000010

		Town Well																						
	Sampling Location	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4
	Date Sampled	2008-10-14	2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-11-20
	Lab Sample ID	K8J0452-01	K9E0816-01	K9K0184-03	КОВОЗ97-ОЗ	K0F0788-02	коко729-03	K1E0403-02	K1H0536-04	K1J0685-04	2051369-02	2081484-04	2111131-04	3051354-04	3110772-02	4060249-02	4081094-01	4110161-01	5051773-02	6050336-05	6081698-04	6111141-02	7040434-04	7111886-03
	Sample Type										Normal													
Analyte	Unit																							
Molybdenum, dissolved	mg/L	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0002	0.0003	0.0012	0.0003	0.0005	0.0003	0.0002	0.0003	0.0003	0.0003	0.0002	-	-	0.0002	0.0002	-	-
Molybdenum, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0003	0.0003	-	-	0.0002	0.00019
Nickel, dissolved	mg/L	0.001	0.0014	0.001	0.0012	0.0016	0.0037	0.0002	0.0011	<0.0002	<0.0002	0.0003	<0.0002	<0.0002	0.0002	<0.0002	0.0015	0.0004	-	-	<0.0002	<0.0002	-	-
Nickel, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	0.0002	-	-	<0.0002	<0.00040
Phosphorus, dissolved	mg/L	<0.040	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.11	<0.02	-	-	<0.02	<0.02	-	-
Phosphorus, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.020	<0.02	-	-	<0.05	<0.050
Potassium, dissolved	mg/L	1.82	2.08	1.48	1.93	2.33	1.95	1.74	1.75	1.5	2.04	1.62	1.61	1.69	1.67	1.7	1.84	1.9	-	-	2.2	1.93	-	-
Potassium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.86	2.05	-	-	1.85	1.89
Selenium, dissolved	mg/L	<0.0010	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	<0.0005	<0.0005	-	-
Selenium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	-	-	<0.0005	<0.00050
Silicon, dissolved	mg/L	5.35	4.1	3.53	7.83	4	2.33	4.89	4.8	4.4	4.8	4.6	4.9	4.6	4.2	4.5	4.6	4.9	-	-	4.5	4.9	-	-
Silicon, total	mg/L	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		4.8	5.3	-	-	4.7	4.4
Silver, dissolved	mg/L	<0.00008	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	0.00007	<0.00005	<0.00005	<0.00005	0.00006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	-	-	<0.00005	<0.00005	1	-
Silver, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00005	<0.00005	-	-	<0.00005	<0.000050
Sodium, dissolved	mg/L	42.1	36.7	44.4	45.6	37.8	37.8	44	39.9	38.2	40.8	39.4	38.7	41.7	42.4	42.5	44.5	48.5	-	-	58.2	50	1	-
Sodium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	46.9	56.5	-	-	52.7	52.1
Strontium, dissolved	mg/L	0.442	0.481	0.409	0.409	0.451	0.628	0.423	0.436	0.37	0.441	0.405	0.399	0.432	0.4	0.421	0.457	0.438	-	-	0.527	0.462	-	-
Strontium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.425	0.49	-	-	0.446	0.486
Sulfur, dissolved	mg/L	-	-	-	-	-	-	-	-	-	16	17	15	13	9	16	12	13	-	-	18	15	-	-
Sulfur, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14	16	-	-	12	14
Tellurium, dissolved	mg/L	<0.0006	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	<0.0002	<0.0002	-	-
Tellurium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	-	-	<0.0002	<0.00050
Thallium, dissolved	mg/L	<0.0001	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	-	<0.00002	<0.00002	-	-
Thallium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.00002	<0.00002	-	-	<0.00002	<0.000020
Thorium, dissolved	mg/L	<0.0006	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	<0.0001	<0.0001	-	-
Thorium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	-	-	<0.0001	<0.00010
Tin, dissolved	mg/L	<0.0004	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	<0.0002	<0.0002	-	-
Tin, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	-	-	<0.0002	<0.00020
Titanium, dissolved	mg/L	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-	<0.005	<0.005	-	-
Titanium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	-	-	<0.005	<0.0050
Tungsten, dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Tungsten, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010
Uranium, dissolved	mg/L	0.0014	0.00124	0.00114	0.00102	0.00115	0.00127	0.00113	0.00107	0.00104	0.00103	0.00109	0.00103	0.00112	0.00105	0.00114	0.00143	0.00123	-	-	0.0013	0.00115	-	-
Uranium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00115	0.00134	-	-	0.00124	0.00127
Vanadium, dissolved	mg/L	<0.002	<0.0010	<0.0010	0.0046	0.0018	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-	-	<0.001	<0.001	-	-
Vanadium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	<0.001	-	-	<0.001	<0.0010
Zinc, dissolved	mg/L	0.008	0.0088	0.0021	0.0051	0.0058	0.0032	<0.0040	0.016	<0.004	<0.004	0.006	<0.004	<0.004	<0.004	<0.004	<0.004	0.005	-	-	<0.004	<0.004	-	-
Zinc, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.004	<0.004	-	-	<0.004	<0.0040
Zirconium, dissolved	mg/L	<0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	<0.0001	<0.0001	-	-
Zirconium, total	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	0.0002	-	-	<0.0001	<0.00010
General Parameters	<u> </u>		1			<u> </u>							ı		I		1							
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	336	338	336	343	361
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	245	- 227	- 220	- 225	- 220	- 242	- 224	-	- 227	- 204	- 242	- 222	- 226	- 214	- 240	- 220	- 240	- 220	<1	<1	<1	<1.0	<1.0
Alkalinity, Total (as CaCO3)	mg/L	345	337	330	325	328	313	331	332	327	304	313	332	326	314	319	320	319	328	336	338	336	343	361
Ammonia, Total (as N)	mg/L	0.06	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	0.02	<0.020	0.03	0.025	0.024	0.029	<0.020	<0.020	<0.020	0.038	<0.020	0.031	<0.020	0.026	0.024
Bicarbonate (HCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	410	412	410	418	441
Carbonate (CO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.6	<0.6	<0.600	<0.600
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	884	899	902	905	874	854	869	835	873	825	836	838	833	859	857	880	900	911	966	948	966	959	1050
Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Part			Town Well																						
Part		Sampling Location		1	1		1	1							1			1							1 1
Part				2009-05-25	2009-11-04	2010-02-09	2010-06-15	2010-11-16	2011-05-09	2011-08-10	2011-10-18	2012-05-24	2012-08-22	2012-11-20	2013-05-21	2013-11-12	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-11-20
Segregation of the segretary of the segr		Lab Sample ID	K8J0452-01	K9E0816-01	K9K0184-03	K0B0397-03	K0F0788-02	КОКО729-03	K1E0403-02	K1H0536-04	K1J0685-04	2051369-02	2081484-04	2111131-04	3051354-04		4060249-02	4081094-01	4110161-01	5051773-02	6050336-05	6081698-04	6111141-02	7040434-04	7111886-03
Second processes Second proc		Sample Type										Normal													
Property	Analyte	Unit		•	•	•	•				•	•	•		•		•								
Profession Pro	Hardness, Total (as CaCO3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	393	-	-	-	-	389
See	Hydroxide (OH)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<0.3	<0.3	<0.340	<0.340
Best 1 19 1 19 1 19 1 19 1 19 1 19 1 19 1	Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Second Control	Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
The control (16) 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	рН	pH Units	6.9	7.7	7.76	7.81	7.93	7.79	7.85	7.81	7.82	7.87	7.8	6.94	7.86	7.82	7.92	7.65	7.85	7.83	7.53	7.77	7.97	7.85	7.91
Mathematical Math	рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Part	Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mathemate Mathemate Mathematic Mathe	Phosphorus, Total Dissolved	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Noveleting from the manufacture of the manufacture	Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Column Free Price Pric	Turbidity	NTU	0.1	<0.1	0.3	0.2	<0.1	0.1	<0.1	0.11	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.10	0.26
Coloning	Microbiological Parameters		-																						
Column Find Marghan Ma	Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Callery, Scal MPACKS or	Coliforms, Fecal	MPN/100 mL	-	-	-	_	_		-			-	-	-	-	-	-	_	-	-	-	-	-	-	
Conformation May M	Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	_	_	-	-		_	_	-	-	-	-	-	_	-	-	-	-	-	-	
Fig. 16 May	Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Control Cont	Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Note	E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13 Debinement	E. coli, Total	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Albehrechene Spil	Volatile Organic Compounds (VOC)																								
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1,1-Dichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11.0-bit container	1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1 frishiosenhame	1,1-Dichloroethylene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.1.1-Trichpropriate	1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3,1 Friederschane	1,1,1-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.3.1.7 Technic procedure	1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11.12.2 Fernandrombane 1961 12.0 Sernandrombane 12.	1,1,2-Trichloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.1.2.2 Price networkshape	1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12-Discromote thane	1,1,2,2-Tetrachloroethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.2 Otherwise 1.2 Otherwis	1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12.Dishorobenzene	1,2-Dibromoethane	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-
1,20ichiorobensene	1,2-Dibromoethane	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichiorostenare	1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,20 Chioroethane	1,2-Dichlorobenzene	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorgoepane ug/L	1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane mg/L	1,2-Dichloroethane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,2-Dichloropropane	1,2-Dichloroethane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
1,2-Dichloropropane	1,2-Dichloropropane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	
1,3-Dichlorobenzene	1,2-Dichloropropane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,3-Dichloropene (cis+ trans)	1,2-Dichloropropane	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,3-Dichloropropene (cis + trans) 4μ/1	1,3-Dichlorobenzene	1	-		<u> </u>	-			-	-		-	-		-	-			-						
1,3-Dichloropropene (cis + trans) 1,4-Dichloropropene (cis + trans) 1,4-Dichloropene (cis +	1,3-Dichlorobenzene	1																							
1,4-Dichlorobenzene μg/L			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1.4-Dichloroberzene				<u> </u>								-													
Benzene mg/L	1,4-Dichlorobenzene			+		-	-		-	-		-	-		-	-		-	-		-	-			
Benzene	1,4-Dichlorobenzene			+																					
Benzene	Benzene _			-																					
Bromodichloromethane mg/L	Benzene _																								
Bromodichloromethane	Benzene		-			-			-	-		-	-		-	-		-	-		-	-			
Bromodichloromethane ug/L	Bromodichloromethane				<u> </u>				-			-	-			-			-			-			
	Bromodichloromethane			-	-		-		-	-		-	-		-	-	-	-	-	-	-	-	-	-	-
Bromoform mg/L - - - - - - - - -	Bromodichloromethane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	Bromoform	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	<0.0010	

Marie Mari	Well Town We	Town Well																							
Mathematical Ma	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	#4	ling Location	Samp
Mary	4-05 2017-11-2	2017-04-05	2016-11-14	2016-08-22	2016-05-03	2015-05-25	2014-11-04	2014-08-18	2014-06-02	2013-11-12	2013-05-21	2012-11-20	2012-08-22	2012-05-24	2011-10-18	2011-08-10	2011-05-09	2010-11-16	2010-06-15	2010-02-09	2009-11-04	2009-05-25	2008-10-14	ate Sampled	ι
March Marc	4-04 7111886-0	7040434-04	6111141-02	6081698-04	6050336-05	5051773-02	4110161-01	4081094-01	4060249-02	3110772-02	3051354-04	2111131-04	2081484-04	2051369-02	K1J0685-04	K1H0536-04	K1E0403-02	коко729-03	K0F0788-02	K0B0397-03	К9К0184-03	K9E0816-01	K8J0452-01	ab Sample ID	L
Marchane 19 19 19 19 19 19 19 1	nal Normal										Sample Type														
Manufacture Mg																								Unit	Analyte
Cash stretchores	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	μg/L	Bromoform
Control Stration	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ug/L	Bromoform
Case instantation Age	05 -	<0.0005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	mg/L	Carbon tetrachloride
Orienselezer 의 경우 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	μg/L	Carbon tetrachloride
Orienselezer 의 경우 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	ug/L	Carbon tetrachloride
Chancelenne	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	μg/L	Chlorobenzene
Description	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	ug/L	Chlorobenzene
Shoredome	20 -	<0.0020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	mg/L	Chloroethane
Consisten	-	-	_	-	-	_	-	_	-	-	_	_	-	-	-	-	-	_	-	_	-	-	_		Chloroethane
Chardram	-	-	_	-	-	-	-	-	-	_	-	_	_	-	-	-	-	-	-	_	-	-	_		
Substitution Supplication Supp	10 -	<0.0010	_	-	_	_	-	_		_	_	_	_	_	-	_	-	-	_	-	_	_	-		
Description Mail		-	-	_	_	-	-	_	-	-	_		-	-		-	-		-		-		-		
Call Delitions between March Mar		_												_											
September Sept	-	-								-			-												
Descriptions Description	-	_								_			_												· '
Description formathene 1967 1.0 1.		<0.0010								_															· '
Decompose than Unit		-	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_		
Discrimentation mg/L	_	_	_			_	_			_	_		_	_			_		_			_			
Dichoromethane μg/L	_	<0.0010	_			_	_			_	_		_	_			_		_			_			
Deformmentance mg/L		-			_	_	_			_			_	_			_		_		_	_		-	
Dichloromethane mg/L	_	<u> </u>			_	_	_			_				_			_		_		_				
Dichloromethane		<0.0030			_	_	_			_				_			_		_		_				
Dichloromethane Ug/L		-								_															
Ethylbenzene mg/L		_																							
Ethylbenzene	_	<0.0010								_															
Ethylbenzene		-				_				_				_											·
Methyl tert-butyl ether mg/L -<	-	_								_															·
Methyl tert-butyl ether μg/L .<	_	<0.0010																							,
Methyl tert-butyl ether ug/L <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th>		-								_				_											· · · · · · · · · · · · · · · · · · ·
Styrene μg/L - <td< th=""><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th>_</th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		_								_			_	_											
Styrene µg/L -		<0.0010								_															
Styrene ug/L - <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>·</th></th<>										_															·
Tetrachloroethylene μg/L		_																							·
Tetrachloroethylene		_																							·
Toluene mg/L														-											'
Toluene μg/L		<0.0010												-											,
Toluene																									
trans-1,2-Dichloroethylene μg/L		_																						- 1	
trans-1,2-Dichloroethylene ug/L		_																							
Trichloroethylene µg/L		_																						1	·
	_	-																							·
																									·
Trichlorofluoromethane mg/L		<0.0010																							·
		-																							
		<0.0010																							
		-																							
		-																							·
	-	-			-	-		-		-	-		-	-				-			-	-			
Xylenes (total) ug/L			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ug/L	· · · · · · · · · · · · · · · · · · ·
BCMOE Aggregate Hydrocarbons						_	I	_			_	_					-					ı		- 1	
VPHw mg/L - - - - - - - - - -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	mg/L	/PHw

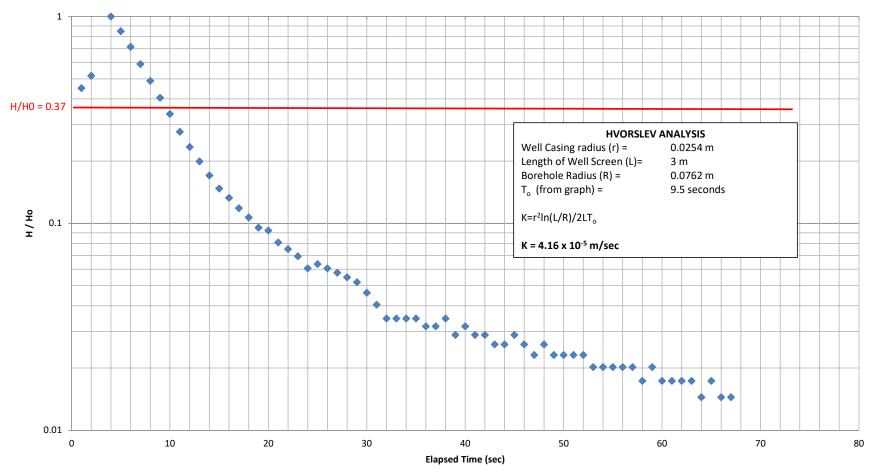
		Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Well ID
	Sampling Location	#4	#4	#4	#4	#4	#4	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	22653
	Date Sampled	2018-06-26	2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2013-08-20	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2019-05-29	2019-08-13	2018-12-04
	Lab Sample ID	8062674-04	8090975-06	8120636-05	9052874-05	9081278-05	N000444-05	3081378-02	4060249-01	4081094-02	4110161-02	5051773-01	5081710-01	5110693-04	6050336-04	6081698-05	6111141-01	7040434-05	7090074-02	7111886-02	8062674-05	9052874-06	9081278-06	8120636-07
	Sample Type	Normal	Normal	Normal				Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal			Normal
Analyte	Unit																							
Field Parameters				T								1			T	1			1					
Depth to Water	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.82
Dissolved Oxygen	mg/L	-	5.59	5.67	4.89	6.47	5.47	-	8.14	7.68	7.38	6.4	7.04	6.51	5.61	6.13	5.71	-	9.27	9.21	-	10.26	8.83	2.87
Electrical Conductivity	μS/cm	1055	1043	904	923	932	834	650	577	577	677	587	401	670	693	695	723	635	680	726	727	634	713	352
Elevation of Piezometric Surface	m	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxidation reduction potential	mV	218	123	102	-14.1	185.9	100.6	246	183	172	66	211	46	74	122	234	163	265	31		204	-20	150.6	-
pH Tomporature	pH Units	7.46 8.3	7.52 8.4	7.26	7.34 9.7	7.28 9.3	7.42 7.4	7.15 7.9	7.3 7.7	7.9 8.1	7.4 8.1	7.4 7.8	7.4 10.2	8.2	7.3 8.2	7.2 8.4	7.3	7.3 7.9	9.5	7.5 7.9	7.45 8.1	7.58 9.9	7.38 9.3	8.65 7.8
Temperature Anions		0.3	0.4	0.3	3.7] 3.3	7.4	7.5	7.7	0.1	0.1	7.0	10.2	0.2	0.2	0.4	0	7.5	9.5	1.5	0.1	3.3	3.3	7.0
Bromide	mg/L	<0.10	<0.10	<0.10	_	Π.	_		_			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	_	_	<0.10
Chloride	mg/L	103	87.4	97	97.9	92.7	92.8	22.9	23.7	26.2	34.5	28.7	24.8	28.6	24.4	29.2	30.5	31	34.4	36.2	39.7	41	42.1	29.4
Fluoride	mg/L	0.15	<0.10	<0.10	<0.1	<0.1	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.11	0.18	<0.10	<0.1	<0.1	0.13
Nitrate (as N)	mg/L	1.26	1.76	1.6	1.72	1.65	1.76	0.781	0.839	0.993	1.23	0.89	1.01	0.925	0.978	1.03	0.976	1.09	1.11	1.3	0.933	1.28	1.32	<0.010
Nitrite (as N)	mg/L	<0.010	<0.010	<0.010	<0.01	<0.01	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.01	<0.01	<0.010
Sulfate	mg/L	38.8	42.3	42.9	43.5	41.4	41.8	20.4	23.5	24.1	24.3	24.3	23.8	24.8	25.2	27.1	24.9	27.6	24.4	23	25.2	30.8	28.6	23.5
Metals																								
Aluminum, dissolved	mg/L	0.0057	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005	<0.005	0.011	<0.005	-	-	-	-	<0.005	<0.005	-	<0.0050	-	0.0069	<0.005	<0.005	0.0068
Aluminum, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.005	<0.005	<0.05	<0.005	-	-	<0.005	-	<0.0050	-	-	1	-
Antimony, dissolved	mg/L	<0.00020	<0.00020	<0.00020	<0.0002	<0.0002	<0.0002	0.0005	0.0005	0.0003	0.0002	-	-	-	-	<0.0001	<0.0001	-	<0.00020	-	<0.00020	<0.0002	<0.0002	<0.00020
Antimony, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00020	-	-	-	-
Arsenic, dissolved	mg/L	<0.00050	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	-	<0.00050	-	<0.00050	<0.0005	<0.0005	<0.00050
Arsenic, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.005	<0.0005	-	-	<0.0005	-	<0.00050	-	-	-	-
Barium, dissolved	mg/L	0.196	0.219	0.214	0.217	0.218	0.205	0.133	0.126	0.136	0.146	-	-	-	-	0.169	0.155	-	0.133	-	0.133	0.165	0.161	0.0224
Barium, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.142	0.146	0.14	0.162	-	-	0.15	-	0.146	-	-	-	<u> </u>
Beryllium, dissolved	mg/L	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010	-	<0.00010	<0.0001	<0.0001	<0.00010
Beryllium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-	-	-
Bismuth, dissolved	mg/L	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001					<0.0001	<0.0001		<0.00010		<0.00010	<0.0001	<0.0001	<0.00010
Bismuth, total	mg/L	0.0335	0.0357	0.0293	0.0221	0.0225	0.0665	- 0.05	0.015	0.012	0.006	<0.0001	<0.0001	<0.001	<0.0001	0.014	0.007	<0.0001	0.142	<0.00010	0.017	0.0099	0.0106	0.0156
Boron, dissolved Boron, total	mg/L mg/L	0.0333	0.0357	0.0293	0.0221	0.0225	0.0005	0.05	0.015	0.012	0.006	0.006	0.007	<0.04	0.012	0.014	0.007	0.016	0.143	0.0068	0.017	0.0099	- 0.0106	0.0156
Cadmium, dissolved	mg/L	<0.000010	<0.000010	<0.000010	<0.00001	<0.00001	<0.00001	0.00002	<0.00001	0.00002	<0.00001	0.000	0.007	<0.04	0.012	0.00002	<0.00001	0.010	<0.000010	0.0008	<0.000010	<0.00001	<0.00001	<0.000010
Cadmium, total	mg/L	-	-	-	-	-	-	-	-	- 0.00002	-	<0.00001	<0.00001	<0.0001	<0.00001	-	-	<0.00001	-	<0.000010	-		-	-
Calcium, dissolved	mg/L	93.1	90.1	86.2	93.4	93.5	89.6	81.5	82.8	82.7	84.3	-	-	-	-	96.8	85.7	-	84.4	-	85.5	99.2	93.4	20.4
Calcium, total	mg/L	-	-	-	-	-	-	-	-	-	-	90.4	87.9	87	105	-	-	89.6	-	83.6	-	-	-	-
Chromium, dissolved	mg/L	<0.00050	<0.00050	<0.00050	0.00085	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	-	<0.00050	-	<0.00050	0.0009	<0.0005	<0.00050
Chromium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.005	<0.0005	-	-	0.0006	-	0.00062	-	-	-	-
Cobalt, dissolved	mg/L	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.00005	<0.00005	0.00007	0.00006	-	-	-	-	0.00007	<0.00005	-	<0.00010	-	<0.00010	<0.0001	<0.0001	<0.00010
Cobalt, total	mg/L	-		-	-	-	-	-	-	-		<0.00005	<0.00005	<0.0005	<0.00005	-	-	<0.00005	-	<0.00010	-	-	-	
Copper, dissolved	mg/L	0.00099	0.00182	0.00065	0.00984	0.0014	0.0013	0.0008	0.0013	0.0028	0.0024	-	-	-	-	0.0014	0.0008	-	0.00143	-	0.00106	0.00231	0.00228	<0.00040
Copper, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.001	0.0016	<0.002	0.0008	-	-	0.0013	-	0.00153	-	-	-	-
Iron, dissolved	mg/L	<0.010	<0.010	<0.010	<0.01	<0.01	<0.01	<0.010	<0.010	0.033	0.013	-	-	-	-	0.012	<0.010	-	0.019	-	0.018	0.016	<0.01	1.93
Iron, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.01	0.01	<0.10	<0.01	-	-	<0.01	-	<0.010	-	-	-	
Lead, dissolved	mg/L	<0.00020	<0.00020	0.00025	0.00066	<0.0002	<0.0002	<0.0001	<0.0001	0.0002	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00020	-	<0.00020	<0.0002	<0.0002	<0.00020
Lead, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.0001	0.0001	<0.001	0.0001	-	-	<0.0001	-	<0.00020	-	-	-	-
Lithium, dissolved	mg/L	0.00226	0.00212	0.00231	0.00228	0.00224	0.00228	0.0013	0.0013	0.0014	0.0013	-	-	-	-	0.0012	0.0012	-	0.0014	-	0.00132	0.0016	0.00146	0.00204
Lithium, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.0014	0.0012	0.001	0.0017	-	-	0.0013	-	0.00115	-	-	-	-
Magnesium, dissolved	mg/L	42.6	42.3	44.1	41.9	41.1	44.5	28.1	28.5	28.7	27.1	-	-	-	-	33.6	28.8	-	28.2	-	27.7	31.6	29.3	26.2
Magnesium, total	mg/L	- 0.004.63					0.000			- 0.000		29.2	27.1	26.8	33	- 0.0044	- 0.000	26.8		24	- 0.00220			
Manganese, dissolved	mg/L	0.00162	<0.00020	0.00517	<0.0002	<0.0002	<0.0002	0.0009	0.0013	0.0082	0.0014	0.0011	0.001		0.0007	0.0011	0.0008	0.0007	0.00294	0.00077	0.00229	0.00175	0.00077	0.0986
Manganese, total	mg/L	<0.000010	<0.000040	<0.000010	-0.00001	-0.00001	-0.00001	-0.00003	-0.00003	<0.00003	-0.00003	0.0011	0.001	<0.002	0.0007	-0.00003	<0.00003	0.0007	<0.000010	0.00077	<0.000040	-0.00001	-0.00001	<0.000010
Mercury, dissolved	mg/L	<0.000010	<0.000040	<0.000010	<0.00001	<0.00001	<0.00001	<0.00002	<0.00002	<0.00002	<0.00002	<0.0002	-	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.000010	<0.00010	<0.000040	<0.00001	<0.00001	<0.00010
Mercury, total	mg/L		-		-	-		-	-		_	<0.00002		<0.00002	<0.00002	-		<0.00002	-	<0.000010		-	-	

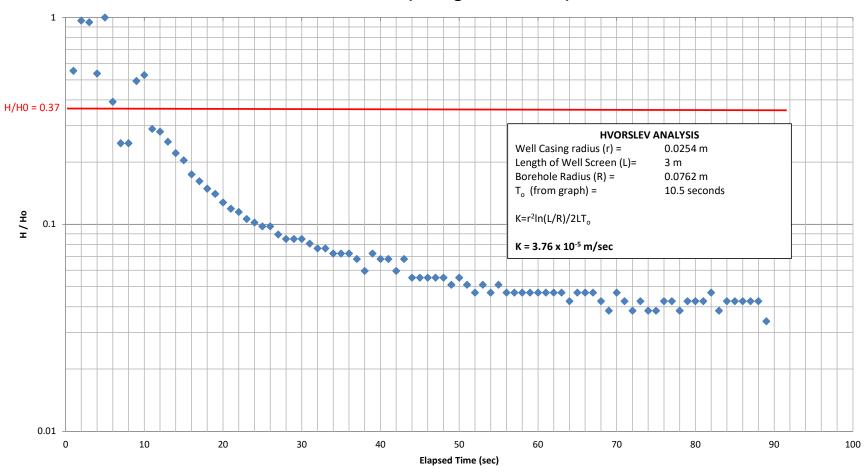

		Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Well ID												
Sa	mpling Location	#4	#4	#4	#4	#4	#4	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	22653
	Date Sampled	2018-06-26	2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2013-08-20	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2019-05-29	2019-08-13	2018-12-04
	Lab Sample ID	8062674-04	8090975-06	8120636-05	9052874-05	9081278-05	N000444-05	3081378-02	4060249-01	4081094-02	4110161-02	5051773-01	5081710-01	5110693-04	6050336-04	6081698-05	6111141-01	7040434-05	7090074-02	7111886-02	8062674-05	9052874-06	9081278-06	8120636-07
	Sample Type	Normal	Normal	Normal				Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal			Normal						
Analyte	Unit			•		•					•	•	•	•	•						•	•		
Molybdenum, dissolved	mg/L	0.00018	0.00021	0.00023	0.00021	0.0002	0.00018	0.0003	0.0004	0.0004	0.0004	-	-	-	-	0.0003	0.0002	-	0.0003	-	0.00044	0.00036	0.00031	0.00025
Molybdenum, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.0005	0.0003	<0.001	0.0003	-	-	0.0003	-	0.00026	-	-	-	-
Nickel, dissolved	mg/L	<0.00040	<0.00040	<0.00040	<0.0004	<0.0004	<0.0004	0.0003	<0.0002	0.0012	0.0004	-	-	-	-	0.0002	0.0003	-	<0.00040	-	<0.00040	<0.0004	<0.0004	<0.00040
Nickel, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0002	0.0006	<0.002	0.0002	1	-	0.0002	-	<0.00040	-	-	-	-
Phosphorus, dissolved	mg/L	<0.050	<0.050	<0.050	<0.05	<0.05	<0.05	<0.02	<0.02	0.07	<0.02	-	-	-	-	<0.02	<0.02	-	<0.050	-	<0.050	<0.05	<0.05	<0.050
Phosphorus, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.020	0.03	<0.2	<0.02	-	-	<0.05	-	<0.050	-	-	-	-
Potassium, dissolved	mg/L	1.95	1.77	2.12	1.78	1.86	1.65	1	0.89	0.95	0.94	-	-	-	-	1.1	0.99	-	0.89	-	1.01	1.02	1	0.95
Potassium, total	mg/L	-	-	-	-	-	-	-	-	-	-	1.03	0.99	0.8	1.06	-	-	0.93	-	0.91	-	-	-	-
Selenium, dissolved	mg/L	<0.00050	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-	-	-	-	<0.0005	<0.0005	-	<0.00050	-	<0.00050	<0.0005	<0.0005	<0.00050
Selenium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0005	<0.0005	<0.005	<0.0005	-	-	<0.0005	-	<0.00050	-	-	-	-
Silicon, dissolved	mg/L	4.9	4.6	4.9	4.4	5	5.6	4.1	4	4.4	4.5	-	-	-	-	4.2	4.5	-	4	-	4.3	4.4	4.5	<1.0
Silicon, total	mg/L	-	-	-	-	-	-	-	-	-	-	4.7	4.3	<5	5.2	•	-	4.3	-	3.7	-	-	-	-
Silver, dissolved	mg/L	<0.000050	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	-	-	<u> </u>	-	<0.00005	<0.00005	-	<0.000050	-	<0.000050	<0.00005	<0.00005	<0.000050
Silver, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.00005	0.00154	<0.0005	<0.00005	-	-	<0.00005	-	<0.000050	-	-	-	-
Sodium, dissolved	mg/L	57.8	56.9	58.5	56.9	55.9	62	15.2	13.9	15.4	17.9	-	-	-	-	17.9	16.7	-	17	-	20.3	23.1	22.6	14.7
Sodium, total	mg/L	-	-	-	-	-	-	-	-	-	-	18.9	15.1	15.9	17.9	-	-	17.1	-	15.7	-	-	-	
Strontium, dissolved	mg/L	0.492	0.46	0.471	0.459	0.479	0.439	0.282	0.269	0.301	0.29	-	-	-	-	0.344	0.312	-	0.258	-	0.281	0.328	0.331	0.115
Strontium, total	mg/L	-	-	-	-	-	-	-	-	-	-	0.296	0.298	0.27	0.325	-	-	0.294	-	0.285	-	-	-	<u> </u>
Sulfur, dissolved	mg/L	16.1	14.3	15	15.7	15.7	16.1	8	10	8	7	-	-	-	-	13	9	-	7.8	-	9.8	12	10.7	7.1
Sulfur, total	mg/L	-	-	-	-	-	-	-	-	-	-	9	8	<10	11	-	-	6	-	7.9	-	-	-	-
Tellurium, dissolved	mg/L	<0.00050	<0.00050	<0.00050	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	<0.0002	<0.0002	-	<0.00050	-	<0.00050	<0.0005	<0.0005	<0.00050
Tellurium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0002	<0.0002	<0.002	<0.0002	-	-	<0.0002	-	<0.00050	-	-	-	-
Thallium, dissolved	mg/L	<0.000020	<0.000020	<0.000020	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	-	-	-	-	<0.00002	<0.00002	-	<0.000020	-	<0.000020	<0.00002	<0.00002	<0.000020
Thallium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.00002	<0.00002	<0.0002	<0.00002	-	-	<0.00002	-	<0.000020	-	-	-	-
Thorium, dissolved	mg/L	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010	-	<0.00010	<0.0001	<0.0001	<0.00010
Thorium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-	-	
Tin, dissolved	mg/L	<0.00020	<0.00020	0.00022	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-	-	-	-	<0.0002	<0.0002	-	<0.00020	-	<0.00020	<0.0002	<0.0002	0.00077
Tin, total	mg/L			-	-	-		-	-		-	<0.0002	<0.0002	<0.002	<0.0002	-		<0.0002		<0.00020		-		
Titanium, dissolved	mg/L	<0.0050	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			0.05	0.005	<0.005	<0.005	0.005	<0.0050		<0.0050	<0.005	<0.005	<0.0050
Titanium, total	mg/L							-	-	-	-	<0.005	<0.005	<0.05	<0.005	-	-	<0.005	-	<0.0050				
Tungsten, dissolved	mg/L	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	-	-	-	-	-	-	 	-	-	-	-	-	-0.0010	<0.0010	<0.001	<0.001	<0.0010
Tungsten, total Uranium, dissolved	mg/L	0.00117	0.00132	0.00133	0.00128	0.00128	0.00124	0.00105	0.00103	0.00114	0.00114	-	-	 	-	0.00117	0.00106	-	0.00109	<0.0010	0.001	0.0013	0.00121	<0.000020
<u> </u>	mg/L	0.00117	0.00132	0.00133	0.00128	0.00128	- 0.00124	0.00103	0.00103	0.00114	0.00114	0.00112	0.00111	0.0011	0.00133	0.00117	- 0.00100	0.00109	0.00109	0.00107	0.001	0.0013	0.00121	<0.000020
Uranium, total	mg/L	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			0.0011		<0.001	<0.001		<0.0010		<0.0010	<0.001	<0.001	<0.0010
Vanadium, dissolved Vanadium, total	mg/L mg/L			-	-	-			<0.001	- <0.001	-	<0.001	<0.001	<0.01	<0.001	-	-	<0.001	-	<0.0010		<0.001	- <0.001	
Zinc, dissolved	mg/L	0.0062	<0.0040	0.0063	0.0265	<0.004	<0.004	<0.004	<0.004	0.01	0.005	-		- <0.01		<0.004	<0.004	-	0.01	- 0.0010	0.0052	0.0055	0.0094	0.0043
Zinc, total	mg/L	- 0.0002	-	-	-	-	-	-	-	-	-	<0.004	0.016	<0.04	<0.004	-	-	0.004	-	<0.0040	- 0.0032	-	-	-
Zirconium, dissolved	mg/L	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	<0.0001	<0.0001	-	<0.00010	-	<0.00010	<0.0001	<0.0001	<0.00010
Zirconium, total	mg/L	-	-	-	-	-	-	-	-	-	-	<0.0001	<0.0001	<0.001	<0.0001	-	-	<0.0001	-	<0.00010	-	-	-	-
General Parameters	101 -																		1					
Alkalinity, Bicarbonate (as CaCO3)	mg/L	336	378	355	357	346	409	-	-	-	-	-	-	-	292	296	308	314	288	304	288	331	317	142
Alkalinity, Carbonate (as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1	<1	<1	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1	<1	<1	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1.0
Alkalinity, Phenolphthalein (as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1	<1	<1	-	-	-	-	-	-	-	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1	<1	<1.0
Alkalinity, Total (as CaCO3)	mg/L	336	378	355	357	346	409	268	276	277	291	303	288	295	292	296	308	314	288	304	288	331	317	142
Ammonia, Total (as N)	mg/L	<0.020	0.02	<0.020	0.063	0.07	<0.02	<0.020	0.024	<0.020	<0.020	<0.020	<0.020	0.02	<0.020	0.02	0.037	0.03	0.021	0.028	<0.020	0.089	0.067	0.326
Bicarbonate (HCO3)	mg/L	410	461	433	435	423	498	-	-	-	-	-	-	-	356	361	375	383	352	371	351	404	387	173
Carbonate (CO3)	mg/L	<0.600	<0.600	<0.600	<0.6	<0.6	<0.6	-	-	-	-	-	-	-	<1	<0.6	<0.6	<0.600	<0.600	<0.600	<0.600	<0.6	<0.6	<0.600
Chemical Oxygen Demand	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	μS/cm	1010	1020	1000	973	989	961	620	621	634	679	672	618	661	658	666	712	692	655	704	702	739	759	387
Electrical Conductivity	uS/cm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
·	<u> </u>												-											

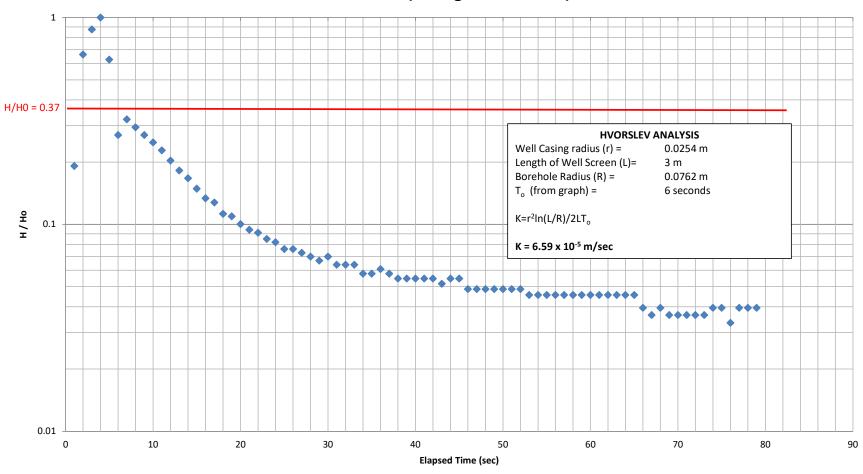
		Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Town Well	Well ID
	Sampling Location		#4	#4	#4	#4	#4	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	22653
	Date Sampled		2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2013-08-20	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2019-05-29	2019-08-13	2018-12-04
	Lab Sample ID					9081278-05		3081378-02	4060249-01	4081094-02	4110161-02	5051773-01		5110693-04	6050336-04	6081698-05		7040434-05		7111886-02		9052874-06	9081278-06	
	Sample Type	Normal	Normal	Normal				Normal			Normal													
Analyte	Unit		•		•	•					•	•		•	•	•		•	•	•			•	
Hardness, Total (as CaCO3)	mg/L	-	-	-	406	403	407	-	-	-	-	346	332	328	-	-	-	-	-	308	-	378	354	-
Hydroxide (OH)	mg/L	<0.340	<0.340	<0.340	<0.34	<0.34	<0.34	-	-	-	-	-	-	-	<1	<0.3	<0.3	<0.340	<0.340	<0.340	<0.340	<0.34	<0.34	<0.340
Nitrate + Nitrite (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Total Kjeldahl	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	pH Units	7.88	7.83	7.92	7.99	7.92	8.16	7.94	7.87	7.7	7.86	7.81	7.79	7.72	7.74	7.76	7.89	7.89	8.03	8	7.93	8.02	7.95	8
рН	pH units	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total (as P)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus, Total Dissolved	mg/L	-	-	<0.0020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020
Total organic carbon	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	<0.10	-	<0.10	0.19	<0.1	0.1	0.6	<0.1	<0.1	0.1	<0.1	0.2	0.1	<0.1	0.11	0.13	0.16	0.12	0.1	<0.10	3.63	23.7	142
Microbiological Parameters																								
Coliforms, Fecal	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Fecal	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
Coliforms, Fecal (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
Coliforms, Total	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Coliforms, Total (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E. coli (MPN)	MPN/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
E. coli, Total	CFU/100 mL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds (VOC)																								
1,1-Dichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,1-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,1-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,1,1-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	
1,1,2-Trichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,1,2,2-Tetrachloroethane	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-
1,1,2,2-Tetrachloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	mg/L	-	<0.0003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0002	-	-	-	-	-	-
1,2-Dibromoethane	μg/L	-	-	-	<0.3	-	<0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.3	-	-
1,2-Dibromoethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- /
1,2-Dichlorobenzene	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	
1,2-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,2-Dichloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
1,2-Dichloropropane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,2-Dichloropropane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,3-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis + trans)	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,3-Dichloropropene (cis + trans)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
1,4-Dichlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	mg/L	-	<0.0005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	-	-	-
Benzene	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-
Benzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Bromodichloromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Bromodichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-

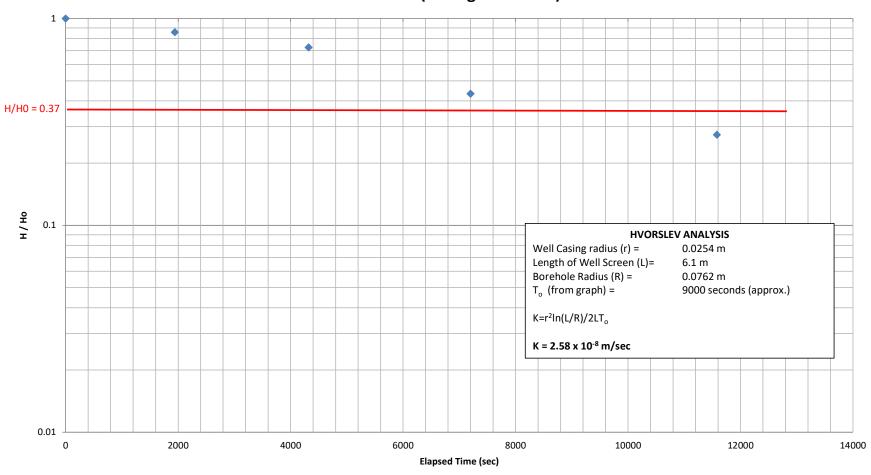

		Town Well	Well ID																					
	Sampling Location		#4	#4	#4	#4	#4	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	#6	22653
	Date Sampled		2018-09-11	2018-12-03	2019-05-29	2019-08-13	2019-10-29	2013-08-20	2014-06-02	2014-08-18	2014-11-04	2015-05-25	2015-08-25	2015-11-09	2016-05-03	2016-08-22	2016-11-14	2017-04-05	2017-08-29	2017-11-20	2018-06-26	2019-05-29	2019-08-13	2018-12-04
	Lab Sample ID	8062674-04	8090975-06	8120636-05	9052874-05	9081278-05	N000444-05	3081378-02	4060249-01	4081094-02	4110161-02	5051773-01	5081710-01	5110693-04	6050336-04	6081698-05	6111141-01	7040434-05	7090074-02	7111886-02	8062674-05	9052874-06	9081278-06	8120636-07
	Sample Type	Normal	Normal	Normal				Normal			Normal													
Analyte	Unit																							
Bromoform	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Bromoform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/L	-	<0.0005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0005	-	-	-	-	-	-
Carbon tetrachloride	μg/L	-	-	-	<0.5	-	<0.5	-	-	-	-	-	•	-	-	-	-	-	-	-	-	<0.5	-	-
Carbon tetrachloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Chlorobenzene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	<0.0020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0020	-	-	-	-	-	-
Chloroethane	μg/L	-	-	-	<2	-	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2	-	-
Chloroethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/L	-	<0.0010	-	-	-	-	-	-	-	-		-	-	-	-	-	<0.0010	-	-	-	-	-	-
Chloroform	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Chloroform	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
cis-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Dibromochloromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Dibromochloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Dibromomethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Dibromomethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/L	-	<0.0030	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0030	-	-	-	-	-	
Dichloromethane	μg/L	-	-	-	<3	-	<3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	-	
Dichloromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Ethylbenzene	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Ethylbenzene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	
Ethylbenzene	ug/L	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
Methyl tert-butyl ether	mg/L	-	<0.0010	-		-		-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-		-	-
Methyl tert-butyl ether	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Methyl tert-butyl ether	ug/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Styrene Styrene	mg/L μg/L	-	- 0.0010	-	<1	_	<1	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	<1	-	
Styrene	ug/L	_	-	_	-	_	-	_		_	-	_	-	_	-	-	_	-	-	_	_	-	-	
Tetrachloroethylene	μg/L	_	-	_	<1	_	<1	-	-	-	_	_	-	_		-	_	_	-	_		<1	-	
Tetrachloroethylene	ug/L	-	-	_	-	_	-	-	_	-	_	_	_	-	_	_	-	-	-	-	_	-	-	-
Toluene	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	_	-	-	-	-	<0.0010	-	-	_	-	-	-
Toluene	μg/L	-		_	<1	_	<1	-	_	-	_	_	_	-	_	_	-		-	-	_	<1	-	-
Toluene	ug/L	_	_	_	-	_	-	-	_	-	_	-	_	-	-	_	-	_	_	-	_	-	_	_
trans-1,2-Dichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
trans-1,2-Dichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethylene	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Trichloroethylene	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Trichlorofluoromethane	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Trichlorofluoromethane	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/L	-	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0010	-	-	-	-	-	-
Vinyl chloride	μg/L	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-
Vinyl chloride	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes (total)	μg/L	-	-	-	<2	-	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<2	-	-
Xylenes (total)	ug/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BCMOE Aggregate Hydrocarbons								'																
VPHw	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
			-	-	-		-						-		-			-	-	-	-			

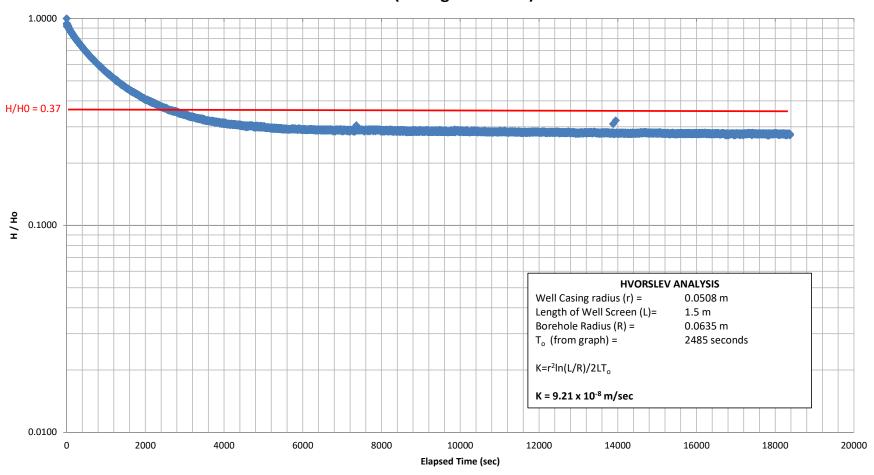
APPENDIX E SINGLE WELL RESPONSE TESTING

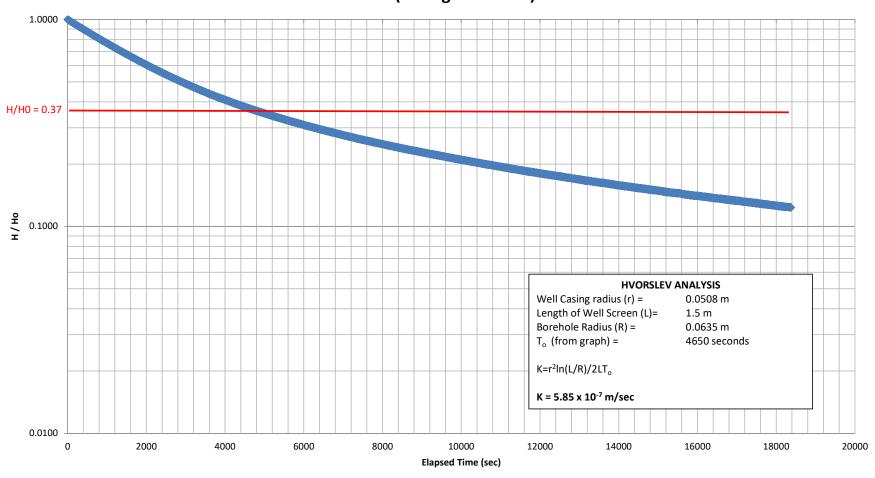

MW09-06S (Rising Head Test #1)

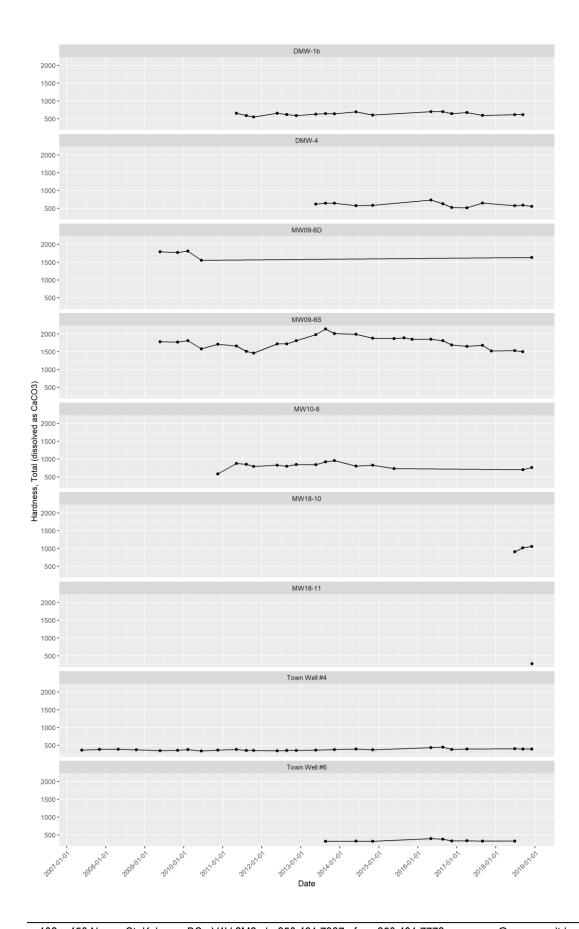

MW09-06S (Rising Head Test #2)

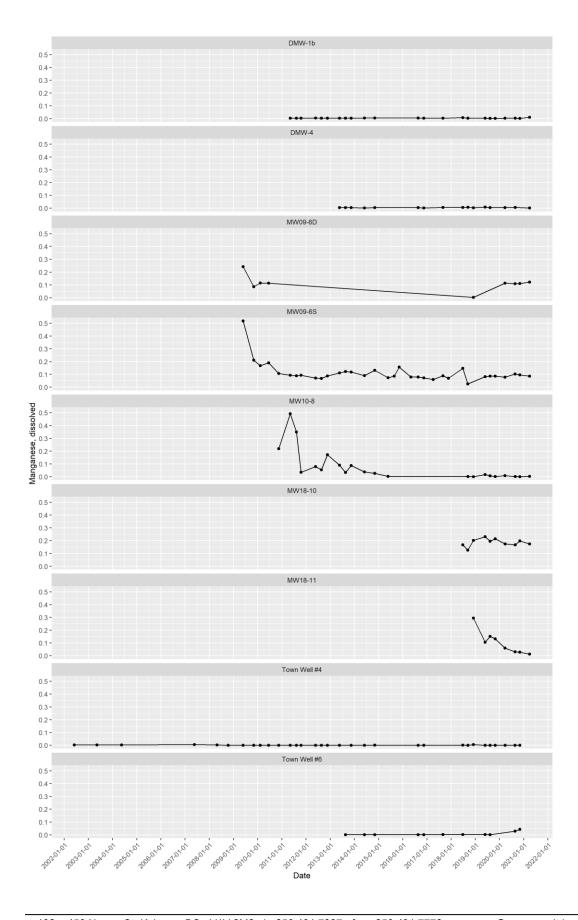

MW09-06S (Rising Head Test #3)

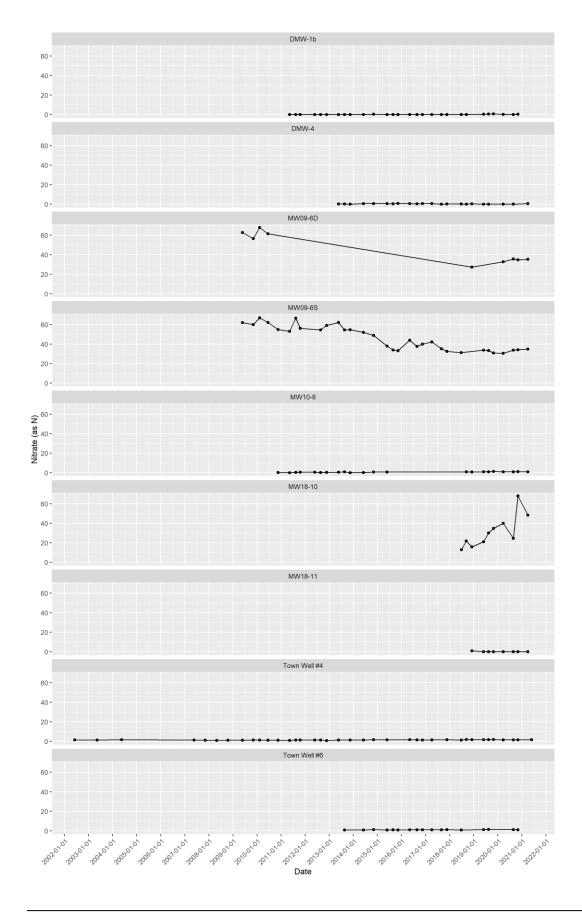

MW09-06S (Falling Head Test #1)

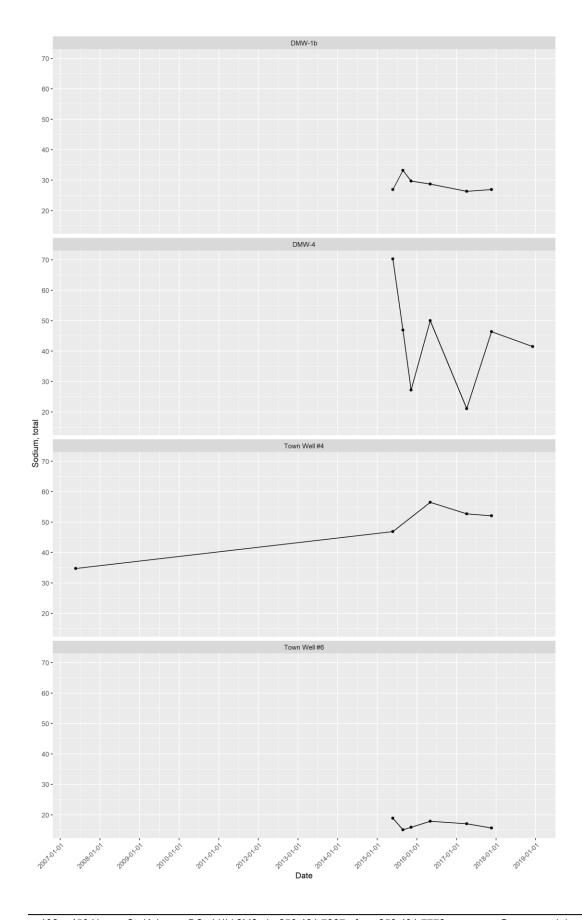

MW09-06S (Falling Head Test #2)

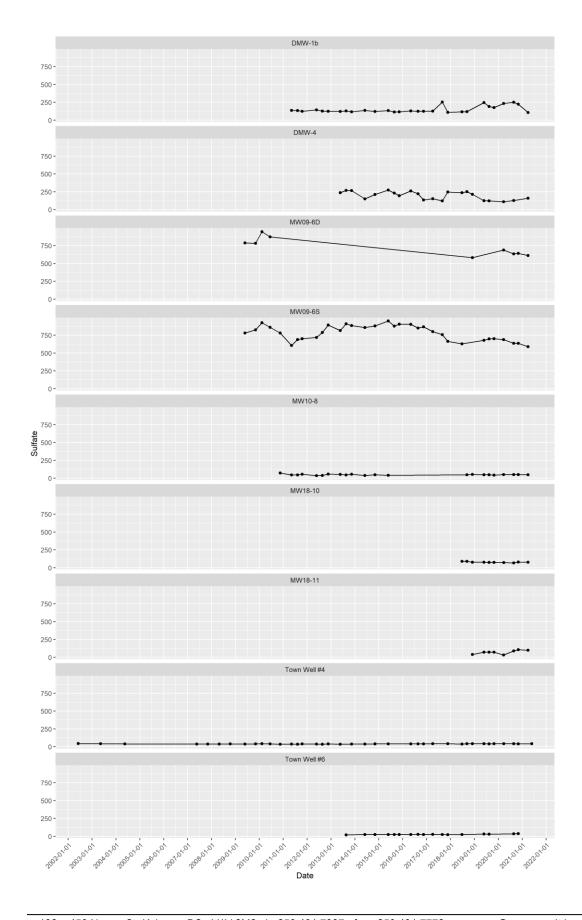

MW09-06D (Falling Head Test)

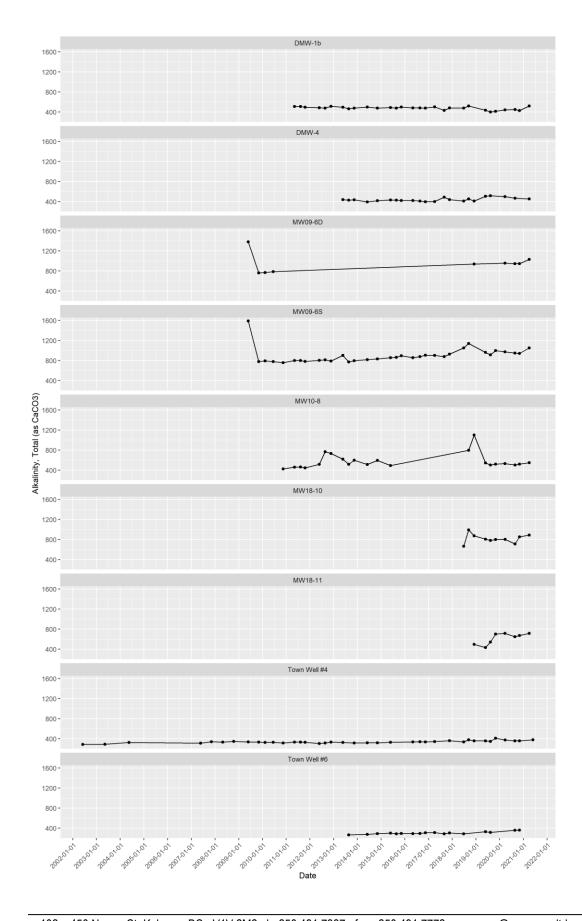

MW10-08 (Falling Head Test)

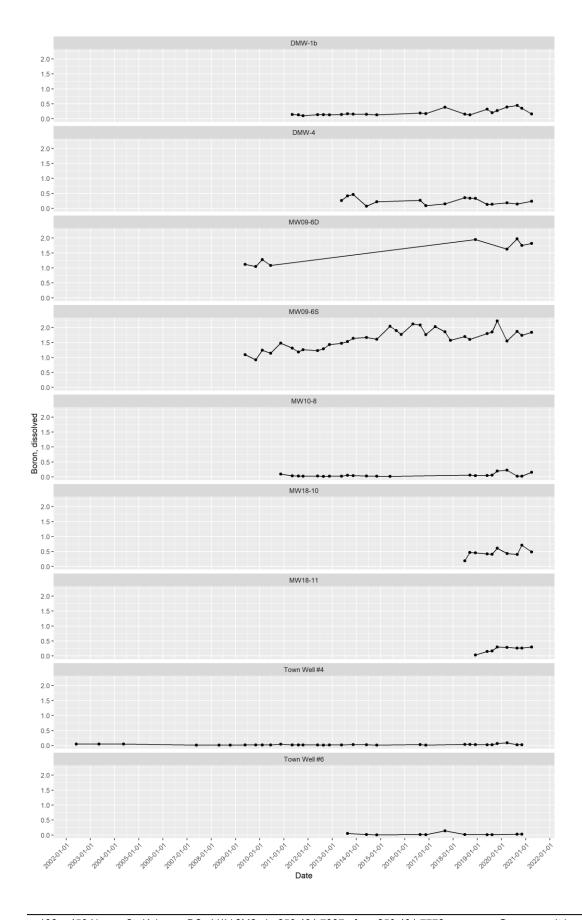

MW18-11 (Falling Head Test)

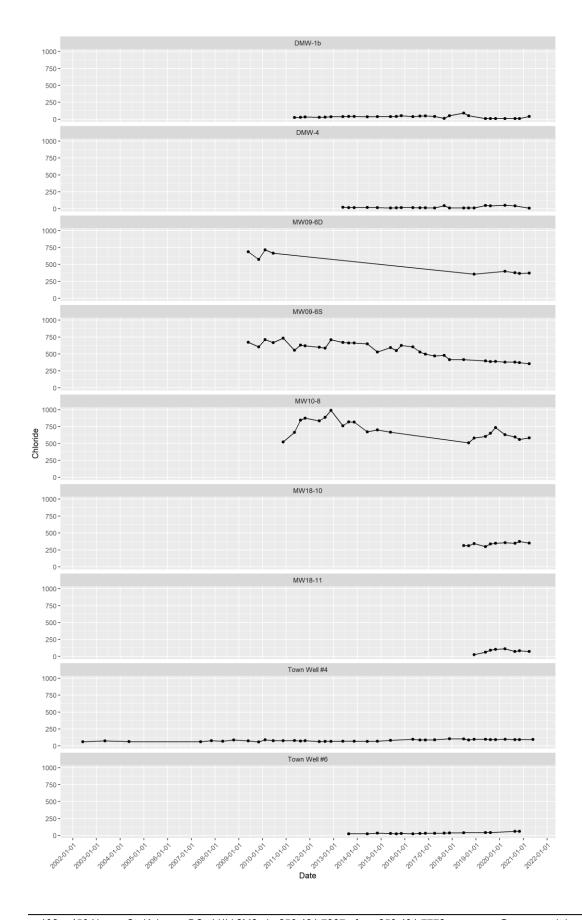


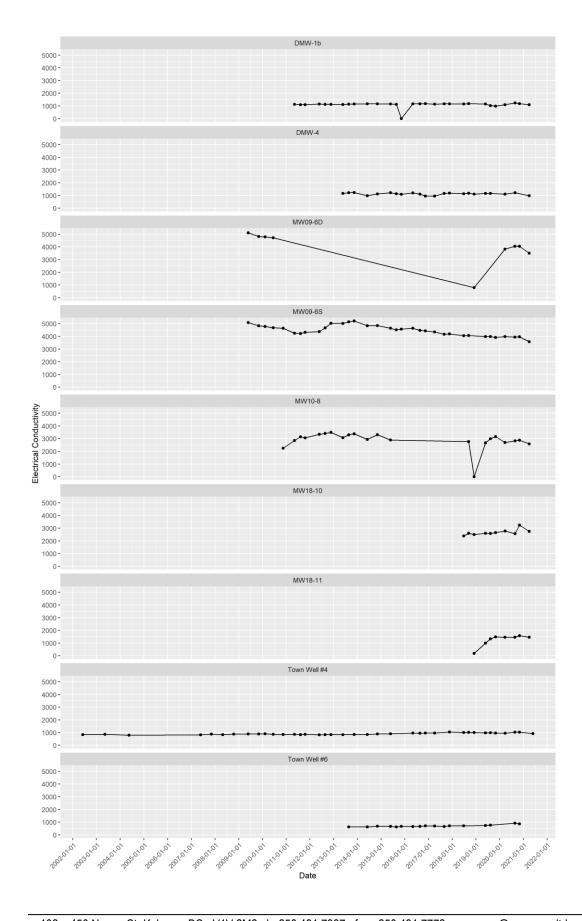

APPENDIX F TIME SERIES PLOTS

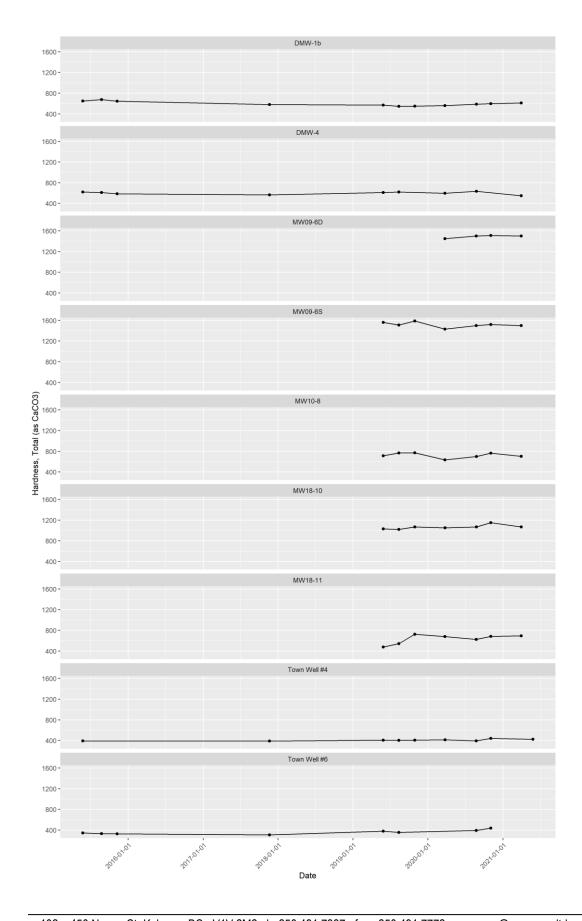


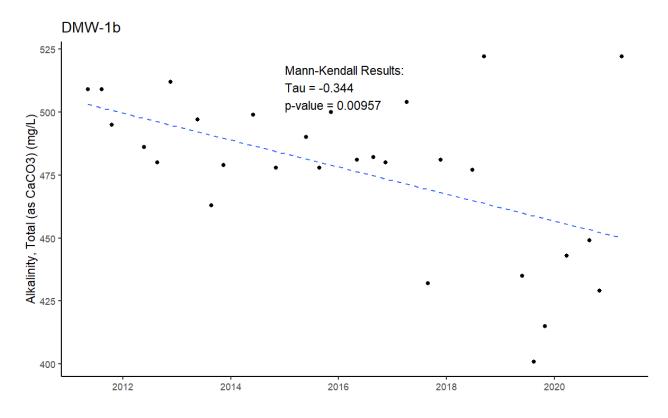


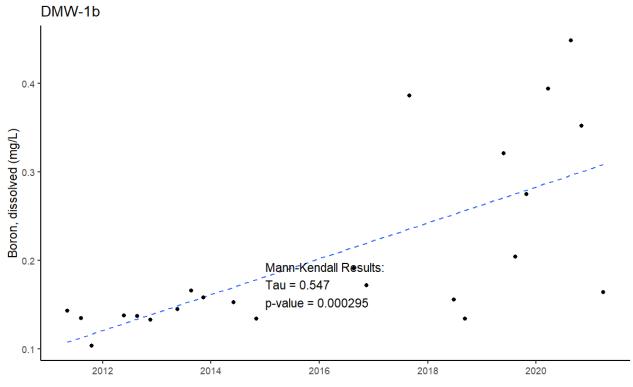


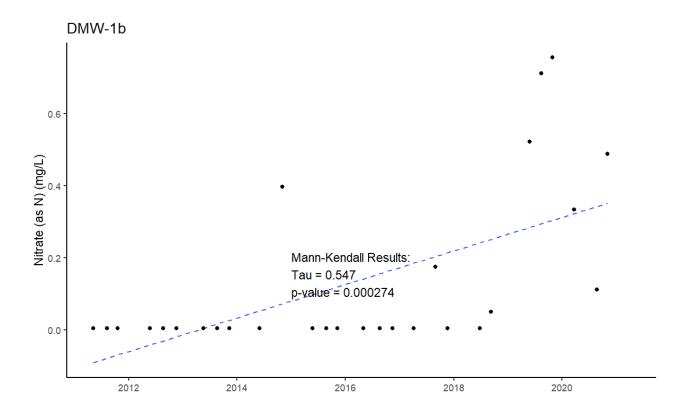


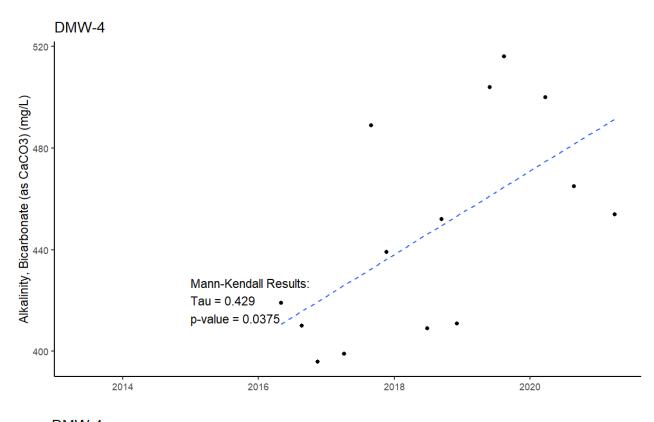


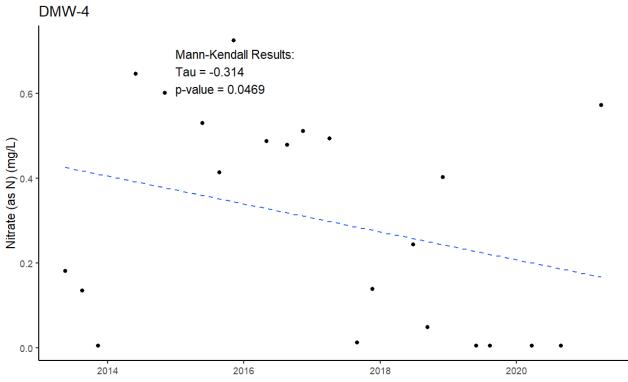


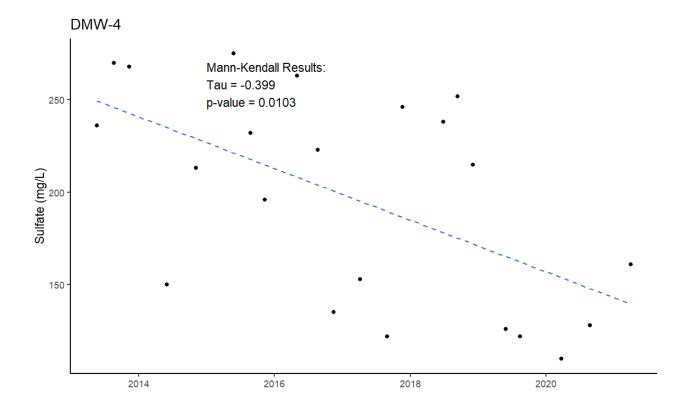


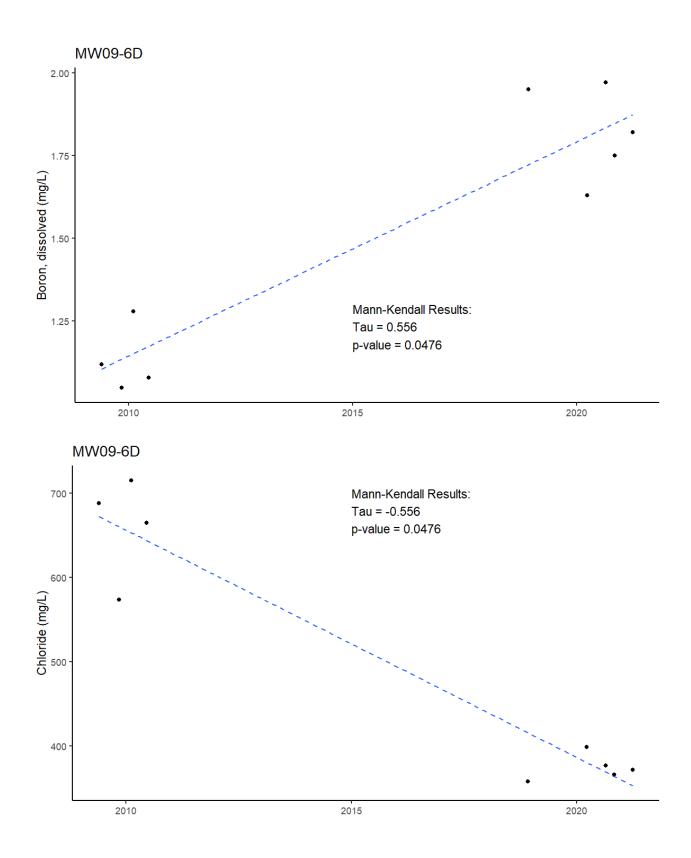


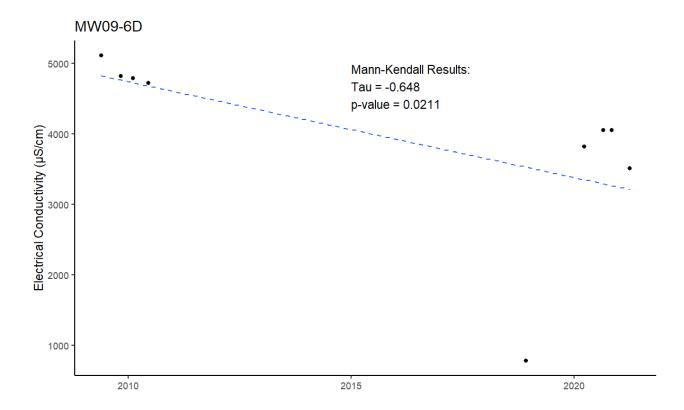


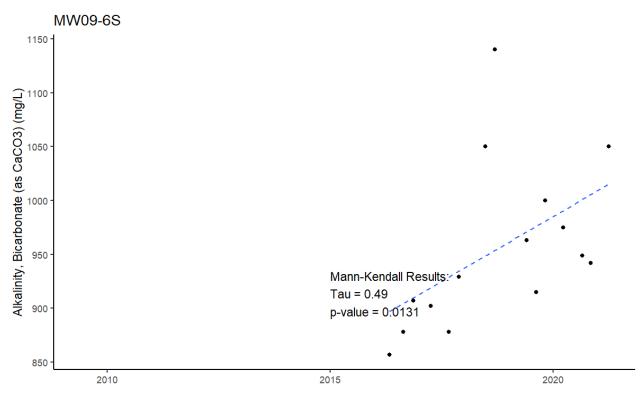


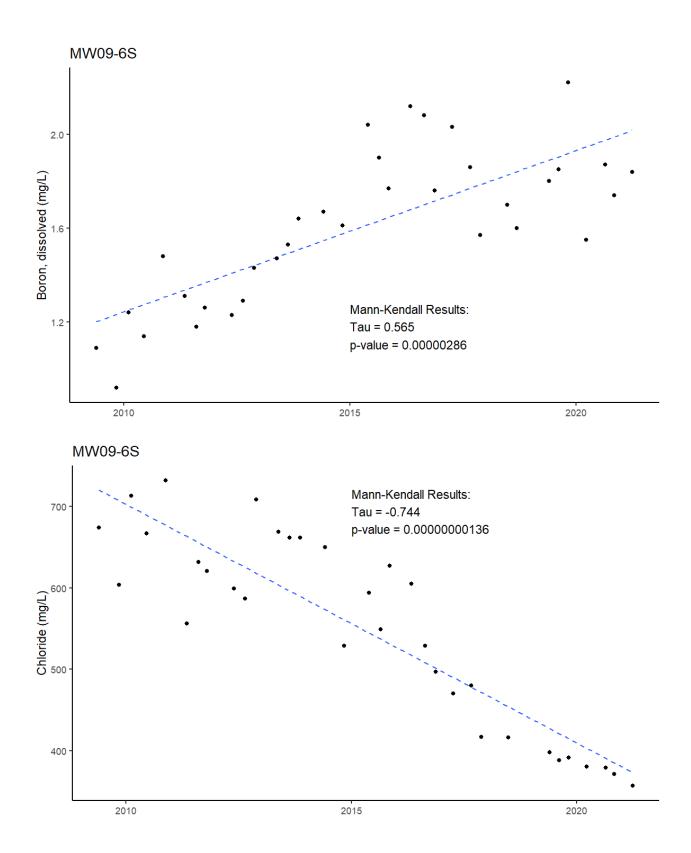

APPENDIX G MANN KENDALL, REGRESSION AND PIPER PLOTS

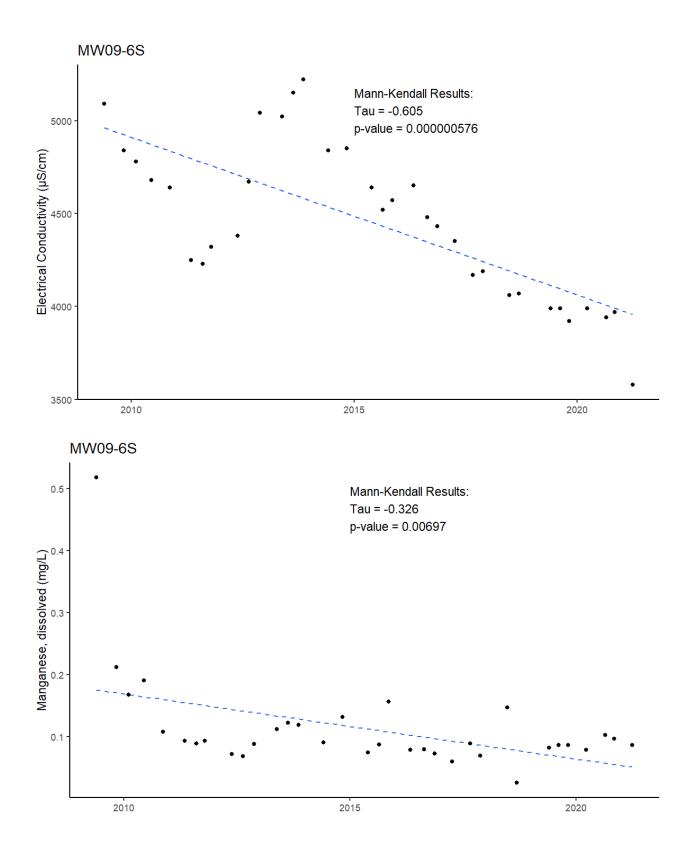


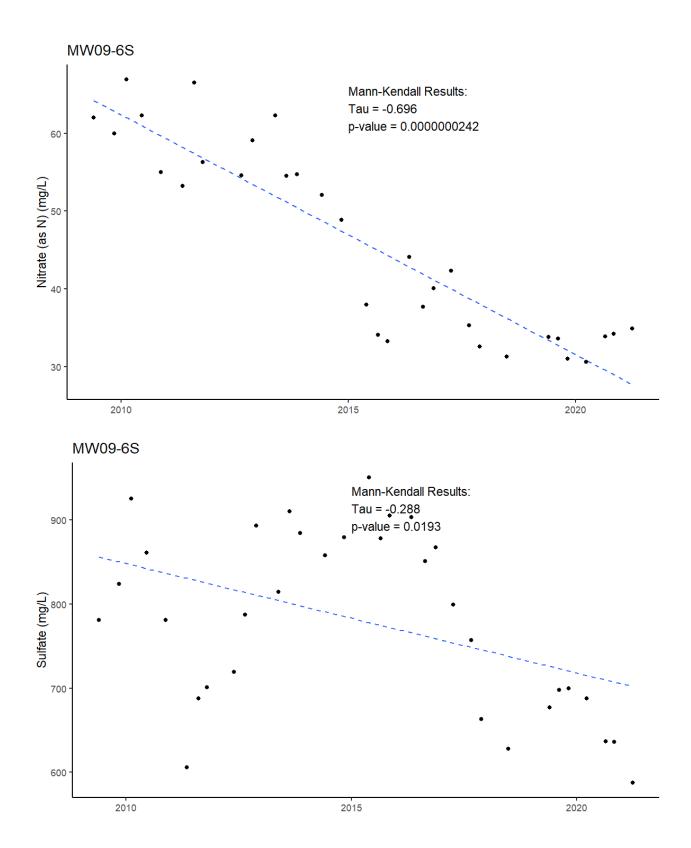


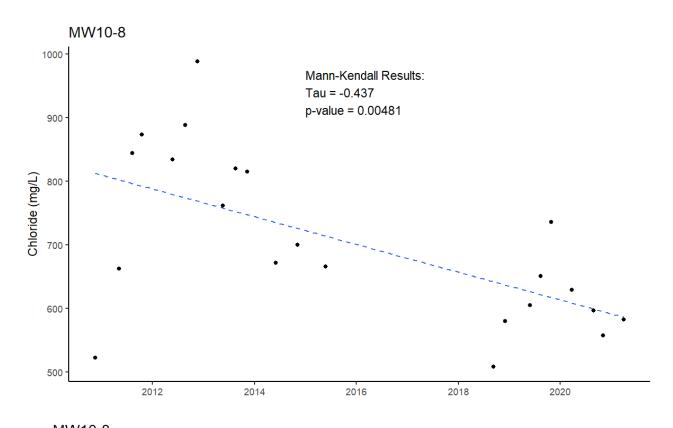


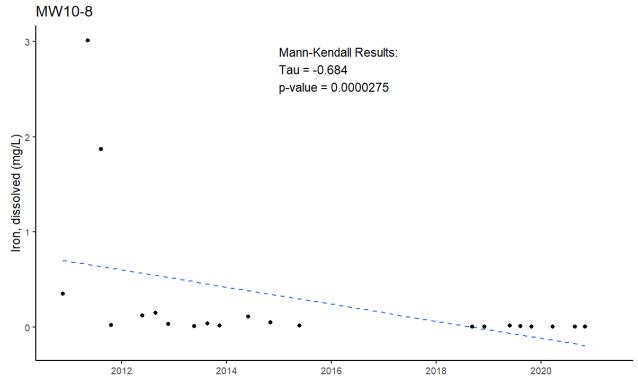


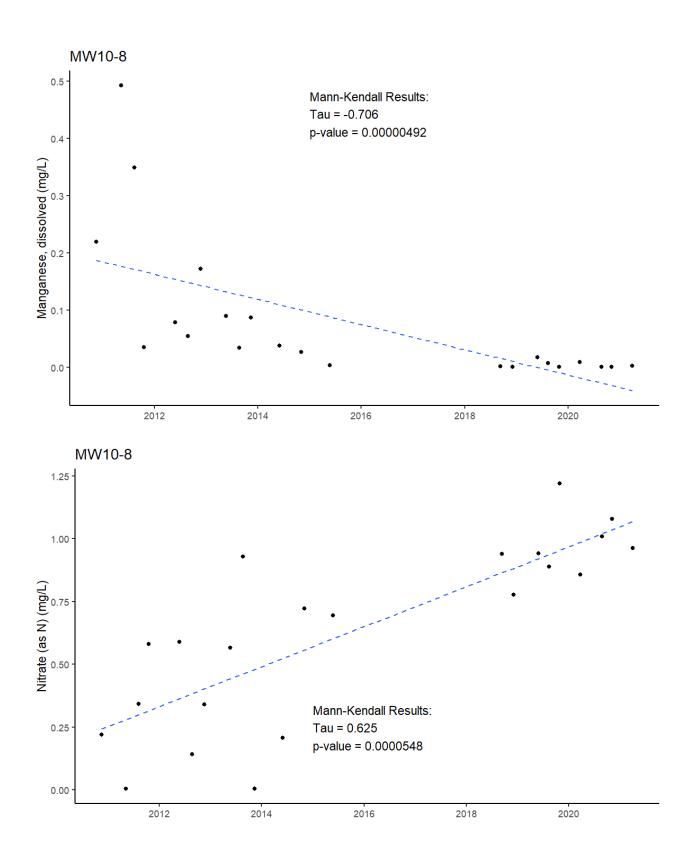


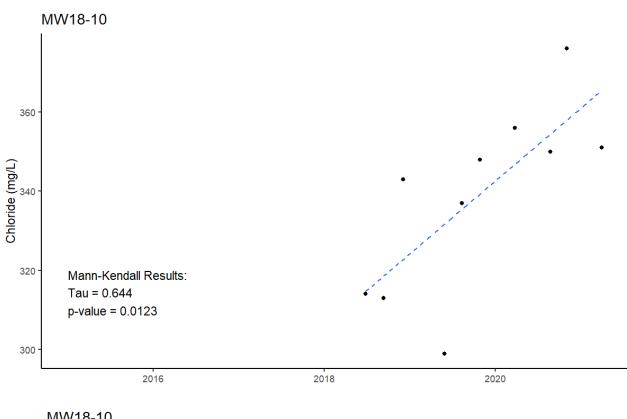


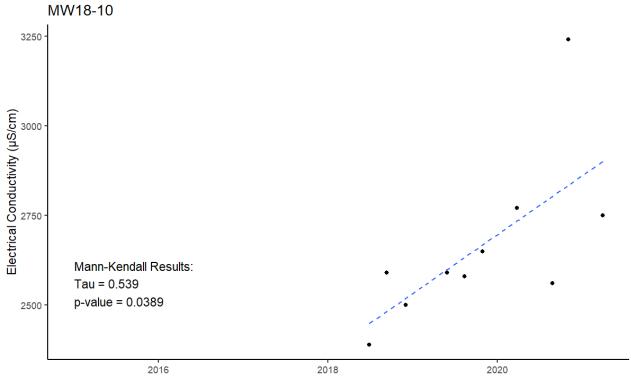


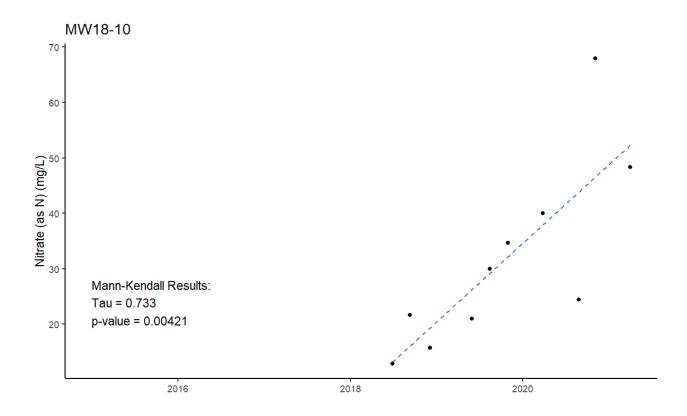


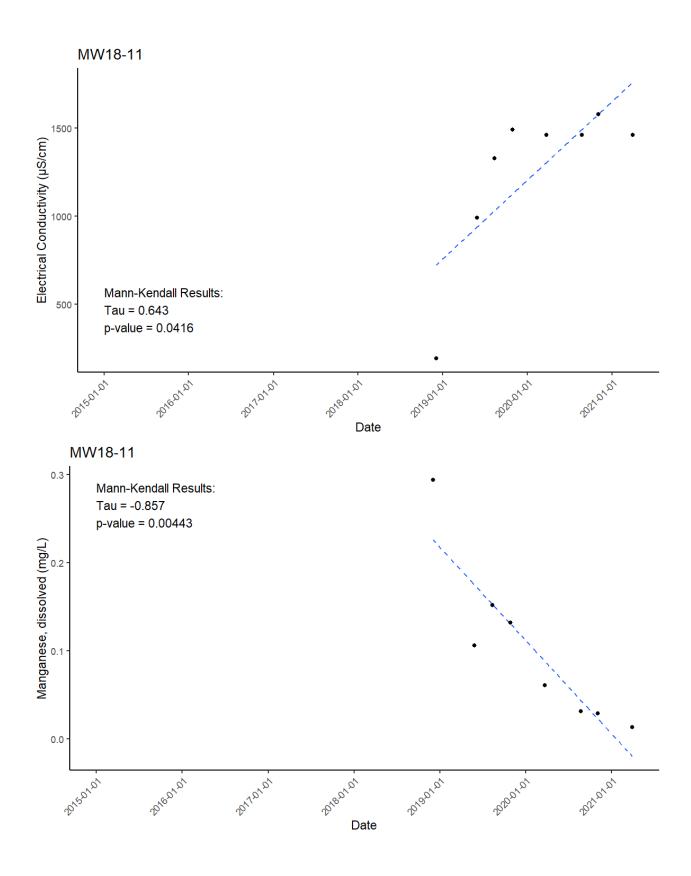


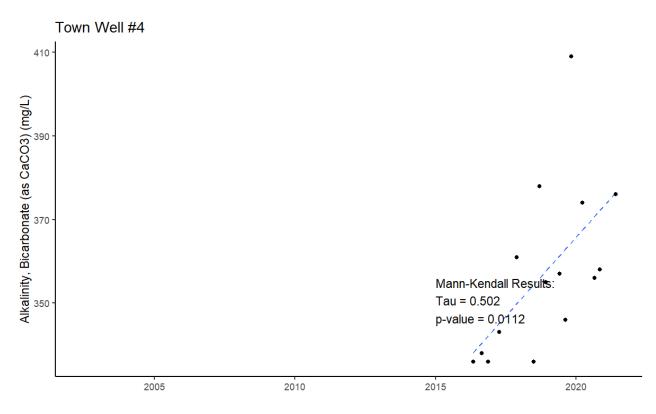


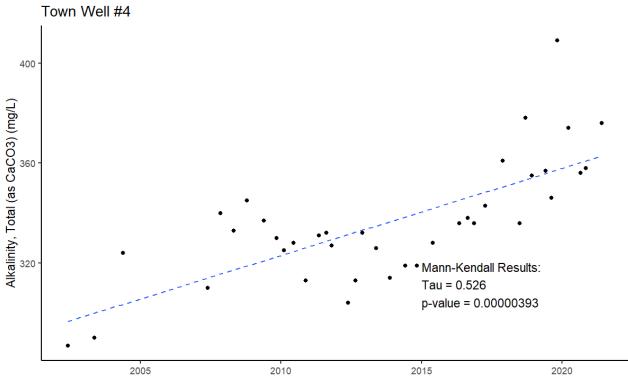


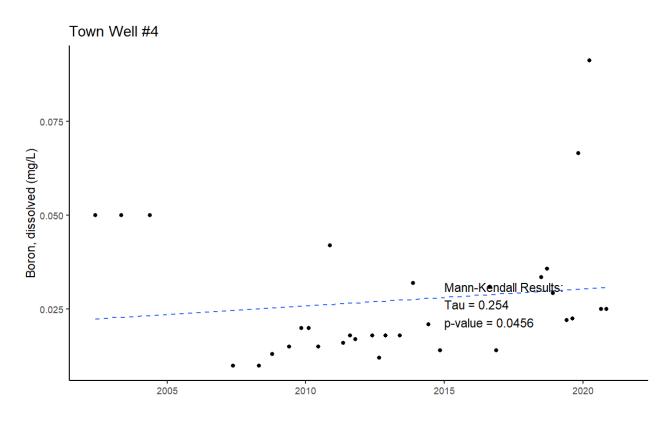


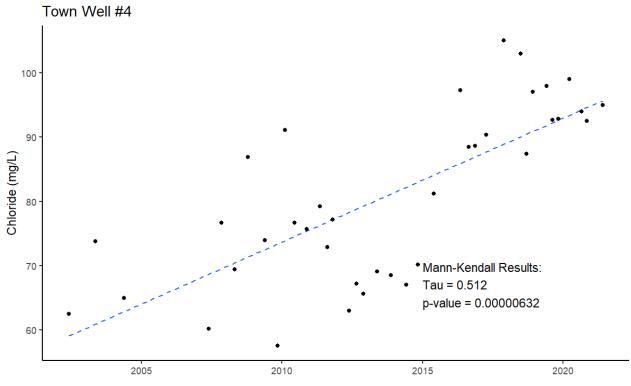


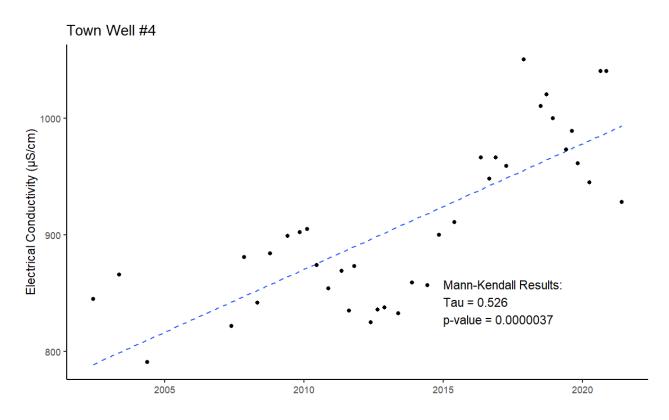


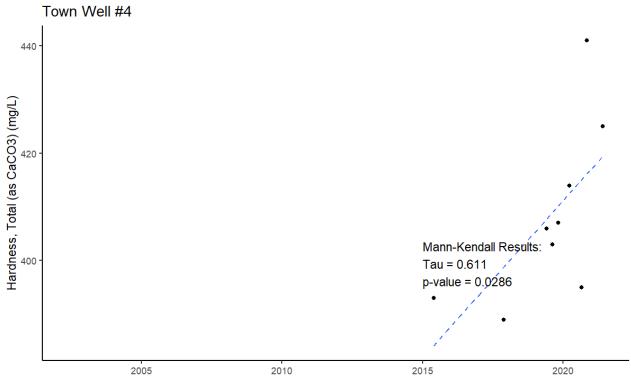


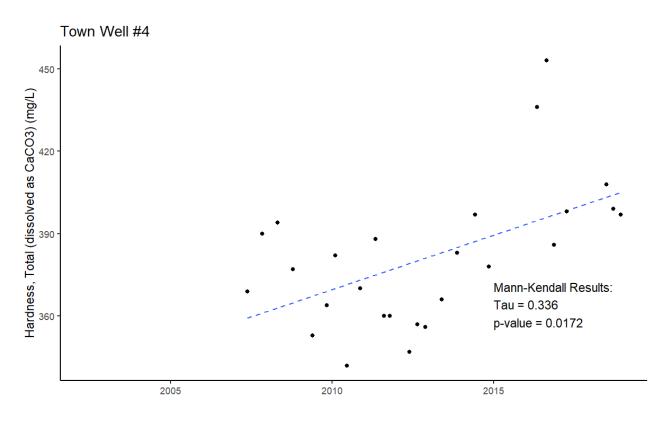


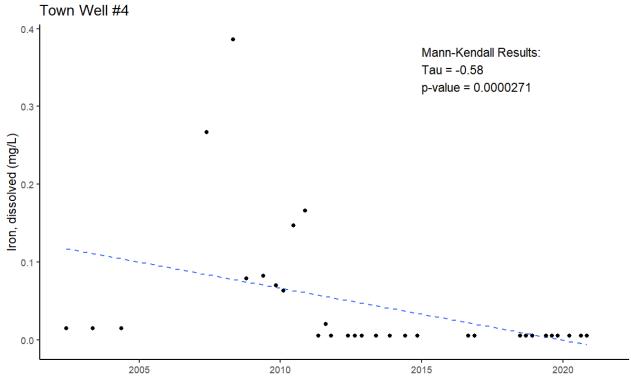


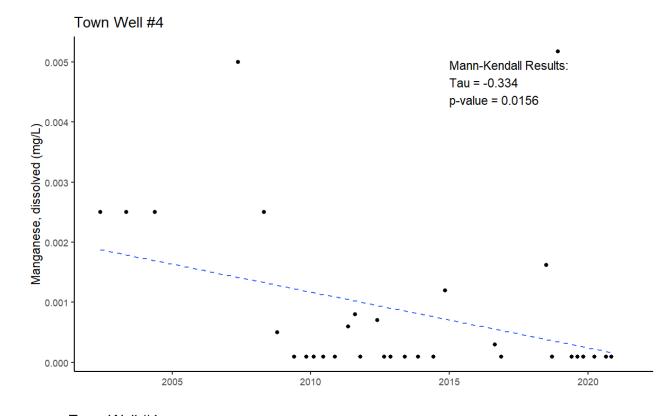


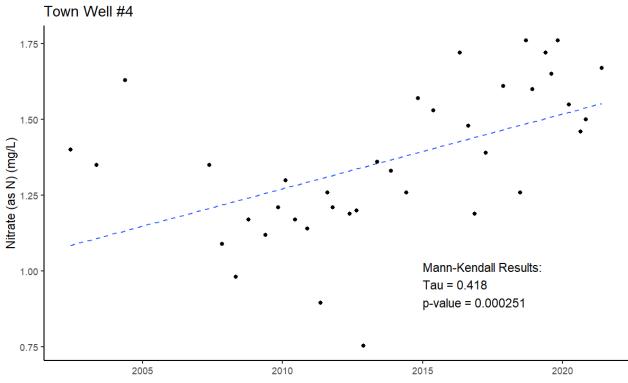


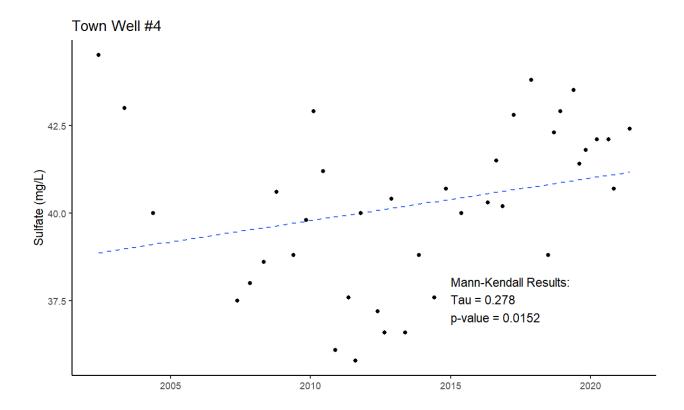




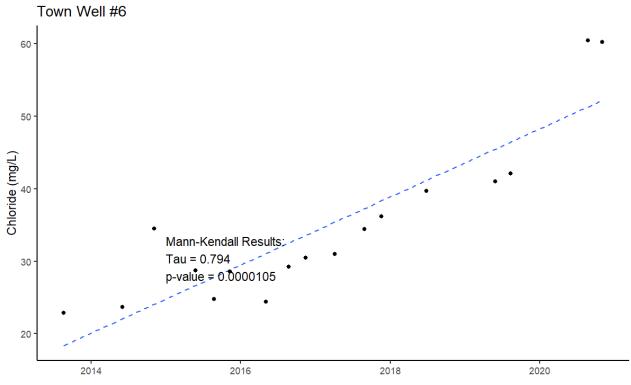


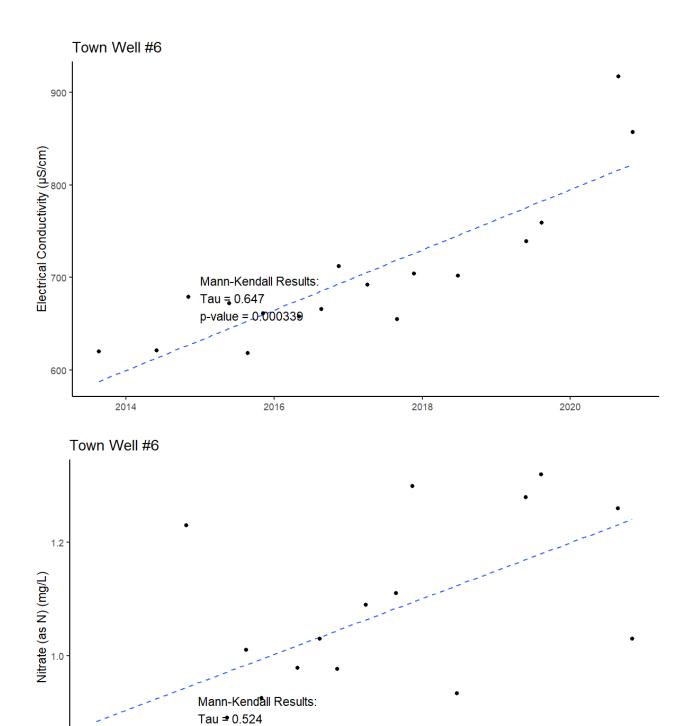




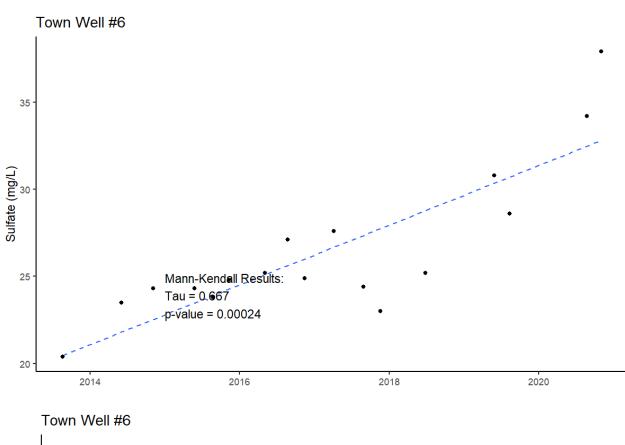


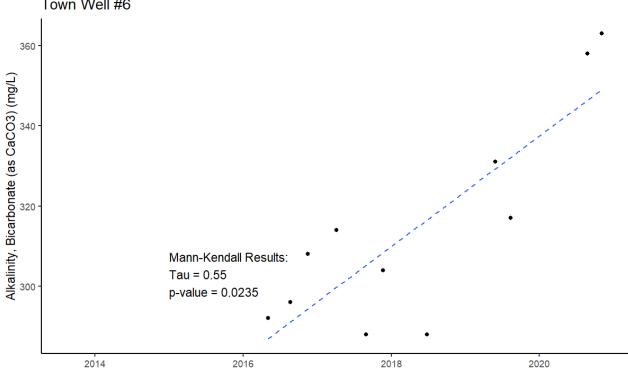


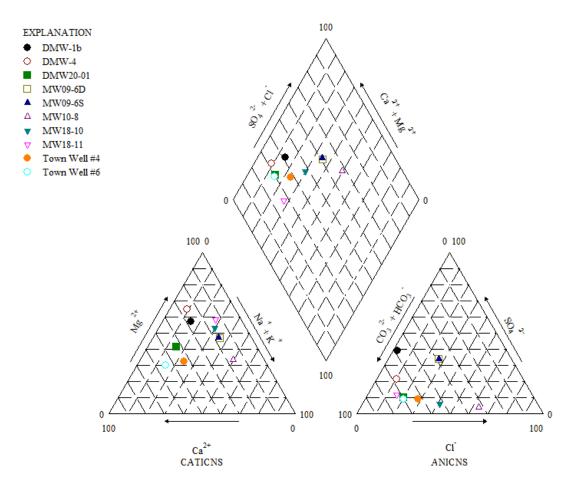




2020


2018


p-value = 0.0039


2016

8.0

2014

2020 Piper Plot